338
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Reconfigurable nanoionic and photoionic material and device platforms

&
Article: 2338285 | Received 15 Nov 2023, Accepted 24 Mar 2024, Published online: 16 Apr 2024

References

  • Rahmani M, Xu L, Miroshnichenko AE, et al. Reversible thermal tuning of all-dielectric metasurfaces. Adv Funct Mater. 2017;27:1700580. doi: 10.1002/adfm.201700580
  • Lu L, Zhao S, Zhou L, et al. 16× 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Opt Express. 2016;24:9295–9307. doi: 10.1364/OE.24.009295
  • Venkatasubramanian A, Sauer VT, Roy SK, et al. Nano-optomechanical systems for gas chromatography. Nano Lett. 2016;16:6975–6981. doi: 10.1021/acs.nanolett.6b03066
  • Liu K, Ye CR, Khan S, et al. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photonics Rev. 2015;9:172–194. doi: 10.1002/lpor.201400219
  • Gholipour B, Mu¨ller MJ, Li Y, et al. Roadmap on Chalcogenide Photonics. J Phys. 2022. doi:10.1088/2515-7647/ac9a91
  • McRae L, Xie Y, Gholipour B. Photoionic driven movement of metallic ions as a nonvolatile reconfiguration mechanism in amorphous chalcogenide metasurfaces. Adv Opt Mater. 2021;9:2101046. doi: 10.1002/adom.202101046
  • Kim JT. CMOS-compatible hybrid plasmonic modulator based on vanadium dioxide insulator-metal phase transition. Optics Lett. 2014;39:3997–4000. doi: 10.1364/OL.39.003997
  • Joushaghani A, Kruger BA, Paradis S, et al. Sub-volt broadband hybrid plasmonic-vanadium dioxide switches. Appl Phys Lett. 2013;102:061101. doi: 10.1063/1.4790834
  • Briggs RM, Pryce IM, Atwater HA. Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Opt express. 2010;18:11192–11201. doi: 10.1364/OE.18.011192
  • Gholipour B. The promise of phase-change materials. Science. 2019;366:186–187. doi: 10.1126/science.aaz1129
  • Karvounis A, Gholipour B, MacDonald KF, et al. All-dielectric phase-change reconfigurable metasurface. Appl Phys Lett. 2016;109:051103. doi: 10.1063/1.4959272
  • Yang Z, Ramanathan S. Breakthroughs in photonics 2014: phase change materials for photonics. IEEE Photonics J. 2015;7:1–8. doi: 10.1109/JPHOT.2015.2504960
  • Kana JK, Ndjaka J, Vignaud G, et al. Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry. Opt Commun. 2011;284:807–812. doi: 10.1016/j.optcom.2010.10.009
  • Xu Z, Bernussi AA, Fan Z. Voltage pulse driven VO2 volatile resistive transition devices as leaky integrate-and-fire artificial neurons. Electronics. 2022;11:516. doi: 10.3390/electronics11040516
  • Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi B. 1966;15:627–637. doi: 10.1002/pssb.19660150224
  • Ovshinsky SR. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett. 1968;21:1450. doi: 10.1103/PhysRevLett.21.1450
  • Mandal A, Cui Y, McRae L, et al. Reconfigurable chalcogenide phase change metamaterials: A material, device, and fabrication perspective. J Phys Photonics. 2021;3:022005. doi: 10.1088/2515-7647/abe54d
  • Shportko K, Kremers S, Woda M, et al. Resonant bonding in crystalline phase-change materials. Nature Mater. 2008;7:653–658. doi: 10.1038/nmat2226
  • Ding K, Wang J, Zhou Y, et al. Phase-change heterostructure enables ultralow noise and drift for memory operation. Science. 2019;366:210–215. doi: 10.1126/science.aay0291
  • Zhu X, Lee SH, Lu WDNR-SD. Nanoionic resistive-switching devices. Adv Electron Mater. 2019;5:1900184. doi: 10.1002/aelm.201900184
  • Waser R, Aono M. Nanoionics-based resistive switching memories. Nanosci Technol. 2007;2010:158–165.
  • Wang Z, Wang L, Nagai M, et al. Nanoionics-enabled memristive devices: strategies and materials for neuromorphic applications. Adv Electron Mater. 2017;3:1600510. doi: 10.1002/aelm.201600510
  • Kolobov AV. Photo-induced metastability in amorphous semiconductors. John Wiley & Sons; 2006.
  • Park M, Zhang X, Chung M, et al. A review of conduction phenomena in Li-ion batteries. J Power Sources. 2010;195:7904–7929. doi: 10.1016/j.jpowsour.2010.06.060
  • Pruthvija B, Lakshmi KP, Harshitha U A comprehensive overview of metal chalco- genides for rechargeable batteries. Materials Today: Proceedings. 2022; 71: 317–324 doi: 10.1016/j.matpr.2022.09.220.
  • Kozicki MN, Mitkova M. Mass transport in chalcogenide electrolyte films–materials and applications. J Non-Crystalline Solids. 2006;352:567–577. doi: 10.1016/j.jnoncrysol.2005.11.065
  • Kim SG, Han JS, Kim H, et al. Recent advances in memristive materials for artificial synapses. Adv Mater Technol. 2018;3:1800457. doi: 10.1002/admt.201800457
  • Waser R, Dittmann R, Staikov G, et al. Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv Mater. 2009;21:2632–2663. doi: 10.1002/adma.200900375
  • Li B, Hui W, Ran X, et al. Metal halide perovskites for resistive switching memory devices and artificial synapses. J Mater Chem C. 2019;7:7476–7493. doi: 10.1039/C9TC02233C
  • Gu C, Lee J-S. Flexible hybrid organic–inorganic perovskite memory. ACS Nano. 2016;10:5413–5418. doi: 10.1021/acsnano.6b01643
  • Ismail M, Chand U, Mahata C, et al. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing. J Mater Sci Technol. 2022;96:94–102. doi: 10.1016/j.jmst.2021.04.025
  • Kim T, Son H, Kim I, et al. Reversible switching mode change in Ta2O5-based resistive switching memory (ReRAM). Sci Rep. 2020;10:1–9. doi: 10.1038/s41598-020-68211-y
  • Chamele N, Balaban MB, Patadia A, et al. Materials characterization and electrical performance of bilayer structures for enhanced electrodeposition in programmable metallization cells. Adv Elect Materials. 2022;8:2100897. doi: 10.1002/aelm.202100897
  • Cheng B, Emboras A, Salamin Y, et al. Ultra compact electrochemical metallization cells offering reproducible atomic scale memristive switching. Commun Phys. 2019;2:28. doi: 10.1038/s42005-019-0125-9
  • Wang Z, Jiang H, Jang MH, et al. Electrochemical metallization switching with a platinum group metal in different oxides. Nanoscale. 2016;8:14023–14030. doi: 10.1039/C6NR01085G
  • Mahata C, Kang M, Kim S. Multi-level analog resistive switching characteristics in tri-layer HfO2/Al2O3/HfO2 based memristor on ITO electrode. Nanomaterials. 2020;10:10. doi: 10.3390/nano10102069
  • Wiatrowski A, Obstarczyk A, Mazur M, et al. Characterization of HfO2 optical coatings deposited by MF magnetron sputtering. Coatings. 2019;9:106. doi: 10.3390/coatings9020106
  • Sassine G, La Barbera S, Najjari N, et al. Interfacial versus filamentary resistive switching in TiO2 and HfO2 devices. J Vac Sci Technol B, Nanotechnol Microelectron: Mater, Process, Meas Phenom. 2016;34:012202. doi: 10.1116/1.4940129
  • Zaffora A, Cho D, Lee K, et al. Electrochemical tantalum oxide for resistive switching memories. Adv Mater. 2017;29:1703357. doi: 10.1002/adma.201703357
  • Kawaguchi T, Maruno S, Elliott SR. Optical, electrical, and structural properties of amorphous Ag–Ge–S and Ag–Ge–Se films and comparison of photoinduced and thermally induced phenomena of both systems. J Appl Phys. 1996;79:9096–9104. doi: 10.1063/1.362644
  • Monroe CW. In Encyclopedia of applied electrochemistry. Kreysa, G., Ota, K.-i., Savinell, R. F., Eds. New York, NY: Springer New York; 2014. pp. 1125–1130.
  • Brandes EA, Brook G. Smithells metals reference book. Amsterdam, Netherlands: Elsevier; 2013.
  • Dean J, Lange N. Electrolytes, electromotive force, and chemical equilibrium. Lange’s Handbook of Chemistry. New York, United States: McGraw-Hill; 1999. p. 8.124–8.139.
  • Chen T, Jin Y, Lv H, et al. Applications of lithium-ion batteries in grid-scale energy storage systems. Trans Tianjin Univ. 2020;26:208–217. doi: 10.1007/s12209-020-00236-w
  • Kumar S, Strachan JP, Williams RS. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature. 2017;548:318–321. doi: 10.1038/nature23307
  • Kudo M, Arita M, Ohno Y, et al. Filament formation and erasure in molybdenum oxide during resistive switching cycles. Appl Phys Lett. 2014;105:173504. doi: 10.1063/1.4898773
  • Won S, Lee SY, Park J, et al. Forming-less and non-volatile resistive switching in WO x by oxygen vacancy control at interfaces. Sci Rep. 2017;7:1–8. doi: 10.1038/s41598-017-10851-8
  • Kim W, Menzel S, Wouters DJ, et al. Impact of oxygen exchange reaction at the ohmic interface in Ta 2 O 5-based ReRAM devices. Nanoscale. 2016;8:17774–17781. doi: 10.1039/C6NR03810G
  • Das SK, Mahapatra S, Lahan H. Aluminium-ion batteries: developments and challenges. J Mater Chem A. 2017;5:6347–6367. doi: 10.1039/C7TA00228A
  • Zafar ZA, Imtiaz S, Razaq R, et al. Cathode materials for rechargeable aluminum batteries: current status and progress. Journal of Materials Chemistry A. 2017;5:5646–5660. doi: 10.1039/C7TA00282C
  • Wedig A, Luebben M, Cho D-Y, et al. Nanoscale cation motion in TaO x, HfO x and TiO x memristive systems. Nature Nanotechnol. 2016;11:67–74. doi: 10.1038/nnano.2015.221
  • McPeak KM, Jayanti SV, Kress SJ, et al. Plasmonic films can easily be better: rules and recipes. ACS Photonics. 2015;2:326–333. doi: 10.1021/ph5004237
  • Piccinotti D, Gholipour B, Yao J, et al. Stoichiometric engineering of chalcogenide semiconductor alloys for nanophotonic applications. Adv Mater. 2019;31. doi: 10.1002/adma.201807083
  • West PR, Ishii S, Naik GV, et al. Searching for better plasmonic materials. Laser Photonics Rev. 2010;4:795–808. doi: 10.1002/lpor.200900055
  • Wooten F. Optical properties of solids. London, United Kingdom: Academic press; 2013.
  • Johnson PB, Christy R-W. Optical constants of the noble metals. Phys Rev B. 1972;6:4370. doi: 10.1103/PhysRevB.6.4370
  • Werner WS, Glantschnig K, Ambrosch-Draxl C. Optical constants and inelastic electron-scattering data for 17 elemental metals. J Phys Chem Ref Data. 2009;38:1013–1092. doi: 10.1063/1.3243762
  • Yang Y, Sheridan P, Lu W. Complementary resistive switching in tantalum oxide-based resistive memory devices. Appl Phys Lett. 2012;100:203112. doi: 10.1063/1.4719198
  • Böttger U, von Witzleben M, Havel V, et al. Picosecond multilevel resistive switching in tantalum oxide thin films. Sci Rep. 2020;10:1–9. doi: 10.1038/s41598-020-73254-2
  • Kim W, Menzel S, Wouters D, et al. 3-bit multilevel switching by deep reset phenomenon in Pt/W/TaO X/Pt-ReRAM devices. IEEE Electron Device Lett. 2016;37:564–567. doi: 10.1109/LED.2016.2542879
  • Schindler C, Thermadam SCP, Waser R, et al. Bipolar and unipolar resistive switching in Cu-Doped $ SiO2$. IEEE Trans Electron Devices. 2007;54:2762–2768. doi: 10.1109/TED.2007.904402
  • Liu X, Sadaf SM, Park S, et al. Complementary resistive switching in niobium oxide-based resistive memory devices. IEEE Electron Device Lett. 2013;34:235–237. doi: 10.1109/LED.2012.2235816
  • Rodríguez-de Marcos LV, Larruquert JI, Méndez JA, et al. Self-consistent optical constants of SiO_2 and Ta_2O_5 films. Opt Mater Express. 2016;6:3622–3637. doi: 10.1364/OME.6.003622
  • Sarkar S, Gupta V, Kumar M, et al. Hybridized guided-mode resonances via colloidal plasmonic self-assembled grating. ACS Appl Mater Interfaces. 2019;11:13752–13760. doi: 10.1021/acsami.8b20535
  • Perkins J, Gholipour B. Optoelectronic gas sensing platforms: from metal oxide lambda sensors to nanophotonic metamaterials. Adv Photonics Res. 2021;2:2000141. doi: 10.1002/adpr.202000141
  • Perkins J, Cheng H, Craig C, et al. Color tunable, Lithography-Free Refractory Metal–oxide metacoatings with a graded refractive index profile. Nano Lett. 2023;23:2601–2606. doi: 10.1021/acs.nanolett.2c04867
  • Gao L, Lemarchand F, Lequime M. Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. Opt express. 2012;20:15734–15751. doi: 10.1364/OE.20.015734
  • Synowicki R, Tiwald TE. Optical properties of bulk c-ZrO2, c-MgO and a-As2S3 determined by variable angle spectroscopic ellipsometry. Thin Solid Films. 2004;455–456:248–255. doi: 10.1016/j.tsf.2004.02.028
  • Liu S, Mi Y, Xue D, et al. Investigation of physical and electronic properties of GeSe for photovoltaic applications. Adv Electron Mater. 2017;3:1700141. doi: 10.1002/aelm.201700141
  • Raeis-Hosseini N, Rho J. Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices. Materials. 2017;10:1046. doi: 10.3390/ma10091046
  • Gholipour B, Zhang J, MacDonald KF, et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv Mater. 2013;25:3050–3054. doi: 10.1002/adma.201300588
  • Raeis-Hosseini N, Lim S, Hwang H, et al. Reliable Ge2Sb2Te5-integrated high-density nanoscale conductive bridge random access memory using facile nitrogen-doping strategy. Adv Electron Mater. 2018;4:1800360. doi: 10.1002/aelm.201800360
  • Khan P, Xu Y, Leon W, et al. Kinetics of photo-dissolution within Ag/As2S3 heterostructure. J Non-Crystalline Solids. 2018;500:468–474. doi: 10.1016/j.jnoncrysol.2018.09.001
  • Imanishi Y, Kida S, Nakaoka T. Direct observation of Ag filament growth and unconventional SET-RESET operation in GeTe amorphous films. AIP Adv. 2016;6:075003. doi: 10.1063/1.4958633
  • Kim W, Yoo C, Park E-S, et al. Electroforming-free bipolar resistive switching in GeSe thin films with a Ti-containing electrode. ACS Applied Materials Interfaces. 2019;11:38910–38920. doi: 10.1021/acsami.9b10891
  • Kawaguchi T, Maruno S. Photoinduced surface deposition of metallic silver in Ag-as-S glasses. J Appl Phys. 1995;77:628–634. doi: 10.1063/1.359048
  • Taylor PC. Metal-Doped Chalcogenides. World scientific reference of amorphous materials, the: structure, properties, modeling and main applications (In 3 Volumes). Vol.15. Singapore: World Scientific; 2020.
  • Krasavin A, Zayats A. Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator. Physical Review Letters. 2012;109:053901. doi: 10.1103/PhysRevLett.109.053901
  • Kozicki MN, Balakrishnan M, Gopalan C, et al. Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes. Symposium Non-Volatile Memory Technology; Dallas, TX, USA; 2005. p. 7–89.
  • Kozicki MN, Park M, Mitkova M. Nanoscale memory elements based on solid-state electrolytes. IEEE Trans Nanotechnol. 2005;4:331–338. doi: 10.1109/TNANO.2005.846936
  • Mitkova M, Kozicki M. Silver incorporation in Ge–Se glasses used in programmable metallization cell devices. J Non-Crystalline Solids. 2002;299–302:1023–1027. doi: 10.1016/S0022-3093(01)01068-7
  • Wang W, Zhang B, Zhao H. (2020). Forming-free bipolar and unipolar resistive switching behaviors with low operating voltage in Ag/Ti/CeO2/Pt devices. Results Phys, 16:103001. doi: 10.1016/j.rinp.2020.103001
  • Kim C-J, Yoon S-G, Choi K-J, et al. Characterization of silver-saturated Ge–Te chalcogenide thin films for nonvolatile random access memory. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom. 2006;24:721–724. doi: 10.1116/1.2180260
  • Kawaguchi T, Maruno S, Elliott S. Compositional dependence of the photoinduced surface deposition of metallic silver in Ag?As?S glasses. J Non-Crystalline Solids. 1997;211:187–195. doi: 10.1016/S0022-3093(96)00625-4
  • Binu S, Khan P, Barik A, et al. Photoinduced formation of Ag nanoparticles on the surface of as 2 S 3 /Ag thin bilayer. Mater Res Express. 2014;1:045025. doi: 10.1088/2053-1591/1/4/045025
  • Chen S-X, Chang S-P, Chang S-J, et al. Highly stable ultrathin TiO2 based resistive random access memory with low operation voltage. ECS Journal Solid State Science and Technology. 2018;7:Q3183. doi: 10.1149/2.0281807jss
  • Jeong DS, Schroeder H, Breuer U, et al. Characteristic electroforming behavior in Pt/TiO 2/Pt resistive switching cells depending on atmosphere. J Appl Phys. 2008;104:123716. doi: 10.1063/1.3043879
  • Long S, Lian X, Ye T, et al. Cycle-to-Cycle Intrinsic RESET Statistics in ${\rm HfO}_{2}$-Based Unipolar RRAM Devices. IEEE Electron Device Lett. 2013;34:623–625. doi: 10.1109/LED.2013.2251314
  • Sarkar B, Lee B, Misra V. Understanding the gradual reset in Pt/Al2O3/Ni RRAM for synaptic applications. Semicond Sci Technol. 2015;30:105014. doi: 10.1088/0268-1242/30/10/105014
  • Chen H, Zhou Y, Han S. Recent advances in metal nanoparticle-based floating gate memory. Nano Select. 2021;2:1245–1265. doi: 10.1002/nano.202000268
  • Huang C-H, Huang J-S, Lai C-C, et al. Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate. ACS Applied Materials Interfaces. 2013;5:6017–6023. doi: 10.1021/am4007287
  • Stathopoulos S, Khiat A, Trapatseli M, et al. Multibit memory operation of metal-oxide bi-layer memristors. Sci Rep. 2017;7:1–7.
  • Lee M-J, Lee CB, Lee D, et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nature Mater. 2011;10:625–630. doi: 10.1038/nmat3070
  • Choi J, Kim J-S, Hwang I, et al. Different resistance switching behaviors of NiO thin films deposited on Pt and SrRuO 3 electrodes. Appl Phys Lett. 2009;95:022109. doi: 10.1063/1.3173813
  • Tang MH, Jiang B, Xiao YG, et al. Top electrode-dependent resistance switching behaviors of ZnO thin films deposited on Pt/Ti/SiO2/Si substrate. Microelectron Eng. 2012;93:35–38. doi: 10.1016/j.mee.2011.12.003
  • Hasan M, Dong R, Choi H, et al. Effect of ruthenium oxide electrode on the resistive switching of Nb-doped strontium titanate. Appl Phys Lett. 2008;93:052908. doi: 10.1063/1.2969052
  • Peng H, Li G, Ye J, et al. Electrode dependence of resistive switching in Mn-doped ZnO: Filamentary versus interfacial mechanisms. Appl Phys Lett. 2010;96:192113. doi: 10.1063/1.3428365
  • Seo JW, Park J-W, Lim KS, et al. Transparent resistive random access memory and its characteristics for nonvolatile resistive switching. Appl Phys Lett. 2008;93:223505. doi: 10.1063/1.3041643
  • Kozicki MN, Dandamudi P, Barnaby HJ, et al. (Invited) programmable metallization cells in memory and switching applications. ECS Trans. 2013;58:47. doi: 10.1149/05805.0047ecst
  • Linn E, Rosezin R, Kügeler C, et al. Complementary resistive switches for passive nanocrossbar memories. Nature Mater. 2010;9:403–406. doi: 10.1038/nmat2748
  • Chen W, Barnaby H, Kozicki M. Volatile and non-volatile switching in Cu-SiO 2 programmable metallization cells. IEEE Electron Device Lett. 2016;37:580–583. doi: 10.1109/LED.2016.2540361
  • Mahalanabis D, Gonzalez-Velo Y, Barnaby HJ, et al. Impedance measurement and characterization of Ag-ge 30 Se 70-based programmable metallization cells. IEEE Trans Electron Devices. 2014;61:3723–3730. doi: 10.1109/TED.2014.2358573
  • Kozicki M, Yun M, Hilt L, et al. Applications of programmable resistance changes in metal-doped chalcogenides. Pennington NJ USA: Electrochem Soc. 1999;298:309.
  • Hoessbacher C, Fedoryshyn Y, Emboras A, et al. The plasmonic memristor: a latching optical switch. Optica. 2014;1:198–202. doi: 10.1364/OPTICA.1.000198
  • Emboras A, Goykhman I, Desiatov B, et al. Nanoscale plasmonic memristor with optical readout functionality. Nano Lett. 2013;13:6151–6155. doi: 10.1021/nl403486x
  • Emboras A, Niegemann J, Ma P, et al. Atomic scale plasmonic switch. Nano Lett. 2016;16:709–714. doi: 10.1021/acs.nanolett.5b04537
  • Emboras A, Alabastri A, Ducry F, et al. Atomic scale photodetection enabled by a memristive junction. ACS Nano. 2018;12:6706–6713. doi: 10.1021/acsnano.8b01811
  • Farmakidis N, Youngblood N, Li X, et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci adv. 2019;5:eaaw2687. doi: 10.1126/sciadv.aaw2687
  • Thyagarajan K, Sokhoyan R, Zornberg L, et al. Millivolt modulation of plasmonic metasurface optical response via ionic conductance. Adv Mater. 2017;29:1701044. doi: 10.1002/adma.201701044
  • Zheludev NI. The road ahead for metamaterials. Science. 2010;328:582–583. doi: 10.1126/science.1186756
  • Choudhury SM, Wang D, Chaudhuri K, et al. Material platforms for optical metasurfaces. Nanophotonics. 2018;7:959–987. doi: 10.1515/nanoph-2017-0130
  • Chang C, Chen J, Huang C, et al. Direct observation of dual-filament switching behaviors in Ta2O5-based memristors. Small. 2017;13:1603116. doi: 10.1002/smll.201603116
  • Zhu Y, Zheng K, Wu X, et al. Enhanced stability of filament-type resistive switching by interface engineering. Sci Rep. 2017;7:1–7. doi: 10.1038/srep43664
  • Philip´aWong H-S. Multi-level control of conductive nano-filament evolution in HfO 2 ReRAM by pulse-train operations. Nanoscale. 2014;6:5698–5702. doi: 10.1039/C4NR00500G
  • Mickel PR, Lohn AJ, Marinella MJ. Memristive switching: physical mechanisms and applications. Mod Phys Lett B. 2014;28:1430003. doi: 10.1142/S0217984914300038
  • Zahoor F, Azni Zulkifli TZ, Khanday FA. Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Research Letters. 2020;15:1–26. doi: 10.1186/s11671-020-03299-9
  • Zhou F, Chang Y-F, Chen Y-C, et al. A study of the interfacial resistive switching mechanism by proton exchange reactions on the SiO x layer. Phys Chem Chem Phys. 2016;18:700–703. doi: 10.1039/C5CP06507K
  • Jeong DS, Schroeder H, Waser R. Coexistence of bipolar and unipolar resistive switching behaviors in a Pt∕TiO[sub 2]∕Pt Stack. Electrochem Solid-State Lett. 2007;10:G51. doi: 10.1149/1.2742989
  • Choi D, Soo Kim C. Coexistence of unipolar and bipolar resistive switching in Pt/NiO/Pt. Appl Phys Lett. 2014;104:193507. doi: 10.1063/1.4875918
  • Yanagida T, Nagashima K, Oka K, et al. Scaling effect on unipolar and bipolar resistive switching of metal oxides. Scientific Reports. 2013;3:1–6. doi: 10.1038/srep01657
  • Yang Y, Gao P, Li L, et al. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nature Communications. 2014;5:1–9. doi: 10.1038/ncomms5232
  • Choi S, Park G, Kim K, et al. In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory. Adv Mater. 2011;23:3272–3277. doi: 10.1002/adma.201100507
  • Yang Y, Gao P, Gaba S, et al. Observation of conducting filament growth in nanoscale resistive memories. Nat Commun. 2012;3:732. doi: 10.1038/ncomms1737
  • Lu W, Jeong DS, Kozicki M, et al. Electrochemical metallization cells—blending nanoionics into nanoelectronics? MRS bulletin. MRS Bull. 2012;37:124–130. doi: 10.1557/mrs.2012.5
  • Maier J. Nanoionics: ion transport and electrochemical storage in confined systems. Nature Mater. 2005;4:805–815. doi: 10.1038/nmat1513
  • Douaud A, Messaddeq SH, Boily O, et al. Laser-induced dewetting of silver-doped chalcogenide glasses. Appl Surface Sci. 2018;445:1–7. doi: 10.1016/j.apsusc.2018.03.129
  • Kolobov AV, Tominaga J. Chalcogenides. Berlin, Heidelberg: Springer; 2012. pp. 133–145. doi: 10.1007/978-3-642-28705-3_7
  • Feinleib J, DeNeufville J, Moss SC, et al. Rapid reversible light-induced crystallization of amorphous semiconductors. Appl Phys Lett. 1971;18:254–257. doi: 10.1063/1.1653653
  • Tanaka K. Light intensity dependence of photodarkening in amorphous As2S3 films. Thin Solid Films. 1988;157:35–42. doi: 10.1016/0040-6090(88)90343-4
  • Hayashi K, Mitsuishi N. Thickness effect of the photodarkening in amorphous chalcogenide films. J Non-Crystalline Solids. 2002;299–302:949–952. doi: 10.1016/S0022-3093(01)01059-6
  • Frumar M, Polak Z, Cˇernoˇsek Z. Photoinduced Effects in Amorphous Chalcogenides. In: Andriesh A, Bertolotti M, editors. Physics and applications of non-crystalline semiconductors in optoelectronics. Dordrecht: Springer; 1997. p. 123–139. doi: 10.1007/978-94-011-5496-3
  • Goldschmidt D, Rudman P. The kinetics of photodissolution of Ag in amorphous As2S3 films. J Non-Crystalline Solids. 1976;22:229–243. doi: 10.1016/0022-3093(76)90056-9
  • Elliott SR. A unified mechanism for metal photodissolution in amorphous chalcogenide materials. J Non-Crystalline Solids. 1991;130:85–97. doi: 10.1016/0022-3093(91)90159-4
  • Tanaka K, Yoshida N, Yamaoka Y. Photo-induced chemical modification in Ag-as-S glasses. philosophical magazine letters. Philos Mag Lett. 1993;68:81–83. doi: 10.1080/09500839308240497
  • Frumar M, Wagner T. Ag doped chalcogenide glasses and their applications. Curr Opin Solid State Mater Sci. 2003;7:117–126. doi: 10.1016/S1359-0286(03)00044-5
  • Alvi M. (2013). Influence of thermal annealing on optical constants of Ag doped Ga–Se chalcogenide thinfilms. Opt Commun, 295:21–25. doi: 10.1016/j.optcom.2012.12.098
  • Ren J, Yan Q, Wagner T, et al. Conductivity study on GeS2-Ga2S3-AgI-Ag chalcohalide glasses. J Appl Phys. 2013;114:023701. doi: 10.1063/1.4813139
  • Aly K, Dahshan A, Yahia I. Optical constants for Ge 30− x Se 70 Ag x (0 ≤ x ≤ 30 at%) thin films based only on their reflectance spectra. Philos Mag. 2012;92:912–924. doi: 10.1080/14786435.2011.637978
  • Zheng S, Kang Z, Wang C, et al. (2019). Structural and optical properties of Agx (GeSe3) 100-x films fabricated by sputtering method. Optik, 195:163152. doi: 10.1016/j.ijleo.2019.163152
  • Kolobov A, Elliott S. Photodoping of amorphous chalcogenides by metals. Adv Phys. 1991;40:625–684. doi: 10.1080/00018739100101532
  • Aparimita A, Sripan C, Ganesan R, et al. Photo-and thermally induced property change in Ag diffusion into Ag/As 2 Se 3 thin films. Appl Phys A. 2018;124:1–10. doi: 10.1007/s00339-018-1692-4
  • Swanepoel R. Determining refractive index and thickness of thin films from wavelength measurements only. JOSA A. 1985;2:1339–1343. doi: 10.1364/JOSAA.2.001339
  • Kostyshin M, Mikhailovskaia E, Romanenko P. The photographic sensitivity effect of semiconductor films deposited on metallic substrates(Photosensitivity of semiconductor thin films deposited on metallic substrates in vacuum, noting photochemical transformation and photodecomposition of substance). Fizika Tverdogo Tela. 1966;8:571.
  • Sakaguchi Y, Hanashima T, Aoki H, et al. Kinetics of silver photodiffusion into amorphous Ge20S80 films: case of pre-reaction. Phys Status Solidi A. 2018;215:1800049. doi: 10.1002/pssa.201800049
  • Sakaguchi Y, Asaoka H, Uozumi Y, et al. Silver photo-diffusion and photo-induced macroscopic surface deformation of Ge33S67/Ag/Si substrate. J Appl Phys. 2016;120:055103. doi: 10.1063/1.4959207
  • Kawaguchi TKT, Maruno SMS. Reversible photowriting and thermal erasing of Ag patterns on Ag-rich Ag–ge–S films. Jpn J Appl Phys. 1994;33:6470. doi: 10.1143/JJAP.33.6470
  • Itoh M, Yoshida N, Tanaka H, et al. Transient photoconduction and photo induced phenomenon in ion-conducting amorphous semiconductors. Journal of Non-Crystalline Solids. 1996;198–200:684–687. doi: 10.1016/0022-3093(96)00006-3
  • Douaud A, Messaddeq SH, Messaddeq Y. (2019). Photo-induced birefringence and surface ripples structures in As-S-Ag chalcogenide thin-films. J Non-Crystalline Solids, 519:119446. doi: 10.1016/j.jnoncrysol.2019.05.022
  • Berkes JS, Ing SW Jr, Hillegas WJ. Photodecomposition of amorphous As2Se3 and As2S3. J Appl Phys. 1971;42:4908–4916. doi: 10.1063/1.1659873
  • Ogusu K, Hosokawa Y, Maeda S, et al. Photo-oxidation of As2Se3, Ag–As2Se3, and Cu–As2Se3 chalcogenide films. J Non-Crystalline Solids. 2005;351:3132–3138. doi: 10.1016/j.jnoncrysol.2005.07.034
  • Correr W, Messaddeq SH, Douaud A, et al. Vibrational and conductive microscopic investigation of thermal dewetting in Ag-As-S chalcogenide thin films. Applied Surface Science. 2021;554:149621. doi: 10.1016/j.apsusc.2021.149621
  • Geim AK. Graphene: status and prospects. Science. 2009;324:1530–1534. doi: 10.1126/science.1158877
  • Novoselov K, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science. 2016;353:aac9439. doi: 10.1126/science.aac9439
  • Buscema M, Island JO, Groenendijk DJ, et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev. 2015;44:3691–3718. doi: 10.1039/C5CS00106D
  • Allain A, Kang J, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors. Nature Mater. 2015;14:1195–1205. doi: 10.1038/nmat4452
  • Won R. Ultrafast nanoprobing. Nat Photonics. 2010;4:882–882. doi: 10.1038/nphoton.2010.271
  • Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature. 2013;499:419–425. doi: 10.1038/nature12385
  • Guo Z, Chen S, Wang Z, et al. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv Mater. 2017;29:1703811. doi: 10.1002/adma.201703811
  • Hu H, Shi Z, Khan K, et al. Recent advances in doping engineering of black phosphorus. J Mater Chem A. 2020;8:5421–5441. doi: 10.1039/D0TA00416B
  • Peruzzini M, Bini R, Bolognesi M, et al. A perspective on recent advances in phosphorene functionalization and its applications in devices. Eur J Inorg Chem. 2019;2019:1476–1494. doi: 10.1002/ejic.201801219
  • Shao Y, Liu Z-L, Cheng C, et al. Epitaxial growth of flat antimonene monolayer: A new honeycomb analogue of graphene. Nano Letters. 2018;18:2133–2139. doi: 10.1021/acs.nanolett.8b00429
  • Wang X, Yu X, Song J, et al. Two-dimensional semiconducting antimonene in nanophotonic applications–A review. Chemical Engineering Journal. 2021;406:126876. doi: 10.1016/j.cej.2020.126876
  • Huang W, Zhu J, Wang M, et al. Emerging mono-elemental bismuth nanostructures: controlled synthesis and their versatile applications. Adv Funct Mater. 2021;31:2007584. doi: 10.1002/adfm.202007584
  • Wang M, Hu Y, Zi Y, et al. Functionalized hybridization of bismuth nanostructures for highly improved nanophotonics. APL Mater. 2022;10. doi: 10.1063/5.0091341
  • Huang W, Wang M, Hu L, et al. Recent advances in semiconducting monoelemental selenium nanostructures for device applications. Adv Funct Mater. 2020;30:2003301. doi: 10.1002/adfm.202003301
  • Chen Z, Yang Q, Mo F, et al. Aqueous zinc–tellurium batteries with ultraflat discharge plateau and high volumetric capacity. Adv Mater. 2020;32:2001469. doi: 10.1002/adma.202001469
  • Liu J, Chen C, Zhao Y. Progress and prospects of graphdiyne-based materials in biomedical applications. Adv Mater. 2019;31:1804386. doi: 10.1002/adma.201804386
  • Wang M, Pu J, Hu Y, et al. Functional graphdiyne for emerging applications: recent advances and future challenges. Adv Funct Mater. 2024;34:2308601. doi: 10.1002/adfm.202308601
  • Du H, Lin X, Xu Z, et al. Recent developments in black phosphorus transistors. J Mater Chem C. 2015;3:8760–8775. doi: 10.1039/C5TC01484K
  • Yang Z, Wu Z, Lyu Y, et al. Centimeter-scale growth of two-dimensional layered high-mobility bismuth films by pulsed laser deposition. InfoMat. 2019;1:98–107. doi: 10.1002/inf2.12001
  • Qin J, Qiu G, Jian J, et al. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications. ACS Nano. 2017;11:10222–10229. doi: 10.1021/acsnano.7b04786
  • Zhou W, Chen J, Bai P, et al. Two-dimensional pnictogen for field-effect transistors. Research. 2019;2019. doi: 10.34133/2019/1046329
  • Zhang S, Xie M, Li F, et al. Semiconducting Group 15 monolayers: a broad range of band gaps and high carrier mobilities. Angew Chem. 2016;128:1698–1701. doi: 10.1002/ange.201507568
  • Xu Y, Shi Z, Shi X, et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale. 2019;11:14491–14527. doi: 10.1039/C9NR04348A
  • Wang F, Lv X, Zhu X, et al. Bi nanodendrites for efficient electrocatalytic N 2 fixation to NH 3 under ambient conditions. Chem Comm. 2020;56:2107–2110. doi: 10.1039/C9CC09803H
  • Ren X, Zhou J, Qi X, et al. Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv Energy Mater. 2017;7:1700396. doi: 10.1002/aenm.201700396
  • Fan K, Jia Y, Ji Y, et al. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020;10:358–364. doi: 10.1021/acscatal.9b04516
  • Lin S, Liu S, Yang Z, et al. Solution-processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics. Adv Funct Mater. 2016;26:864–871. doi: 10.1002/adfm.201503273
  • Kistanov AA, Kripalani DR, Cai Y, et al. Ultrafast diffusive cross-sheet motion of lithium through antimonene with 2 + 1 dimensional kinetics. ?J Mater Chem A. 2019;7:2901–2907. doi: 10.1039/C8TA11503F
  • Chen W, Ouyang J, Yi X, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv Mater. 2018;30:1703458. doi: 10.1002/adma.201703458
  • Chaudhary S, Umar A, Mehta S. (2016). Selenium nanomaterials: an overview of recent developments in synthesis, properties and potential applications. Pro Mater Sci, 83:270–329. doi: 10.1016/j.pmatsci.2016.07.001
  • Zhang T, Wan Y, Xie H, et al. Degradation chemistry and stabilization of exfoliated few-layer black phosphorus in water. J Am Chem Soc. 2018;140:7561–7567. doi: 10.1021/jacs.8b02156
  • Ge Y, Chen S, Xu Y, et al. Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications. J Mater Chem C. 2017;5:6129–6135. doi: 10.1039/C7TC01267E
  • Yang B, Wan B, Zhou Q, et al. Te-doped black phosphorus field-effect transistors. Adv Mater. 2016;28:9408–9415. doi: 10.1002/adma.201603723
  • Grazianetti C, Martella C, Molle A. The Xenes generations: a taxonomy of epitaxial single-element 2D materials. physica status solidi (RRL)–Rapid Res Lett. 2020;14:1900439. doi: 10.1002/pssr.201900439
  • Kim K-H, Gaba S, Wheeler D, et al. A functional hybrid memristor crossbar-Array/CMOS system for data storage and neuromorphic applications. Nano Lett. 2012;12:389–395. doi: 10.1021/nl203687n
  • Kaeriyama S, Sakamoto T, Sunamura H, et al. A nonvolatile programmable solid-electrolyte nanometer switch. IEEE J Solid-State Circuits. 2005;40:168–176. doi: 10.1109/JSSC.2004.837244
  • Borghetti J, Snider GS, Kuekes PJ, et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature. 2010;464:873–876. doi: 10.1038/nature08940
  • Balatti S, Ambrogio S, Ielmini D. Normally-off logic based on resistive switches—part I: logic gates. IEEE Trans Electron Devices. 2015;62:1831–1838. doi: 10.1109/TED.2015.2422999
  • Jo SH, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010;10:1297–1301. doi: 10.1021/nl904092h
  • Hu M, Graves CE, Li C, et al. Memristor-based analog computation and neural network classification with a dot product engine. Adv Mater. 2018;30:1705914. doi: 10.1002/adma.201705914
  • Yao P, Wu H, Gao B, et al. Face classification using electronic synapses. Nature Communications. 2017;8:15199. doi: 10.1038/ncomms15199
  • Mandal A, Ellis R, Gholipour B. Reconfigurable phase change chalcogenide grating couplers with ultrahigh modulation contrast. Opt Mater Express. 2024;14:1–12. doi: 10.1364/OME.502154
  • Yu S, Wu X, Chen K, et al. All-optical graphene modulator based on optical Kerr phase shift. Optica. 2016;3:541–544. doi: 10.1364/OPTICA.3.000541
  • Akinwande D, Huyghebaert C, Wang C-H, et al. Graphene and two-dimensional materials for silicon technology. Nature. 2019;573:507–518. doi: 10.1038/s41586-019-1573-9
  • Hu Z, Wu Z, Han C, et al. Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem Soc Rev. 2018;47:3100–3128. doi: 10.1039/C8CS00024G