493
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Hypofunction of macrophage chemotaxis contributes to defective efficacy of herceptin in HER2-positive breast cancer patients

, , , , , , & ORCID Icon show all
Article: 2309715 | Received 11 Sep 2023, Accepted 19 Jan 2024, Published online: 07 Feb 2024

References

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–11. doi:10.3322/caac.21660.
  • Heer E, Harper A, Escandor N, Sung H, McCormack V, Fidler-Benaoudia MM. Global burden and trends in premenopausal and postmenopausal breast cancer: a population-based study. Lancet Global Health. 2020;8(8):e1027–e1037. doi:10.1016/S2214-109X(20)30215-1.
  • Eliyatkın N, Yalçın E, Zengel B, Aktaş S, Vardar E. Molecular classification of breast carcinoma: from traditional, old-fashioned way to a new age, and a new way. J Breast Health. 2015;11(2):59–66. doi:10.5152/tjbh.2015.1669.
  • Zubair M, Wang S, Ali N. Advanced approaches to breast cancer classification and diagnosis. Front Pharmacol. 2021;11(2487). doi:10.3389/fphar.2020.632079.
  • Viale G. The current state of breast cancer classification. Ann Oncol. 2012;23:x207–x210. doi:10.1093/annonc/mds326.
  • Zheng G, Guo Z, Li W, Xi W, Zuo B, Zhang R, Wen W, Yang AG, Jia L. Interaction between HLA-G and NK cell receptor KIR2DL4 orchestrates HER2-positive breast cancer efficacy to trastuzumab. Signal Transduct Target Ther. 2021;6(1):236. doi:10.1038/s41392-021-00629-w.
  • Sun P, Zhang X, Wang RJ, Ma QY, Xu L, Wang Y, Liao HP, Wang HL, Hu LD, Kong X. et al. PI3Kα inhibitor CYH33 triggers antitumor immunity in murine breast cancer by activating CD8 + T cells and promoting fatty acid metabolism. J Immunother Cancer. 2021;9(8):e003093. doi:10.1136/jitc-2021-003093.
  • Wang H, Zhang C, Zhang J, Kong L, Zhu H, Yu J. The prognosis analysis of different metastasis pattern in patients with different breast cancer subtypes: a SEER based study. Oncotarget. 2017;8(16):26368–26379. doi:10.18632/oncotarget.14300.
  • Fan W, Chang J, Fu P. Endocrine therapy efficacy in breast cancer: current status, possible mechanisms and overcoming strategies. Future Med Chem. 2015;7(12):1511–1519. doi:10.4155/fmc.15.93.
  • Vu T, Claret FX. Trastuzumab: updated mechanisms of action and efficacy in breast cancer. Front Oncol. 2012;2:62. doi:10.3389/fonc.2012.00062.
  • Nahta R, Esteva FJ. Herceptin: mechanisms of action and efficacy. Cancer Lett. 2006;232(2):123–138. doi:10.1016/j.canlet.2005.01.041.
  • Patel TA, Ensor JE, Creamer SL, Boone T, Rodriguez AA, Niravath PA, Darcourt JG, Meisel JL, Li X, Zhao J. et al. A randomized, controlled phase II trial of neoadjuvant ado-trastuzumab emtansine, lapatinib, and nab-paclitaxel versus trastuzumab, pertuzumab, and paclitaxel in HER2-positive breast cancer (TEAL study). Breast Cancer Res. 2019;21(1):100. doi:10.1186/s13058-019-1186-0.
  • Leung W-y, Roxanis I, Sheldon H, Buffa FM, Li J-L, Harris AL, Kong A. Combining lapatinib and pertuzumab to overcome lapatinib efficacy due to NRG1-mediated signalling in HER2-amplified breast cancer. Oncotarget. 2015;6(8):5678–5694. doi:10.18632/oncotarget.3296.
  • Wang J, Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal transduction and targeted therapy. 2019;4(1):34. doi:10.1038/s41392-019-0069-2.
  • Maadi H, Soheilifar MH, Choi WS, Moshtaghian A, Wang Z. Trastuzumab mechanism of action; 20 years of research to unravel a dilemma. Cancers Basel. 2021;13(14):3540. doi:10.3390/cancers13143540.
  • Hunter FW, Barker HR, Lipert B, Rothé F, Gebhart G, Piccart-Gebhart MJ, Sotiriou C, Jamieson SMF. Mechanisms of efficacy to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br J Cancer. 2020;122(5):603–612. doi:10.1038/s41416-019-0635-y.
  • Altunay B, Morgenroth A, Beheshti M, Vogg A, Wong NCL, Ting HH, Biersack H-J, Stickeler E, Mottaghy FM. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Eur J Nucl Med Mol Imaging. 2021;48(5):1371–1389. doi:10.1007/s00259-020-05094-1.
  • Wang J, Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal transduction and targeted therapy. Signal Transduct Target Ther. 2019;4(1):34–34. doi:10.1038/s41392-019-0069-2.
  • Pernas S, Tolaney SM. HER2-positive breast cancer: new therapeutic frontiers and overcoming efficacy. Ther Adv Med Oncol. 2019;11:1758835919833519. doi:10.1177/1758835919833519.
  • Gajria D, Chandarlapaty S. HER2-amplified breast cancer: mechanisms of trastuzumab efficacy and novel targeted therapies. Expert Rev Anticancer Ther. 2011;11(2):263–275. doi:10.1586/era.10.226.
  • Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 2010;146(3):264–275. doi:10.1016/j.jconrel.2010.04.009.
  • Pohlmann PR, Mayer IA, Mernaugh R. Efficacy to trastuzumab in breast cancer. Clin Cancer Res. 2009;15(24):7491. doi:10.1158/1078-0432.CCR-09-0636.
  • Jeon I, Lee JM, Shin KS, Kang T, Park MH, Seo H, Song B, Koh CH, Choi J, Shin YK. et al. Enhanced immunogenicity of engineered HER2 antigens potentiates antitumor immune responses. Vaccines (Basel). 2020;8(3):403. doi:10.3390/vaccines8030403.
  • Griguolo G, Pascual T, Dieci MV, Guarneri V, Prat A. Interaction of host immunity with HER2-targeted treatment and tumor heterogeneity in HER2-positive breast cancer. J Immunother Cancer. 2019;7(1):90. doi:10.1186/s40425-019-0548-6.
  • Lin X-L, Wang X-L, Ma B, Jia J, Yan Y, Di L-J, Yuan Y-H, Wan F-L, Lu Y-L, Liang X. et al. HER2-specific T lymphocytes kill both trastuzumab-defective and trastuzumab-sensitive breast cell lines in vitro. Chin J Cancer Res. 2012;24(2):143–150. doi:10.1007/s11670-012-0143-6.
  • Long X, Ye Y, Zhang L, Liu P, Yu W, Wei F, Ren X, Yu J. IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (review). Int J Oncol. 2016;48(1):5–12. doi:10.3892/ijo.2015.3234.
  • Devaraj S, Jialal I. Increased secretion of IP-10 from monocytes under hyperglycemia is via the TLR2 and TLR4 pathway. Cytokine. 2009;47(1):6–10. doi:10.1016/j.cyto.2009.02.004.
  • Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 2015;74(1):5–17. doi:10.1016/j.cyto.2014.09.011.
  • Kim G-E, Lee JS, Choi Y-D, Lee K-H, Lee JH, Nam JH, Choi C, Kim SS, Park MH, Yoon JH. et al. Expression of matrix metalloproteinases and their inhibitors in different immunohistochemical-based molecular subtypes of breast cancer. BMC Cancer. 2014;14(1):959. doi:10.1186/1471-2407-14-959.
  • Zhang B, Cao X, Liu Y, Cao W, Zhang F, Zhang S, Li H, Ning L, Fu L, Niu Y. et al. Tumor-derived matrix metalloproteinase-13 (MMP-13) correlates with poor prognoses of invasive breast cancer. BMC Cancer. 2008;8(1):83. doi:10.1186/1471-2407-8-83.
  • Tungsukruthai S, Petpiroon N, Chanvorachote P. Molecular mechanisms of breast cancer metastasis and potential anti-metastatic compounds. Anticancer Res. 2018;38:2607.
  • Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W. et al. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77–106. doi:10.1016/j.gendis.2018.05.001.
  • Imyanitov EN, Hanson KP. Mechanisms of breast cancer. Drug discovery Today: disease mechanisms. Drug Discov Today Dis Mech. 2004;1(2):235–245. doi:10.1016/j.ddmec.2004.09.002.
  • Turashvili G, Brogi E. Tumor heterogeneity in breast cancer. Front Med. 2017;4:227. doi:10.3389/fmed.2017.00227.
  • Rivenbark AG, O’Connor SM, Coleman WB. Molecular and cellular heterogeneity in breast cancer: challenges for personalized medicine. Am J Pathol. 2013;183(4):1113–1124. doi:10.1016/j.ajpath.2013.08.002.
  • Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int. 2014;2014:852748. doi:10.1155/2014/852748.
  • English DP, Roque DM, Santin AD. HER2 expression beyond breast cancer: therapeutic implications for gynecologic malignancies. Mol Diagn Ther. 2013;17(2):85–99. doi:10.1007/s40291-013-0024-9.
  • Yu S, Liu Q, Han X, Qin S, Zhao W, Li A, Wu K. Development and clinical application of anti-HER2 monoclonal and bispecific antibodies for cancer treatment. Exp Hematol Oncol. 2017;6(1):31. doi:10.1186/s40164-017-0091-4.
  • Di Modica M, Tagliabue E, Triulzi T. Predicting the efficacy of HER2-targeted therapies: a look at the host. Dis Markers. 2017;2017:7849108. doi:10.1155/2017/7849108.
  • Salemme V, Centonze G, Cavallo F, Defilippi P, Conti L. The crosstalk between tumor cells and the immune microenvironment in breast cancer. Implications Immunother. 2021;11(289). doi:10.3389/fonc.2021.610303.
  • Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–550. doi:10.1038/s41591-018-0014-x.
  • Steven A, Seliger B. The role of immune escape and immune cell infiltration in breast cancer. Breast Care. 2018;13(1):16–21. doi:10.1159/000486585.
  • Dehqanzada ZA, Storrer CE, Hueman MT, Foley RJ, Harris KA, Jama YH, Kao T-C, Shriver CD, Ponniah S, Peoples GE. Correlations between serum monocyte chemotactic protein-1 levels, clinical prognostic factors, and HER-2/neu vaccine-related immunity in breast cancer patients. Clin Cancer Res. 2006;12(2):478. doi:10.1158/1078-0432.CCR-05-1425.