273
Views
0
CrossRef citations to date
0
Altmetric
Reviews

3D assembly of Janus spheres: potentials, dynamics, and experiments

, &
Article: 2341759 | Received 11 Jan 2024, Accepted 07 Apr 2024, Published online: 28 Apr 2024

References

  • Hughes LJ, Brown GL. Heterogeneous polymer systems. I. Torsional modulus studies. J Appl Polym Sci. 1961;5:580–588. doi: 10.1002/app.1961.070051713
  • Casagrande C, Fabre P, Raphaël E, et al. “Janus beads”: realization and behaviour at water/oil interfaces. Europhys Lett (EPL). 1989;9:251–255. doi: 10.1209/0295-5075/9/3/011
  • De Gennes PG. Soft matter (nobel lecture). Angew Chem Int Ed Engl. 1992;31:842–845. doi: 10.1002/anie.199208421
  • Duguet E, Hubert C, Chomette C, et al. Patchy colloidal particles for programmed self-assembly. C R Chim. 2016;19:173–182. doi: 10.1016/j.crci.2015.11.013
  • Maula TA, Hatch HW, Shen VK, et al. Designing molecular building blocks for the self-assembly of complex porous networks. Mol Syst Des Eng. 2019;4:644–653. doi: 10.1039/C9ME00006B
  • Noya EG, Zubieta I, Pine DJ, et al. Assembly of clathrates from tetrahedral patchy colloids with narrow patches. J Chem Phys. 2019;151:094502. doi: 10.1063/1.5109382
  • Glotzer SC, Solomon MJ. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 2007;6:557–562. doi: 10.1038/nmat1949
  • Hou W, Zhong W, Zhao H. Asymmetric colloidal particles fabricated by polymerization-induced surface self-assembly approach. Macromolecules. 2021;54:2617–2626. doi: 10.1021/acs.macromol.0c02772
  • Pradhan SS, Saha S. Advances in design and applications of polymer brush modified anisotropic particles. Adv Colloid Interface Sci. 2022;300:102580. doi: 10.1016/j.cis.2021.102580
  • Cayre O, Paunov VN, Velev OD. Fabrication of asymmetrically coated colloid particles by microcontact printing techniques. J Mater Chem. 2003;13:2445. doi: 10.1039/b308817k
  • Nisisako T, Torii T, Takahashi T, et al. Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv Mater. 2006;18:1152–1156. doi: 10.1002/adma.200502431
  • Zhang G, Wang D, Möhwald H. Decoration of microspheres with gold nanodots—giving colloidal spheres valences. Angewandte Chemie. 2005;44:7767–7770. doi: 10.1002/anie.200502117
  • Chen Q, Bae SC, Granick S. Directed self-assembly of a colloidal kagome lattice. Nature. 2011;469:381–384. doi: 10.1038/nature09713
  • Jackson AM, Hu Y, Silva PJ, et al. From homoligand- to mixed-ligand- monolayer-protected metal nanoparticles: a scanning tunneling microscopy investigation. J Am Chem Soc. 2006;128:11135–11149. doi: 10.1021/ja061545h
  • Liu B, Liu J, Liang F, et al. Robust anisotropic composite particles with tunable Janus balance. Macromolecules. 2012;45:5176–5184. doi: 10.1021/ma300409r
  • Kang C, Honciuc A. Influence of geometries on the assembly of snowman-shaped Janus nanoparticles. ACS Nano. 2018;12:3741–3750. doi: 10.1021/acsnano.8b00960
  • Deng R, Liang F, Zhou P, et al. Janus nanodisc of diblock copolymers. Adv Mater. 2014;26:4469–4472. doi: 10.1002/adma.201305849
  • Chen Y, Liang F, Yang H, et al. Janus nanosheets of polymer–inorganic layered composites. Macromolecules. 2012;45:1460–1467. doi: 10.1021/ma2021908
  • Chaudhary K, Chen Q, Juárez JJ, et al. Janus colloidal matchsticks. J Am Chem Soc. 2012;134:12901–12903. doi: 10.1021/ja305067g
  • Yan J, Chaudhary K, Chul Bae S, et al. Colloidal ribbons and rings from Janus magnetic rods. Nat Commun. 2013;4:1516. doi: 10.1038/ncomms2520
  • Kim JW, Larsen RJ, Weitz DA. Synthesis of nonspherical colloidal particles with anisotropic properties. J Am Chem Soc. 2006;128:14374–14377. doi: 10.1021/ja065032m
  • Ma X, Jannasch A, Albrecht UR, et al. Enzyme-powered hollow mesoporous Janus nanomotors. Nano Lett. 2015;15:7043–7050. doi: 10.1021/acs.nanolett.5b03100
  • Han YD, Kim HS, Park YM, et al. Retroreflective Janus microparticle as a nonspectroscopic optical immunosensing probe. ACS Appl Mater Inter. 2016;8:10767–10774. doi: 10.1021/acsami.6b02014
  • Li W, Palis H, Mérindol R, et al. Colloidal molecules and patchy particles: complementary concepts, synthesis and self-assembly. Chem Soc Rev. 2020;49:1955–1976. doi: 10.1039/C9CS00804G
  • Frank BD, Perovic M, Djalali S, et al. Synthesis of polymer Janus particles with tunable wettability profiles as potent solid surfactants to promote gas delivery in aqueous reaction media. ACS Appl Mater Inter. 2021;13:32510–32519. doi: 10.1021/acsami.1c07259
  • Bianchi E, Van Oostrum PD, Likos CN, et al. Inverse patchy colloids: Synthesis, modeling and self-organization. Curr Opin Colloid Interface Sci. 2017;30:8–15. doi: 10.1016/j.cocis.2017.03.010
  • Li X, Chen L, Cui D, et al. Preparation and application of Janus nanoparticles: Recent development and prospects. Coord Chem Rev. 2022;454:214318. doi: 10.1016/j.ccr.2021.214318
  • Zhang J, Grzybowski BA, Granick S. Janus particle synthesis, assembly, and application. Langmuir. 2017;33:6964–6977. doi: 10.1021/acs.langmuir.7b01123
  • Pang X, Wan C, Wang M, et al. Strictly biphasic soft and hard Janus structures: synthesis, properties, and applications. Angewandte Chemie. 2014;53:5524–5538. doi: 10.1002/anie.201309352
  • Poggi E, Gohy JF. Janus particles: from synthesis to application. Colloid Polym Sci. 2017;295:2083–2108. doi: 10.1007/s00396-017-4192-8
  • Walther A, Müller AHE. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev. 2013;113:5194–5261. doi: 10.1021/cr300089t
  • Lattuada M, Hatton TA. Synthesis, properties and applications of Janus nanoparticles. Nano Today. 2011;6:286–308. doi: 10.1016/j.nantod.2011.04.008
  • Krishnamurthy S, Mathews Kalapurakal RA, Mani E. Computer simulations of self-assembly of anisotropic colloids. J Phys. 2022;34:273001. doi: 10.1088/1361-648X/ac55d6
  • Gheisari F, Shafiee M, Abbasi M, et al. Janus nanoparticles: an efficient intelligent modern nanostructure for eradicating cancer. Drug Metab Rev. 2021;53:592–603. doi: 10.1080/03602532.2021.1878530
  • Li Z, Gao Z, Wang C, et al. Recent progress on bioimaging strategies based on Janus nanoparticles. Nanoscale. 2022;14:12560–12568. doi: 10.1039/D2NR03186H
  • He Q, Vijayamohanan H, Li J, et al. Multifunctional photonic Janus particles. J Am Chem Soc. 2022;144:5661–5667. doi: 10.1021/jacs.2c01787
  • Campuzano S, Gamella M, Serafín V, et al. Magnetic Janus particles for static and dynamic (bio)sensing. Magnetochemistry. 2019;5:47. doi: 10.3390/magnetochemistry5030047
  • Su H, Hurd Price CA, Jing L, et al. Janus particles: design, preparation, and biomedical applications. Mater Today Bio. 2019;4:100033. doi: 10.1016/j.mtbio.2019.100033
  • Patra D, Sengupta S, Duan W, et al. Intelligent, self-powered, drug delivery systems. Nanoscale. 2013;5:1273–1283. doi: 10.1039/C2NR32600K
  • Tan KX, Danquah MK, Jeevanandam J, et al. Development of Janus particles as potential drug delivery systems for diabetes treatment and antimicrobial applications. Pharmaceutics. 2023;15:423. doi: 10.3390/pharmaceutics15020423
  • Shaghaghi B, Khoee S, Bonakdar S. Preparation of multifunctional Janus nanoparticles on the basis of SPIONs as targeted drug delivery system. Int J Pharmaceut. 2019;559:1–12. doi: 10.1016/j.ijpharm.2019.01.020
  • Marschelke C, Fery A, Synytska A. Janus particles: from concepts to environmentally friendly materials and sustainable applications. Colloid Polym Sci. 2020;298:841–865. doi: 10.1007/s00396-020-04601-y
  • Cao W, Huang R, Qi W, et al. Self-assembly of amphiphilic Janus particles into monolayer capsules for enhanced enzyme catalysis in organic media. ACS Appl Mater Inter. 2015;7:465–473. doi: 10.1021/am5065156
  • Kirillova A, Schliebe C, Stoychev G, et al. Hybrid hairy Janus particles decorated with metallic nanoparticles for catalytic applications. ACS Appl Mater Inter. 2015;7:21218–21225. doi: 10.1021/acsami.5b05224
  • Chen C, Zhang L, Wang N, et al. Janus composite particles and interfacial catalysis thereby. Macromol Rapid Commun. 2023;44:2300280. doi: 10.1002/marc.202300280
  • Vafaeezadeh M, Thiel WR. Task-specific Janus materials in heterogeneous catalysis. Angewandte Chemie. 2022;61:e202206403. doi: 10.1002/anie.202206403
  • McConnell MD, Kraeutler MJ, Yang S, et al. Patchy and multiregion Janus particles with tunable optical properties. Nano Lett. 2010;10:603–609. doi: 10.1021/nl903636r
  • Minin OV, Zhou S, Liu CY, et al. Magnetic concentric hot-circle generation at optical frequencies in all-dielectric mesoscale Janus particles. Nanomaterials. 2022;12:3428. doi: 10.3390/nano12193428
  • Trivedi M, Saxena D, Ng WK, et al. Self-organized lasers from reconfigurable colloidal assemblies. Nat Phys. 2022;18:939–944. doi: 10.1038/s41567-022-01656-2
  • Morphew D, Shaw J, Avins C, et al. Programming hierarchical self-assembly of patchy particles into colloidal crystals via colloidal molecules. ACS Nano. 2018;12:2355–2364. doi: 10.1021/acsnano.7b07633
  • Neophytou A, Manoharan VN, Chakrabarti D. Self-assembly of patchy colloidal rods into photonic crystals robust to stacking faults. ACS Nano. 2021;15:2668–2678. doi: 10.1021/acsnano.0c07824
  • Rao AB, Shaw J, Neophytou A, et al. Leveraging hierarchical self-assembly pathways for realizing colloidal photonic crystals. ACS Nano. 2020;14:5348–5359. doi: 10.1021/acsnano.9b07849
  • Flavell W, Neophytou A, Demetriadou A, et al. Programmed self-assembly of single colloidal gyroids for chiral photonic crystals. Adv Mater. 2023;35:2211197. doi: 10.1002/adma.202211197
  • Correia EL, Brown N, Razavi S. Janus particles at fluid interfaces: stability and interfacial rheology. Nanomaterials. 2021;11:374. doi: 10.3390/nano11020374
  • Qiao Y, Ma X, Liu Z, et al. Tuning the rheology and microstructure of particle-laden fluid interfaces with Janus particles. J Colloid Interface Sci. 2022;618:241–247. doi: 10.1016/j.jcis.2022.03.041
  • Walther A, Hoffmann M, Müller A. Emulsion polymerization using Janus particles as stabilizers. Angew Chem. 2008;120:723–726. doi: 10.1002/ange.200703224
  • Sun D, Si Y, Song XM, et al. Bi-continuous emulsion using Janus particles. Chem Comm. 2019;55:4667–4670. doi: 10.1039/C9CC01191A
  • Wang Y, Wang Y, Breed DR, et al. Colloids with valence and specific directional bonding. Nature. 2012;491:51–55. doi: 10.1038/nature11564
  • Zhang J, Luijten E, Granick S. Toward design rules of directional Janus colloidal assembly. Annu Rev Phys Chem. 2015;66:581–600. doi: 10.1146/annurev-physchem-040214-121241
  • Yammine E, Souaid E, Youssef S, et al. Particles with magnetic patches: synthesis, morphology control, and assembly. Part Part Syst Charact. 2020;37:2000111. doi: 10.1002/ppsc.202000111
  • Pelesko JA. Self assembly: the science of things that put themselves together. London: Chapman and Hall/CRC; 2007.
  • Glotzer SC, Solomon MJ, Kotov NA. Self-assembly: from nanoscale to microscale colloids. AichE J. 2004;50:2978–2985. doi: 10.1002/aic.10413
  • Chen Q, Yan J, Zhang J, et al. Janus and multiblock colloidal particles. Langmuir. 2012;28:13555–13561. doi: 10.1021/la302226w
  • Yu B, Cong H, Peng Q, et al. Current status and future developments in preparation and application of nonspherical polymer particles. Adv Colloid Interface Sci. 2018;256:126–151. doi: 10.1016/j.cis.2018.04.010
  • Patra TK, Katiyar P, Singh JK. Substrate directed self-assembly of anisotropic nanoparticles. Chem Eng Sci. 2015;121:16–22. doi: 10.1016/j.ces.2014.09.023
  • Liddle JA, Gallatin GM. Nanomanufacturing: a perspective. ACS Nano. 2016;10:2995–3014. doi: 10.1021/acsnano.5b03299
  • Zhao Y, Dai X, Wang F, et al. Nanofabrication based on DNA nanotechnology. Nano Today. 2019;26:123–148. doi: 10.1016/j.nantod.2019.03.004
  • Zhang J, Li Y, Zhang X, et al. Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays. Adv Mater. 2010;22:4249–4269. doi: 10.1002/adma.201000755
  • Service RF. How far can we push chemical self-assembly? Science. 2005;309:95–95. doi: 10.1126/science.309.5731.95
  • Mathews KR, Mani E. Stabilizing ordered structures with single patch inverse patchy colloids in two dimensions. J Phys. 2021;33:195101. doi: 10.1088/1361-648X/abf0c0
  • Dempster JM, Olvera De La Cruz M. Aggregation of heterogeneously charged colloids. ACS Nano. 2016;10:5909–5915. doi: 10.1021/acsnano.6b01218
  • Fan X, Walther A. 1D colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev. 2022;51:4023–4074. doi: 10.1039/D2CS00112H
  • Dijkstra M, Luijten E. From predictive modelling to machine learning and reverse engineering of colloidal self-assembly. Nature Mater. 2021;20:762–773. doi: 10.1038/s41563-021-01014-2
  • Zhang J, Luijten E, Grzybowski BA, et al. Active colloids with collective mobility status and research opportunities. Chem Soc Rev. 2017;46:5551–5569. doi: 10.1039/C7CS00461C
  • Marchetti MC, Joanny JF, Ramaswamy S, et al. Hydrodynamics of soft active matter. Rev Mod Phys. 2013;85:1143–1189. doi: 10.1103/RevModPhys.85.1143
  • Chew PY, Reinhardt A. Phase diagrams—why they matter and how to predict them. J Chem Phys. 2023;158:030902. doi: 10.1063/5.0131028
  • Rosenthal G, Gubbins KE, Klapp SHL. Self-assembly of model amphiphilic Janus particles. J Chem Phys. 2012;136:174901. doi: 10.1063/1.4707954
  • Giacometti A, Lado F, Largo J, et al. Effects of patch size and number within a simple model of patchy colloids. J Chem Phys. 2010;132:174110. doi: 10.1063/1.3415490
  • Craven NC, Gilmer JB, Spindel CJ, et al. Examining the self-assembly of patchy alkane-grafted silica nanoparticles using molecular simulation. J Chem Phys. 2021;154:034903. doi: 10.1063/5.0032658
  • Kobayashi Y, Arai N. Self-assembly and viscosity behavior of Janus nanoparticles in nanotube flow. Langmuir. 2017;33:736–743. doi: 10.1021/acs.langmuir.6b02694
  • Hu FF, Sun YW, Zhu YL, et al. Enthalpy-driven self-assembly of amphiphilic Janus dendrimers into onion-like vesicles: a Janus particle model. Nanoscale. 2019;11:17350–17356. doi: 10.1039/C9NR05885K
  • Kern N, Frenkel D. Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction. J Chem Phys. 2003;118:9882–9889. doi: 10.1063/1.1569473
  • Miller WL, Cacciuto A. Hierarchical self-assembly of asymmetric amphiphatic spherical colloidal particles. Phys Rev E. 2009;80:021404. doi: 10.1103/PhysRevE.80.021404
  • Hong L, Cacciuto A, Luijten E, et al. Clusters of amphiphilic colloidal spheres. Langmuir. 2008;24:621–625. doi: 10.1021/la7030818
  • Baran L, Borówko M, Rżysko W. Self-assembly of amphiphilic Janus particles confined between two solid surfaces. J Phys Chem C. 2020;124:17556–17565. doi: 10.1021/acs.jpcc.0c03214
  • Preisler Z, Vissers T, Munaò G, et al. Equilibrium phases of one-patch colloids with short-range attractions. Soft Matter. 2014;10:5121–5128. doi: 10.1039/C4SM00505H
  • Munaò G, Preisler Z, Vissers T, et al. Cluster formation in one-patch colloids: low coverage results. Soft Matter. 2013;9:2652. doi: 10.1039/c2sm27490f
  • Vissers T, Preisler Z, Smallenburg F, et al. Predicting crystals of Janus colloids. J Chem Phys. 2013;138:164505. doi: 10.1063/1.4801438
  • Sciortino F, Giacometti A, Pastore G. Phase diagram of Janus particles. Phys Rev Lett. 2009;103:237801. doi: 10.1103/PhysRevLett.103.237801
  • Sciortino F, Giacometti A, Pastore G. A numerical study of one-patch colloidal particles: from square-well to Janus. Phys Chem Chem Phys. 2010;12:11869. doi: 10.1039/c0cp00504e
  • Giacometti A, Gögelein C, Lado F, et al. From square-well to Janus: improved algorithm for integral equation theory and comparison with thermodynamic perturbation theory within the kern-frenkel model. J Chem Phys. 2014;140:094104. doi: 10.1063/1.4866899
  • Reinhart WF, Panagiotopoulos AZ. Equilibrium crystal phases of triblock Janus colloids. J Chem Phys. 2016;145:094505. doi: 10.1063/1.4961869
  • Bianchi E, Tartaglia P, Zaccarelli E, et al. Theoretical and numerical study of the phase diagram of patchy colloids: ordered and disordered patch arrangements. J Chem Phys. 2008;128:144504. doi: 10.1063/1.2888997
  • Bianchi E, Largo J, Tartaglia P, et al. Phase diagram of patchy colloids: towards empty liquids. Phys Rev Lett. 2006;97:168301. doi: 10.1103/PhysRevLett.97.168301
  • Preisler Z, Vissers T, Smallenburg F, et al. Crystals of Janus colloids at various interaction ranges. J Chem Phys. 2016;145:064513. doi: 10.1063/1.4960423
  • Sato M. Effect of patch area and interaction length on clusters and structures formed by one-patch particles in thin systems. ACS Omega. 2020;5:28812–28822. doi: 10.1021/acsomega.0c04159
  • Huang Z, Chen P, Yang Y, et al. Shearing Janus nanoparticles confined in two-dimensional space: reshaped cluster configurations and defined assembling kinetics. J Phys Chem Lett. 2016;7:1966–1971. doi: 10.1021/acs.jpclett.6b00724
  • DeLacruz-Araujo RA, Beltran-Villegas DJ, Larson RG, et al. Rich Janus colloid phase behavior under steady shear. Soft Matter. 2016;12:4071–4081. doi: 10.1039/C6SM00183A
  • Oh JS, Lee S, Glotzer SC, et al. Colloidal fibers and rings by cooperative assembly. Nat Commun. 2019;10:3936. doi: 10.1038/s41467-019-11915-1
  • Nikoubashman A. Self-assembly of colloidal micelles in microfluidic channels. Soft Matter. 2017;13:222–229. doi: 10.1039/C6SM00766J
  • Baran L, Borówko M, Rżysko W, et al. Amphiphilic Janus particles confined in symmetrical and Janus-like slits. ACS Omega. 2023;8:18863–18873. doi: 10.1021/acsomega.3c01180
  • Bianchi E, Panagiotopoulos AZ, Nikoubashman A. Self-assembly of Janus particles under shear. Soft Matter. 2015;11:3767–3771. doi: 10.1039/C5SM00281H
  • Sabapathy M, Ann Mathews KR, Mani E. Self-assembly of inverse patchy colloids with tunable patch coverage. Phys Chem Chem Phys. 2017;19:13122–13132. doi: 10.1039/C7CP00680B
  • Sobrino Fernández M, Misko VR, Peeters FM. Self-assembly of Janus particles confined in a channel. Phys Rev E. 2014;89:022306. doi: 10.1103/PhysRevE.89.022306
  • Li ZW, Lu ZY, Sun ZY, et al. Model, self-assembly structures, and phase diagram of soft Janus particles. Soft Matter. 2012;8:6693. doi: 10.1039/c2sm25397f
  • Moghani MM, Khomami B. Self-assembly of spherical Janus particles in electrolytes. Soft Matter. 2013;9:4815. doi: 10.1039/c3sm27345h
  • Safaei S, Todd C, Yarndley J, et al. Asymmetric assembly of lennard-jones Janus dimers. Phys Rev E. 2021;104:024602. doi: 10.1103/PhysRevE.104.024602
  • Kharazmi A, Priezjev NV. Diffusion of a Janus nanoparticle in an explicit solvent: a molecular dynamics simulation study. J Chem Phys. 2015;142:234503. doi: 10.1063/1.4922689
  • Kobayashi Y, Arai N, Nikoubashman A. Structure and shear response of Janus colloid–polymer mixtures in solution. Langmuir. 2020;36:14214–14223. doi: 10.1021/acs.langmuir.0c02308
  • Hong L, Cacciuto A, Luijten E, et al. Clusters of charged Janus spheres. Nano Lett. 2006;6:2510–2514. doi: 10.1021/nl061857i
  • De Araújo JLB, Munarin FF, Farias GA, et al. Structure and reentrant percolation in an inverse patchy colloidal system. Phys Rev E. 2017;95:062606. doi: 10.1103/PhysRevE.95.062606
  • Bianchi E, Kahl G, Likos CN. Inverse patchy colloids: from microscopic description to mesoscopic coarse-graining. Soft Matter. 2011;7:8313. doi: 10.1039/c1sm05597f
  • Cerbelaud M, Lebdioua K, Tran CT, et al. Brownian dynamics simulations of one-patch inverse patchy particles. Phys Chem Chem Phys. 2019;21:23447–23458. doi: 10.1039/C9CP04247D
  • Zhang Z, Glotzer SC. Self-assembly of patchy particles. Nano Lett. 2004;4:1407–1413. doi: 10.1021/nl0493500
  • Xu J, Wang Y, He X. Self-assembly of Janus ellipsoids: a Brownian dynamics simulation with a quantitative nonspherical-particle model. Soft Matter. 2015;11:7433–7439. doi: 10.1039/C5SM01667C
  • Li YC, Zhang NB, Wei Z, et al. A computer simulation study of the hierarchical assembly behaviour of triblock patchy particles. Mol Simulat. 2019;45:759–767. doi: 10.1080/08927022.2019.1593976
  • Safaei S, Archereau AYM, Hendy SC, et al. Molecular dynamics simulations of Janus nanoparticles in a fluid flow. Soft Matter. 2019;15:6742–6752. doi: 10.1039/C9SM00694J
  • Safaei S, Hendy SC, Willmott GR. Stability of amphiphilic Janus dimers in shear flow: a molecular dynamics study. Soft Matter. 2020;16:7116–7125. doi: 10.1039/D0SM00871K
  • Banik M, Sett S, Bakli C, et al. Substrate wettability guided oriented self assembly of Janus particles. Sci Rep. 2021;11:1182. doi: 10.1038/s41598-020-80760-w
  • Koplik J, Maldarelli C. Molecular dynamics study of the translation and rotation of amphiphilic Janus nanoparticles at a vapor-liquid surface. Physical Review Fluids. 2019;4:044201. doi: 10.1103/PhysRevFluids.4.044201
  • Chen Q, Bae SC, Granick S. Staged self-assembly of colloidal metastructures. J Am Chem Soc. 2012;134:11080–11083. doi: 10.1021/ja303434d
  • Hagy MC, Hernandez R. Dynamical simulation of dipolar Janus colloids: equilibrium structure and thermodynamics. J Chem Phys. 2012;137:044505. doi: 10.1063/1.4737432
  • Hagy MC, Hernandez R. Dynamical simulation of dipolar Janus colloids: dynamical properties. J Chem Phys. 2013;138:184903. doi: 10.1063/1.4803864
  • Popov A, Hernandez R. Bottom-up construction of the interaction between Janus particles. J Phys Chem B. 2023;127:1664–1673. doi: 10.1021/acs.jpcb.2c07858
  • Kobayashi Y, Arai N. Self-assembly of Janus nanoparticles with a hydrophobic hemisphere in nanotubes. Soft Matter. 2016;12:378–385. doi: 10.1039/C5SM01895A
  • Hieronimus R, Raschke S, Heuer A. How to model the interaction of charged Janus particles. J Chem Phys. 2016;145:064303. doi: 10.1063/1.4960424
  • Baowan D, Hill JM. Mathematical modeling of interaction energies between nanoscale objects: a review of nanotechnology applications. Adv Mech Eng. 2016;8:168781401667702. doi: 10.1177/1687814016677022
  • Baowan D, Cox BJ, Hilder TA, et al. Modelling and mechanics of carbon-based nanostructured materials. Oxford, UK: William Andrew; 2017.
  • Mathews Kalapurakal RA, Mani E. Orientation-dependent electrostatic interaction between inverse patchy colloids. Mol Simulat. 2022;48:176–184. doi: 10.1080/08927022.2021.1998487
  • Labbé-Laurent M, Dietrich S. Critical Casimir interactions between Janus particles. Soft Matter. 2016;12:6621–6648. doi: 10.1039/C6SM00990E
  • Squarcini A, Maciołek A, Eisenriegler E, et al. Critical Casimir interaction between colloidal Janus-type particles in two spatial dimensions. J Stat Mech. 2020;2020:043208. doi: 10.1088/1742-5468/ab7658
  • Farahmand Bafi N, Nowakowski P, Dietrich S. Effective pair interaction of patchy particles in critical fluids. J Chem Phys. 2020;152:114902. doi: 10.1063/5.0001293
  • Hagan MF, Elrad OM, Jack RL. Mechanisms of kinetic trapping in self-assembly and phase transformation. J Chem Phys. 2011;135:104115. doi: 10.1063/1.3635775
  • Grzybowski BA, Fitzner K, Paczesny J, et al. From dynamic self-assembly to networked chemical systems. Chem Soc Rev. 2017;46:5647–5678. doi: 10.1039/C7CS00089H
  • Iwashita Y, Kimura Y. Orientational order of one-patch colloidal particles in two dimensions. Soft Matter. 2014;10:7170–7181. doi: 10.1039/C4SM00932K
  • Wagner N, Mewis J. Theory and applications of colloidal suspension rheology. Cambridge, UK: Cambridge University Press; 2021.
  • Sciortino F. Entropy in self-assembly. La Rivista Del Nuovo Cimento. 2019;42:511–548.
  • Mao X, Chen Q, Granick S. Entropy favours open colloidal lattices. Nature Mater. 2013;12:217–222. doi: 10.1038/nmat3496
  • Chen Q, Whitmer JK, Jiang S, et al. Supracolloidal reaction kinetics of Janus spheres. Science. 2011;331:199–202. doi: 10.1126/science.1197451
  • Smallenburg F, Sciortino F. Liquids more stable than crystals in particles with limited valence and flexible bonds. Nat Phys. 2013;9:554–558. doi: 10.1038/nphys2693
  • Shin H, Schweizer KS. Theory of two-dimensional self-assembly of Janus colloids: crystallization and orientational ordering. Soft Matter. 2014;10:262–274. doi: 10.1039/C3SM52094C
  • Kohl R, Corona E, Cheruvu V, et al. Fast and accurate solvers for simulating Janus particle suspensions in Stokes flow. Adv Comput Math. 2023;49:45. doi: 10.1007/s10444-023-10046-y
  • Baran L, Borówko M, Rżysko W, et al. Self-assembly of Janus disks confined in a slit. J Chem Phys. 2019;151:104703. doi: 10.1063/1.5117887
  • Kobayashi Y, Arai N, Nikoubashman A. Structure and dynamics of amphiphilic Janus spheres and spherocylinders under shear. Soft Matter. 2020;16:476–486. doi: 10.1039/C9SM01937E
  • Mountain RD, Hatch HW, Shen VK. Molecular dynamics simulation of trimer self-assembly under shear. Fluid Phase Equilibria. 2017;440:87–94. doi: 10.1016/j.fluid.2017.02.017
  • Molotilin TY, Lobaskin V, Vinogradova OI. Electrophoresis of Janus particles: a molecular dynamics simulation study. J Chem Phys. 2016;145:244704. doi: 10.1063/1.4972522
  • Daghighi Y, Gao Y, Li D. 3D numerical study of induced-charge electrokinetic motion of heterogeneous particle in a microchannel. Electrochimica Acta. 2011;56:4254–4262. doi: 10.1016/j.electacta.2011.01.083
  • Dhiman M, Gupta R, Reddy KA. Hydrodynamic interactions between two side-by-side Janus spheres. European J Mech - B/Fluids. 2021;87:61–74. doi: 10.1016/j.euromechflu.2021.01.006
  • Fu SP, Ryham R, Quaife B, et al. Effects of tunable hydrophobicity on the collective hydrodynamics of Janus particles under flows. Physical Review Fluids. 2023;8:050501. doi: 10.1103/PhysRevFluids.8.050501
  • Zhang Y, He X, Zhuo R, et al. Multivalent, multiflavored droplets by design. Proc Nat Acad Sci. 2018;115:9086–9091. doi: 10.1073/pnas.1718511115
  • Oh JS, Yi GR, Pine DJ. Reconfigurable transitions between one- and two-dimensional structures with bifunctional DNA-Coated Janus colloids. ACS Nano. 2020;14:15786–15792. doi: 10.1021/acsnano.0c06846
  • Goodwin JWJW. Colloids and interfaces with surfactants and polymers. 2nd ed. Chichester, UK: Wiley; 2009.
  • Tsyrenova A, Miller K, Yan J, et al. Surfactant-mediated assembly of amphiphilic Janus spheres. Langmuir. 2019;35:6106–6111. doi: 10.1021/acs.langmuir.9b00500
  • Sacanna S, Irvine WTM, Chaikin PM, et al. Lock and key colloids. Nature. 2010;464:575–578. doi: 10.1038/nature08906
  • Feng L, Dreyfus R, Sha R, et al. DNA patchy particles. Adv Mater. 2013;25:2779–2783. doi: 10.1002/adma.201204864
  • Xing H, Wang Z, Xu Z, et al. DNA-directed assembly of asymmetric nanoclusters using Janus nanoparticles. ACS Nano. 2012;6:802–809. doi: 10.1021/nn2042797
  • Hayes OG, McMillan JR, Lee B, et al. DNA-encoded protein Janus nanoparticles. J Am Chem Soc. 2018;140:9269–9274. doi: 10.1021/jacs.8b05640
  • Gröschel AH, Walther A, Löbling TI, et al. Guided hierarchical co-assembly of soft patchy nanoparticles. Nature. 2013;503:247–251. doi: 10.1038/nature12610
  • Kang C, Honciuc A. Self-assembly of Janus nanoparticles into transformable suprastructures. J Phys Chem Lett. 2018;9:1415–1421. doi: 10.1021/acs.jpclett.8b00206
  • Kang C, Honciuc A. Versatile triblock Janus nanoparticles: synthesis and self-assembly. Chem Mater. 2019;31:1688–1695. doi: 10.1021/acs.chemmater.8b05073
  • Asai M, Cacciuto A, Kumar SK. Quantitative analogy between polymer-grafted nanoparticles and patchy particles. Soft Matter. 2015;11:793–797. doi: 10.1039/C4SM02295E
  • Miller K, Tsyrenova A, Anthony SM, et al. Drying mediated orientation and assembly structure of amphiphilic Janus particles. Soft Matter. 2018;14:6793–6798. doi: 10.1039/C8SM01147H
  • Iwashita Y, Kimura Y. Stable cluster phase of Janus particles in two dimensions. Soft Matter. 2013;9:10694. doi: 10.1039/c3sm52146j
  • Yan J, Bloom M, Bae SC, et al. Linking synchronization to self-assembly using magnetic Janus colloids. Nature. 2012;491:578–581. doi: 10.1038/nature11619
  • Takei H, Shimizu N. Gradient sensitive microscopic probes prepared by gold evaporation and chemisorption on latex spheres. Langmuir. 1997;13:1865–1868. doi: 10.1021/la9621067
  • Bradley LC, Chen WH, Stebe KJ, et al. Janus and patchy colloids at fluid interfaces. Curr Opin Colloid Interface Sci. 2017;30:25–33. doi: 10.1016/j.cocis.2017.05.001
  • Ge X, Geng Y, Chen J, et al. Smart amphiphilic Janus microparticles: one-step synthesis and self-assembly. Chemphyschem. 2018;19:2009–2013. doi: 10.1002/cphc.201700838
  • Cui J, Long D, Shapturenka P, et al. Janus particle-based microprobes: determination of object orientation. Colloids Surf A Physicochem Eng Asp. 2017;513:452–462. doi: 10.1016/j.colsurfa.2016.11.017
  • Wittmeier A, Leeth Holterhoff A, Johnson J, et al. Rotational analysis of spherical, optically anisotropic Janus particles by dynamic microscopy. Langmuir. 2015;31:10402–10410. doi: 10.1021/acs.langmuir.5b02864
  • Anthony SM, Yu Y. Tracking single particle rotation: probing dynamics in four dimensions. Anal Methods. 2015;7:7020–7028. doi: 10.1039/C5AY00522A
  • Kretzschmar I, Song JHK. Surface-anisotropic spherical colloids in geometric and field confinement. Curr Opin Colloid Interface Sci. 2011;16:84–95. doi: 10.1016/j.cocis.2011.01.002
  • Chavez BL, Sosnowski KC, Bauer MJ, et al. Toward nanoscale multiferroic devices: magnetic field-directed self-assembly and chaining in Janus nanofibers. AIP Adv. 2018;8:056808. doi: 10.1063/1.5007706
  • Swan JW, Bauer JL, Liu Y, et al. Directed colloidal self-assembly in toggled magnetic fields. Soft Matter. 2014;10:1102–1109. doi: 10.1039/C3SM52663A
  • Martchenko I, Crassous JJ, Mihut AM, et al. Anisotropic magnetic particles in a magnetic field. Soft Matter. 2016;12:8755–8767. doi: 10.1039/C6SM01411A
  • Butter K, Bomans P, Frederik P, et al. Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nature Mater. 2003;2:88–91. doi: 10.1038/nmat811
  • Azari A, Crassous JJ, Mihut AM, et al. Directed self-assembly of polarizable ellipsoids in an external electric field. Langmuir. 2017;33:13834–13840. doi: 10.1021/acs.langmuir.7b02040
  • Crassous JJ, Mihut AM, Wernersson E, et al. Field-induced assembly of colloidal ellipsoids into well-defined microtubules. Nat Commun. 2014;5:5516. doi: 10.1038/ncomms6516
  • Knapp EM, Dagastine RR, Tu RS, et al. Effect of orientation and wetting properties on the behavior of Janus particles at the air–water interface. ACS Appl Mater Inter. 2020;12:5128–5135. doi: 10.1021/acsami.9b21067
  • Geiger P, Dellago C. Neural networks for local structure detection in polymorphic systems. J Chem Phys. 2013;139:164105. doi: 10.1063/1.4825111
  • Long AW, Ferguson AL. Rational design of patchy colloids via landscape engineering. Mol Syst Des Eng. 2018;3:49–65. doi: 10.1039/C7ME00077D
  • Ma Y, Ferguson AL. Inverse design of self-assembling colloidal crystals with omnidirectional photonic bandgaps. Soft Matter. 2019;15:8808–8826. doi: 10.1039/C9SM01500K