808
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Liquid metal phase change materials for thermal management of electronics

, , ORCID Icon &
Article: 2324910 | Received 27 Oct 2023, Accepted 25 Feb 2024, Published online: 11 Mar 2024

References

  • Agostini B, Fabbri M, Park JE, et al. State of the art of high heat flux cooling technologies. Heat Transf Eng. 2007;28:258–281. doi: 10.1080/01457630601117799
  • Ahmed HE, Salman BH, Kherbeet AS, et al. Optimization of thermal design of heat sinks: a review. Int J Heat Mass Trans. 2018;118:129–153. doi: 10.1016/j.ijheatmasstransfer.2017.10.099
  • Bailey C Thermal management technologies for electronic packaging: Current capabilities and future challenges for modelling tools. 2008 10th Electronics Packaging Technology Conference, Singapore, 2008, pp. 527–532.
  • Yang TY, Kang JG, Weisensee PB, et al. A composite phase change material thermal buffer based on porous metal foam and low-melting-temperature metal alloy. Appl Phys Lett. 2020;116:071901. doi: 10.1063/1.5135568
  • Liu Y, Zheng RW, Li J. High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: critical review. Renew Sust Energ Rev. 2022;168:112783. doi: 10.1016/j.rser.2022.112783
  • Asadi M, Xie GN, Sunden B. A review of heat transfer and pressure drop characteristics of single and two-phase microchannels. Int J Heat Mass Trans. 2014;79:34–53. doi: 10.1016/j.ijheatmasstransfer.2014.07.090
  • Hu XS, Gong XL, Zhu F, et al. Thermal analysis and optimization of metal foam PCM-based heat sink for thermal management of electronic devices. Renewable Energy. 2023;212:227–237. doi: 10.1016/j.renene.2023.05.021
  • Arshad A, Ibrahim Alabdullatif M, Jabbal M, et al. Towards the thermal management of electronic devices: a parametric investigation of finned heat sink filled with PCM. Int J Heat Mass Transf. 2021;129:105643. doi: 10.1016/j.icheatmasstransfer.2021.105643
  • Verma A, Shashidhara S, Rakshit D. A comparative study on battery thermal management using phase change material (PCM). Therm Sci Eng Prog. 2019;11:74–83. doi: 10.1016/j.tsep.2019.03.003
  • Zhang DX, Zhu CY, Huang BH, et al. Thermal control performance evaluation of a phase change material-based heat sink for the electronic device suffering transient heat flux shock. Appl Therm Eng. 2023;230:120760. doi: 10.1016/j.applthermaleng.2023.120760
  • Yang XH, Tan SC, He ZZ, et al. Evaluation and optimization of low melting point metal PCM heat sink against ultra-high thermal shock. Appl Therm Eng. 2017;119:34–41. doi: 10.1016/j.applthermaleng.2017.03.050
  • Sharma A, Tyagi VV, Chen CR, et al. Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev. 2009;13:318–345. doi: 10.1016/j.rser.2007.10.005
  • Sharma RK, Ganesan P, Tyagi VV, et al. Developments in organic solid-liquid phase change materials and their applications in thermal energy storage. Energy Convers Manag. 2015;95:193–228. doi: 10.1016/j.enconman.2015.01.084
  • Zhang SQ, Pu L, Mancin S, et al. Experimental study on heat transfer characteristics of metal foam/paraffin composite PCMs in large cavities: effects of material types and heating configurations. Appl Energy. 2022;325:119790. doi: 10.1016/j.apenergy.2022.119790
  • Hou YJ, Chen H, Liu XL. Experimental study on the effect of partial filling of copper foam on heat storage of paraffin-based PCM. Renewable Energy. 2022;192:561–571. doi: 10.1016/j.renene.2022.04.084
  • Nazir H, Batool M, Bolivar Osorio FJ, et al. Recent developments in phase change materials for energy storage applications: a review. Int J Heat Mass Trans. 2019;129:491–523. doi: 10.1016/j.ijheatmasstransfer.2018.09.126
  • Xie N, Huang ZW, Luo ZG, et al. Inorganic salt hydrate for thermal energy storage. Appl Sci. 2017;7:1317. doi: 10.3390/app7121317
  • Zhang P, Xiao X, Ma ZW. A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement. Appl Energy. 2016;165:472–510. doi: 10.1016/j.apenergy.2015.12.043
  • Yu KY, Liu YS, Yang YZ. Review on form-stable inorganic hydrated salt phase change materials: preparation, characterization and effect on the thermophysical properties. Appl Energy. 2021;292:116845. doi: 10.1016/j.apenergy.2021.116845
  • Ge HS, Li HY, Mei SF, et al. Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area. Renew Sust Energ Rev. 2013;21:331–346. doi: 10.1016/j.rser.2013.01.008
  • Wang JX, Qian J, Wang N, et al. A scalable micro-encapsulated phase change material and liquid metal integrated composite for sustainable data center cooling. Renewable Energy. 2023;213:75–85. doi: 10.1016/j.renene.2023.05.106
  • Yang TY, Braun PV, Miljkovic N, et al. Phase change material heat sink for transient cooling of high-power devices. Int J Heat Mass Trans. 2021;170:121033. doi: 10.1016/j.ijheatmasstransfer.2021.121033
  • Yang XH, Tan SC, Ding YJ, et al. Experimental and numerical investigation of low melting point metal based PCM heat sink with internal fins. Int J Heat Mass Transf. 2017;87:118–124. doi: 10.1016/j.icheatmasstransfer.2017.07.001
  • Mozafari M, Lee A, Cheng S. Improvement on the cyclic thermal shock resistance of the electronics heat sinks using two-objective optimization. J Energy Storage. 2022;46:103923. doi: 10.1016/j.est.2021.103923
  • Zhao L, Xing YM, Wang Z, et al. The passive thermal management system for electronic device using low-melting-point alloy as phase change material. Appl Therm Eng. 2017;125:317–327. doi: 10.1016/j.applthermaleng.2017.07.004
  • Yu DH, He ZZ. Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management. Appl Energy. 2019;247:503–516. doi: 10.1016/j.apenergy.2019.04.072
  • Mingear J, Farrell Z, Hartl D, et al. Gallium–indium nanoparticles as phase change material additives for tunable thermal fluids. Nanoscale. 2021;13:730–738. doi: 10.1039/D0NR06526A
  • Turnbull D. The subcooling of liquid metals. J Appl Phys. 1949;20:817. doi: 10.1063/1.1698534
  • Briggs LJ. Gallium: thermal conductivity; supercooling; negative pressure. J Chem Phys. 1957;26:784–786. doi: 10.1063/1.1743405
  • Shamseddine I, Pennec F, Biwole P, et al. Supercooling of phase change materials: a review. Renew Sust Energ Rev. 2022;158:112172. doi: 10.1016/j.rser.2022.112172
  • Deng YG, Liu J. Corrosion development between liquid gallium and four typical metal substrates used in chip cooling device. Appl Phys A. 2009;95:907–915. doi: 10.1007/s00339-009-5098-1
  • Cui YT, Ding YJ, Xu S, et al. Liquid metal corrosion effects on conventional metallic alloys exposed to Eutectic Gallium–indium alloy under various temperature states. Int J Thermophys. 2018;39:113. doi: 10.1007/s10765-018-2440-x
  • He DJ, Liu GZ, Liu JF, et al. Study of effects of corrosion temperature on corrosion resistance of Cu-C alloys to liquid Ga. Corros Sci. 2023;211:110917. doi: 10.1016/j.corsci.2022.110917
  • Huang KY, Qiu WK, Ou ML, et al. An anti-leakage liquid metal thermal interface material. RSC Adv. 2020;10:18824–18829. doi: 10.1039/D0RA02351E
  • Birchenall CE, Riechman AF. Heat storage in eutectic alloys. Metall Trans A. 1980;11:1415–1420. doi: 10.1007/BF02653497
  • Farkas D, Birchenall CE. New eutectic alloys and their heats of transformation. Metall Trans A. 1985;16:323–328. doi: 10.1007/BF02814330
  • Fang D, Sun Z, Li YY, et al. Preparation, microstructure and thermal properties of MgBi alloys as phase change materials for thermal energy storage. Appl Therm Eng. 2016;92:187–193. doi: 10.1016/j.applthermaleng.2015.09.090
  • Wang QM, Cheng XM, Li YY, et al. Microstructures and thermal properties of Sn–bi–pb–zn alloys as heat storage and transfer materials. Rare Met. 2019;38:350–358. doi: 10.1007/s12598-019-01206-5
  • Zhou KY, Tang ZY, Lu YP, et al. Composition, microstructure, phase constitution and fundamental physicochemical properties of low-melting-point multi-component eutectic alloys. J Mater Sci Technol. 2017;33:131–154. doi: 10.1016/j.jmst.2016.08.022
  • Duan LF, Zhang YM, Zhao JH, et al. Formation of multiphase soft metal from compositing GaInSn and BiInSn alloy systems. ACS Appl Electron Mater. 2022;4:112–123. doi: 10.1021/acsaelm.1c00722
  • Fu JH, Zhang CL, Liu TY, et al. Room temperature liquid metal: its melting point, dominating mechanism and applications. Front Energy. 2020;14:81–104. doi: 10.1007/s11708-019-0653-8
  • Garai J, Chen J. Pressure effect on the melting temperature. arXiv. 2009;0906.3331. doi: 10.48550/arXiv.0906.3331
  • Jayaraman A, Klement W, Newton RC, et al. Fusion curves and polymorphic transitions of the group III elements—aluminum, gallium, indium and thallium—at high pressures. J Phys Chem Solids. 1963;24:7–18. doi: 10.1016/0022-3697(63)90036-2
  • Zhang MK, Yao SY, Rao W, et al. Transformable soft liquid metal micro/nanomaterials. Mater Sci Eng R Rep. 2019;138:1–35. doi: 10.1016/j.mser.2019.03.001
  • Huang CL, Feng YH, Zhang XX, et al. Thermal conductivity of metallic nanoparticle (in Chinese). Acta Phys Sinica. 2013;62:026501. doi: 10.7498/aps.62.026501
  • Li X, Li YD, Fan BY, et al. Effect of different casting methods on thermal conductivity and mechanical properties of 7075 aluminum alloy (in Chinese). Spec Cast Non-Ferrous Alloys. 2021;41:93–98.
  • Fleischer AS. Thermal energy storage using phase change materials fundamentals and applications. Cham: Springer; 2015.
  • Zhang XX, Wang X, Wang WJ. Phase change material capsule preparation and application (in Chinese). Beijing: Chemical Industry Press; 2009.
  • Costa SC, Kenisarin M. A review of metallic materials for latent heat thermal energy storage: thermophysical properties, applications, and challenges. Renew Sust Energ Rev. 2022;154:111812. doi: 10.1016/j.rser.2021.111812
  • Fang M, Zhou JD, Fei H, et al. Porous-material-based composite phase change materials for a lithium-ion battery thermal management system. Energy Fuels. 2022;36:4153–4173. doi: 10.1021/acs.energyfuels.1c04444
  • Turnbull D. Formation of crystal nuclei in liquid metals. J Appl Phys. 1950;21:1022–1028. doi: 10.1063/1.1699435
  • Kumar VB, Porat Z, Gedanken A. DSC measurements of the thermal properties of gallium particles in the micron and sub-micron sizes, obtained by sonication of molten gallium. J Therm Anal Calorim. 2015;119:1587–1592. doi: 10.1007/s10973-015-4402-x
  • Yamaguchi A, Mashima Y, Iyoda T. Reversible size control of liquid-metal nanoparticles under ultrasonication. Angewandte Chemie. 2015;54:12809–12813. doi: 10.1002/anie.201506469
  • Cicco AD. Phase transitions in confined gallium droplets. Phys Rev Lett. 1998;81:2942–2945. doi: 10.1103/PhysRevLett.81.2942
  • Turnbull D. Kinetics of heterogeneous nucleation. J Chem Phys. 1950;18:198–203. doi: 10.1063/1.1747588
  • Turnbull D, Fisher JC. Rate of nucleation in condensed systems. J Chem Phys. 1949;17:71–73. doi: 10.1063/1.1747055
  • Volmer M. Über Keimbildung und Keimwirkung als Spezialfälle der heterogenen Katalyse. Zeitschrift für Elektrochemie und angewandte physikalische Chemie. 1929;35:555–561. doi: 10.1002/bbpc.192900026
  • Fletcher NH. Size effect in heterogeneous nucleation. J Chem Phys. 1958;29:572–576. doi: 10.1063/1.1744540
  • Becker R. Die Keimbildung bei der Ausscheidung in metallischen Mischkristallen. Ann Phys. 1938;424:128–140. doi: 10.1002/andp.19384240115
  • Aleksandrov VD, Frolova SA. Effect of the overheating of the gallium melt on its supercooling during solidification. Russ Metall. 2014;2014:14–19. doi: 10.1134/S0036029514010042
  • Sosso GC, Chen J, Cox SJ, et al. Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations. Chem Rev. 2016;116:7078–7116. doi: 10.1021/acs.chemrev.5b00744
  • Zhang CL, Li L, Yang XH, et al. Study on the nucleating agents for gallium to reduce its supercooling. Int J Heat Mass Trans. 2020;148:119055. doi: 10.1016/j.ijheatmasstransfer.2019.119055
  • Tang JB, Lambie S, Meftahi N, et al. Unique surface patterns emerging during solidification of liquid metal alloys. Nature Nanotechnol. 2021;16:431–439. doi: 10.1038/s41565-020-00835-7
  • Karthika S, Radhakrishnan TK, Kalaichelvi P. A review of classical and nonclassical nucleation theories. Cryst Growth Des. 2016;16:6663–6681. doi: 10.1021/acs.cgd.6b00794
  • Gránásy L. Diffuse interface approach to vapour condensation. Europhys Lett. 1993;24:121. doi: 10.1209/0295-5075/24/2/008
  • Gránásy L. Diffuse interface model of crystal nucleation. J Non-Crystalline Solids. 1997;219:49–56. doi: 10.1016/S0022-3093(97)00250-0
  • Spaepen F. Homogeneous nucleation and the temperature dependence of the crystal-melt interfacial tension. New York: Academic Press; 1994. pp. 1–32.
  • Kelton KF. Crystal nucleation in supercooled liquid metals. Int J Microgravity Sci Appl. 2013;30:11–18.
  • Vekilov PG. The two-step mechanism of nucleation of crystals in solution. Nanoscale. 2010;2:2346. doi: 10.1039/c0nr00628a
  • Zahn D. Thermodynamics and kinetics of prenucleation clusters, classical and non‐classical nucleation. Chemphyschem. 2015;16:2069–2075. doi: 10.1002/cphc.201500231
  • Gebauer D, Kellermeier M, Gale JD, et al. Pre-nucleation clusters as solute precursors in crystallisation. Chem Soc Rev. 2014;43:2348–2371. doi: 10.1039/C3CS60451A
  • Chakraborty D, Patey GN. How crystals nucleate and grow in aqueous NaCl solution. J Phys Chem Lett. 2013;4:573–578. doi: 10.1021/jz302065w
  • Pan W, Kolomeisky AB, Vekilov PG. Nucleation of ordered solid phases of proteins via a disordered high-density state: phenomenological approach. J Chem Phys. 2005;122:174905. doi: 10.1063/1.1887168
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864
  • Shen YC, Oxtoby DW. Density functional theory of crystal growth: lennard-jones fluids. J Chem Phys. 1996;104:4233–4242. doi: 10.1063/1.471234
  • Shen YC, Oxtoby DW. Nucleation of lennard-jones fluids: a density functional approach. J Chem Phys. 1996;105:6517–6524. doi: 10.1063/1.472461
  • Gunton JD. Homogeneous nucleation. J Stat Mech. 1999;95:903–923. doi: 10.1023/A:1004598332758
  • Othmer P. Mitteilungen aus dem Institut für physikalische Chemie der Universität Göttingen. Nr. 6. Studien über das spontane Kristallisationsvermögen. Z Anorg Allg Chem. 1915;91:209–247. doi: 10.1002/zaac.19150910113
  • Richards WT. The persistence and development of crystal nuclei above the melting temperature. J Am Chem Soc. 1932;54:479–495. doi: 10.1021/ja01341a011
  • Webster WL. Phenomena occurring in the melting of metals. Proc R Soc. 1933;140: 653–660. doi: 10.1098/rspa.1933.0094
  • Beaupere N, Soupremanien U, Zalewski L. Nucleation triggering methods in supercooled phase change materials (PCM), a review. Thermochim Acta. 2018;670:184–201. doi: 10.1016/j.tca.2018.10.009
  • Yu ZW, Chen YC, Yun F, et al. Simultaneous fast deformation and solidification in supercooled liquid gallium at room temperature Advanced engineering materials. Adv Eng Mater. 2017;19:1700190. doi: 10.1002/adem.201700190
  • Wang XP, Lu XN, Xiao WL, et al. Fast solidification of pure gallium at room temperature and its micromechanical properties. Adv Mater Interfaces. 2023;10:2202100. doi: 10.1002/admi.202202100
  • Chakravarty S, Sharar DJ, Shamberger PJ. Heterogeneous nucleation of gallium with lattice-matched cubic carbide and nitride phases. J Appl Phys. 2021;130:125107. doi: 10.1063/5.0060207
  • Pan KF, Li Y, Zhao Q, et al. Simulation of solidification process of metallic gallium and its application in preparing 99.99999% pure gallium. JOM. 2019;71:737–743. doi: 10.1007/s11837-018-3259-4
  • Wang XP, Liu X, Bi P, et al. Electrochemically enabled embedded three-dimensional printing of freestanding gallium wire-like structures. ACS Appl Mater Inter. 2020;12:53966–53972. doi: 10.1021/acsami.0c16438
  • Zahir MH, Mohamed SA, Saidur R, et al. Supercooling of phase-change materials and the techniques used to mitigate the phenomenon. Appl Energy. 2019;240:793–817. doi: 10.1016/j.apenergy.2019.02.045
  • Turnbull D, Vonnegut B. Nucleation catalysis. Ind Eng Chem. 1952;44:1292–1298. doi: 10.1021/ie50510a031
  • Telkes M. Nucleation of supersaturated inorganic salt solutions. Ind Eng Chem. 1952;44:1308–1310. doi: 10.1021/ie50510a036
  • Ma JX, Zhang P. Supercooling suppression of phase change liquid metal–polydimethylsiloxane soft composites. Mater Adv. 2021;2:7437–7444. doi: 10.1039/D1MA00601K
  • Zhuang YX, Wang WB, Han BT, et al. Effect of high magnetic field on crystallization behavior of Fe83B10C6Cu1 amorphous alloy. J Alloys Compd. 2016;684:649–655. doi: 10.1016/j.jallcom.2016.05.158
  • Stiller J, Koal K, Nagel WE, et al. Liquid metal flows driven by rotating and traveling magnetic fields. Eur Phys J Spec Top. 2013;220:111–122. doi: 10.1140/epjst/e2013-01801-8
  • Zhao Y, Zhang XL, Xu XF, et al. Research progress in nucleation and supercooling induced by phase change materials. J Energy Storage. 2020;27:101156. doi: 10.1016/j.est.2019.101156
  • Li Y, Zhang LB, Li J, et al. Crystallization characteristics of zinc oxide under electric field and Raman spectrum analysis of polarized products. Acta Phys Sinica. 2019;68:070701. doi: 10.7498/aps.68.20181961
  • Dong CS, Qi RH, Yu H, et al. Electrically-controlled crystallization of supercooled sodium acetate trihydrate solution. Energy Build. 2022;260:111948. doi: 10.1016/j.enbuild.2022.111948
  • Xin YM, Gao TL, Xu J, et al. Transient electrically driven stiffness-changing materials from liquid metal polymer composites. ACS Appl Mater Inter. 2021;13:50392–50400. doi: 10.1021/acsami.1c15718
  • Zhou GB, Zhu MC, Xiang YT. Effect of percussion vibration on solidification of supercooled salt hydrate PCM in thermal storage unit. Renewable Energy. 2018;126:537–544. doi: 10.1016/j.renene.2018.03.077
  • Zhang CL, Li L, Li ZB, et al. Investigation on the spreading and solidification of supercooled gallium droplets during impact. Int J Heat Mass Trans. 2022;183:122142. doi: 10.1016/j.ijheatmasstransfer.2021.122142
  • Cogné C, Labouret S, Peczalski R, et al. Theoretical model of ice nucleation induced by inertial acoustic cavitation. Part 2: number of ice nuclei generated by a single bubble. Ultrason Sonochem. 2016;28:185–191. doi: 10.1016/j.ultsonch.2015.07.019
  • Šarler B. Stefan’s work on solid-liquid phase changes. Eng Anal Boundary Elem. 1995;16(2):83–92. doi: 10.1016/0955-7997(95)00047-X
  • Fu WC, Yan X, Gurumukhi Y, et al. High power and energy density dynamic phase change materials using pressure-enhanced close contact melting. Nature Energy. 2022;7:270–280. doi: 10.1038/s41560-022-00986-y
  • Voller VR, Cross M, Markatos NC. An enthalpy method for convection/diffusion phase change. Int J Numer Method Biomed Eng. 2005;24:271–284. doi: 10.1002/nme.1620240119
  • Çolak E, Öztop HF, Ekici Ö. Analysis of the gallium melting problem with different heating configurations. J Energy Storage. 2022;50:104651. doi: 10.1016/j.est.2022.104651
  • Hu N, Fan LW, Zhu ZQ. Can the numerical simulations of melting in a differentially-heated rectangular cavity be rationally reduced to 2D? A comparative study between 2D and 3D simulation results. Int J Heat Mass Trans. 2021;166:120751. doi: 10.1016/j.ijheatmasstransfer.2020.120751
  • Ding C, Zhang C, Ma L, et al. Numerical investigation on melting behaviour of phase change materials/metal foam composites under hypergravity conditions. Appl Therm Eng. 2022;207:118153. doi: 10.1016/j.applthermaleng.2022.118153
  • McNamara GR, Zanetti G. Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett. 1988;61:2332–2335. doi: 10.1103/PhysRevLett.61.2332
  • Frisch U, Hasslacher B, Pomeau Y. Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett. 1986;56:1505–1508. doi: 10.1103/PhysRevLett.56.1505
  • Wolfram S. Cellular automaton fluids 1: basic theory. J Stat Mech. 1986;45:471–526. doi: 10.1007/BF01021083
  • Li QZ, Lu ZL, Chen Z, et al. An efficient simplified phase-field lattice Boltzmann method for super-large-density-ratio multiphase flow. Int J Multiphase Flow. 2023;160:104368. doi: 10.1016/j.ijmultiphaseflow.2022.104368
  • Chen DY, Riaz A, Aute VC, et al. A solid-liquid model based on lattice Boltzmann method for phase change material melting with porous media in cylindrical heat exchangers. Appl Therm Eng. 2022;207:118080. doi: 10.1016/j.applthermaleng.2022.118080
  • Sinnah Z A B. Conventional and nano-enhanced phase change material melting simulation by using lattice boltzmann method: a comprehensive review. Energy Rep. 2023;9:3745–3754. doi: 10.1016/j.egyr.2023.02.056
  • Jahanshaloo L, Pouryazdanpanah E, Che Sidik NA. A review on the application of the lattice boltzmann method for turbulent flow simulation. Numer Heat Trans Part A. 2013;64:938–953. doi: 10.1080/10407782.2013.807690
  • Bhatnagar PL, Gross EP, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev. 1954;94:511–525. doi: 10.1103/PhysRev.94.511
  • Hosseini SA, Atif M, Ansumali S, et al. Entropic lattice Boltzmann methods: A review. Comput Fluids. 2023;259:105884. doi: 10.1016/j.compfluid.2023.105884
  • Krüger T, Kusumaatmaja H, Kuzmin A, et al. The lattice boltzmann method-principles and practice. Switzerland: Springer; 2017.
  • Lallemand P, Luo LS. Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys Rev E. 2000;61:6546–6562. doi: 10.1103/PhysRevE.61.6546
  • Yang XH, Liu J. Probing the Rayleigh–Benard convection phase change mechanism of low-melting-point metal via lattice Boltzmann method. Numer Heat Trans Part A. 2018;73:34–54. doi: 10.1080/10407782.2017.1420307
  • Huang RZ, Wu HY, Cheng P. A new lattice Boltzmann model for solid–liquid phase change. Int J Heat Mass Trans. 2013;59:295–301. doi: 10.1016/j.ijheatmasstransfer.2012.12.027
  • Ge HS, Liu J. Phase change effect of low melting point metal for an automatic cooling of USB flash memory. Front Energy. 2012;6:207–209. doi: 10.1007/s11708-012-0204-z
  • Ge HS, Liu J. Keeping smartphones cool with gallium phase change material. J Heat Transfer. 2013;135:054503. doi: 10.1115/1.4023392
  • Zhao L, Xing YM, Liu X. Experimental investigation on the thermal management performance of heat sink using low melting point alloy as phase change material. Renewable Energy. 2020;146:1578–1587. doi: 10.1016/j.renene.2019.07.115
  • Xu ZR, Li XY, Zhu ZL, et al. Experimental study on the heat transfer performance of a gallium heat sink. Energy Convers Manag. 2020;213:112853. doi: 10.1016/j.enconman.2020.112853
  • Alipanah M, Li XL. Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams. Int J Heat Mass Trans. 2016;102:1159–1168. doi: 10.1016/j.ijheatmasstransfer.2016.07.010
  • Fan LW, Wu YY, Xiao YQ, et al. Transient performance of a thermal energy storage-based heat sink using a liquid metal as the phase change material. Appl Therm Eng. 2016;109:746–750. doi: 10.1016/j.applthermaleng.2016.08.137
  • Al Omari SAB, Ghazal AM, Elnajjar E, et al. Vibration-enhanced direct contact heat exchange using gallium as a solid phase change material. Int J Heat Mass Transf. 2021;120:104990. doi: 10.1016/j.icheatmasstransfer.2020.104990
  • Giangi M, Stella F. Analysis of natural convection during solidification of a pure metal. Int J Comput Fluid Dyn. 1999;11:341–349. doi: 10.1080/10618569908940885
  • Veilleux DL, Gonçalves E, Faghri M, et al. Phase change in a three-dimensional rectangular cavity under electromagnetically simulated low gravity: top wall heating with an unfixed material. Numer Heat Transfer. 2005;48:849–878. Part A: Applications. doi: 10.1080/10407780591006903.
  • Uzan AY, Kozak Y, Korin Y, et al. A novel multi-dimensional model for solidification process with supercooling. Int J Heat Mass Trans. 2017;106:91–102. doi: 10.1016/j.ijheatmasstransfer.2016.10.046
  • Yang XH, Tan SC, Liu J. Numerical investigation of the phase change process of low melting point metal. Int J Heat Mass Trans. 2016;100:899–907. doi: 10.1016/j.ijheatmasstransfer.2016.04.109
  • Rivero M, Orozco S, Beltrán A. Numerical investigation of the melting process of gallium under inclination and partial heating. J Energy Storage. 2023;59:106510. doi: 10.1016/j.est.2022.106510
  • Su QQ. Research on compound thermal management technology for laser device based on low melting point alloy. Beijing: University of Chinese Academy of Sciences; 2020.
  • Yao YC, Cui YT, Deng ZS. Phase change composites of octadecane and gallium with expanded graphite as a carrier. RSC Adv. 2022;12:17217–17227. doi: 10.1039/D2RA02734H
  • Huang PR, Wei GS, Cui L, et al. Numerical investigation of a dual-PCM heat sink using low melting point alloy and paraffin. Appl Therm Eng. 2021;189:116702. doi: 10.1016/j.applthermaleng.2021.116702
  • Al Omari SAB, Ghazal AM, Elnajjar E. A novel concept to enhance the applicability of solid gallium as phase change material for heat sinks by integrating within it discretely distributed chunks of un-encapsulated PCM. Int J Heat Mass Transf. 2018;91:274–281. doi: 10.1016/j.icheatmasstransfer.2017.12.014
  • Ding Y, Klemeš JJ, Zhao PB, et al. Numerical study on 2-stage phase change heat sink for cooling of photovoltaic panel. Energy. 2022;249:123679. doi: 10.1016/j.energy.2022.123679
  • McCann MK, Fish MC, Boteler LM, etal. Analyzing the distribution of microencapsulated organic phase change materials embedded in a metallic matrix. In: 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm); Orlando; 2020 Jul 21–23. New York: IEEE Xplore; 2020. p. 975–984. doi: 10.1109/ITherm45881.2020.9190502
  • Al-Omari SAB, Qureshi ZA, Mahmoud F, et al. Thermal management characteristics of a counter-intuitive finned heat sink incorporating detached fins impregnated with a high thermal conductivity-low melting point PCM. Int J Ther Sci. 2022;175:107396. doi: 10.1016/j.ijthermalsci.2021.107396
  • Huang ZW, Luo ZG, Gao XN, et al. Preparation and thermal property analysis of Wood’s alloy/expanded graphite composite as highly conductive form-stable phase change material for electronic thermal management. Appl Therm Eng. 2017;122:322–329. doi: 10.1016/j.applthermaleng.2017.04.154
  • Hou TR, Xing YM, Zheng WY, et al. Analysis of copper foam/low melting point alloy composite phase change material. Appl Therm Eng. 2022;204:117934. doi: 10.1016/j.applthermaleng.2021.117934
  • Yao YC, Chen S, Ye J, et al. Self-Assembled Copper Film-Enabled Liquid Metal Core–Shell Composite. ACS Appl Mater Inter. 2021;13:60660–60671. doi: 10.1021/acsami.1c18824
  • Raj CR, Suresh S, Singh VK, et al. Life cycle assessment of nanoalloy enhanced layered perovskite solid-solid phase change material till 10000 thermal cycles for energy storage applications. J Energy Storage. 2021;35:102220. doi: 10.1016/j.est.2020.102220
  • Kashiyama K, Kawaguchi T, Dong K, et al. Ga‐based microencapsulated phase change material for low‐temperature thermal management applications. Energy Storage. 2020;2:e177. doi: 10.1002/est2.177
  • Wang S, Zhao XY, Wang ZY, et al. Micro-encapsulation of a low-melting-point alloy phase change material and its application in electronic thermal management. J Clean Prod. 2023;417:138058. doi: 10.1016/j.jclepro.2023.138058
  • Gao JY, Zhang XD, Fu JH, et al. Numerical investigation on integrated thermal management via liquid convection and phase change in packed bed of spherical low melting point metal macrocapsules. Int J Heat Mass Trans. 2020;150:119366. doi: 10.1016/j.ijheatmasstransfer.2020.119366
  • Qin P, Liao MR, Zhang DF, et al. Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material. Energy Convers Manag. 2019;195:1371–1381. doi: 10.1016/j.enconman.2019.05.084
  • Hekmat S, Bamdezh MA, Molaeimanesh GR. Hybrid thermal management for achieving extremely uniform temperature distribution in a lithium battery module with phase change material and liquid cooling channels. J Energy Storage. 2022;50:104272. doi: 10.1016/j.est.2022.104272
  • Zhang WC, Qiu JY, Yin XX, et al. A novel heat pipe assisted separation type battery thermal management system based on phase change material. Appl Therm Eng. 2020;165:114571. doi: 10.1016/j.applthermaleng.2019.114571
  • Patel JR, Rathod MK. Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries. J Power Sources. 2020;480:228820. doi: 10.1016/j.jpowsour.2020.228820
  • Liu ZW, Wang BY, Tan YW, et al. Thermal management of lithium-ion battery pack under demanding conditions and long operating cycles using fin-enhanced PCMs/water hybrid cooling system. Appl Therm Eng. 2023;233:121214. doi: 10.1016/j.applthermaleng.2023.121214
  • Xie N, Zhang Y, Liu XJ, et al. Thermal performance and structural optimization of a hybrid thermal management system based on MHPA/PCM/liquid cooling for lithium-ion battery. Appl Therm Eng. 2023;235:121341. doi: 10.1016/j.applthermaleng.2023.121341
  • Yang XH, Liu J. Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling. Front Energy. 2018;12:259–275. doi: 10.1007/s11708-017-0521-3
  • Yang XH, Tan SC, He ZZ, et al. Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock. Energy Convers Manag. 2018;160:467–476. doi: 10.1016/j.enconman.2018.01.056
  • Li ZW, Lv LC, Li J. Combination of heat storage and thermal spreading for high power portable electronics cooling. Int J Heat Mass Trans. 2016;98:550–557. doi: 10.1016/j.ijheatmasstransfer.2016.03.068
  • Yang XH, Ke ZW, Li YQ, et al. Transient heat transfer analytical model for low-meltingpoint-metal phase change material heat sink. Chem Eng Trans. 2020;81:1273–1278.
  • Wu W, Chow LC, Wang CM, et al. Jet impingement heat transfer using a Field’s alloy nanoparticle-HFE7100 slurry. Int J Heat Mass Trans. 2014;68:357–365. doi: 10.1016/j.ijheatmasstransfer.2013.09.029
  • Huang J, Wang CM, Zhang XR, et al. Facile preparation and thermal properties of Field’s alloy nanofluid for heat transfer. Colloids Surf A Physicochem Eng Asp. 2019;581:123805. doi: 10.1016/j.colsurfa.2019.123805