474
Views
0
CrossRef citations to date
0
Altmetric
Original Scholarship

Exploring the epigenome to identify biological links between the urban environment and neurodegenerative disease: an evidence review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 19 Sep 2023, Accepted 24 Mar 2024, Published online: 15 Apr 2024

References

  • Adekomi, D., 2017. Lead induces inflammation and neurodegenerative changes in the rat medial prefrontal cortex. Anatomt-an international journal of experimental and clinical anatomy, 11 (2), 79–86. doi:10.2399/ana.17.015.
  • Ahmad, W., et al., 2021. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Scientific reports, 11 (1), 17006. doi:10.1038/s41598-021-94616-4.
  • Alameda, L., et al., 2022. Can epigenetics shine a light on the biological pathways underlying major mental disorders? Psychological medicine, 52 (9), 1645–1665. doi:10.1017/S0033291721005559.
  • Alemany, S., et al., 2021. Associations between air pollution and biomarkers of Alzheimer’s disease in cognitively unimpaired individuals. Environment international, 157, 106864. doi:10.1016/j.envint.2021.106864.
  • Alfano, R., et al., 2023. Epigenome-wide analysis of maternal exposure to green space during gestation and cord blood DNA methylation in the ENVIRONAGE cohort. Environmental research, 216, 114828. doi:10.1016/j.envres.2022.114828.
  • Alghamdi, B.S., 2018. The neuroprotective role of melatonin in neurological disorders. Journal of neuroscience research, 96 (7), 1136–1149. doi:10.1002/jnr.24220.
  • Athanasopoulos, D., Karagiannis, G., and Tsolaki, M., 2016. Recent findings in Alzheimer disease and nutrition focusing on epigenetics. Advances in nutrition, 7 (5), 917–927. doi:10.3945/an.116.012229.
  • Atkinson, R.W., et al., 2010. Urban ambient particle metrics and health: a time-series analysis. Epidemiology, 21 (4), 501–511. doi:10.1097/EDE.0b013e3181debc88.
  • Bagepally, B.S., et al., 2021. Association between aluminium exposure and cognitive functions: a systematic review and meta-analysis. Chemosphere, 268, 128831. doi:10.1016/j.chemosphere.2020.128831
  • Bakulski, K.M., et al., 2020. Heavy metals exposure and Alzheimer’s disease and related dementias. Journal of Alzheimer’s disease: JAD, 76 (4), 1215–1242. doi:10.3233/JAD-200282.
  • Baranyi, G., et al., 2022. Life-course exposure to air pollution and biological ageing in the Lothian birth cohort 1936. Environment international, 169, 107501. doi:10.1016/j.envint.2022.107501.
  • Bell, C.G., et al., 2019. DNA methylation aging clocks: challenges and recommendations. Genome biology, 20 (1), 249. doi:10.1186/s13059-019-1824-y.
  • Belsky, D.W., et al., 2020. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. Elife, 9. doi:10.7554/eLife.54870.
  • Benabed, A. and Boulbair, A., 2022. PM10, PM2.5, PM1, and PM0.1 resuspension due to human walking. Air quality, atmosphere, & health, 15 (9), 1547–1556. doi:10.1007/s11869-022-01201-3.
  • Berson, A., et al., 2018. Epigenetic Regulation in Neurodegenerative Diseases. Trends in neurosciences, 41 (9), 587–598. doi:10.1016/j.tins.2018.05.005.
  • Besser, L., 2021. Outdoor green space exposure and brain health measures related to Alzheimer’s disease: a rapid review. BMJ open, 11 (5), e043456. doi:10.1136/bmjopen-2020-043456.
  • Besser, L.M., et al., 2021. Associations between neighborhood park access and longitudinal change in cognition in older adults: the multi-ethnic study of atherosclerosis. Journal of Alzheimer’s disease, 82 (1), - 233. doi:10.3233/JAD-210370.
  • Beyer, K.M., et al., 2014. Exposure to neighborhood green space and mental health: evidence from the survey of the health of Wisconsin. International journal of environmental research and public health, 11 (3), 3453–3472. doi:10.3390/ijerph110303453.
  • Bondy, S.C. and Campbell, A., 2017. Water quality and brain function. International journal of environmental research and public health, 15 (1), 2. doi:10.3390/ijerph15010002.
  • Burgess, S., et al., 2015. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. European journal of epidemiology, 30 (7), 543–552. doi:10.1007/s10654-015-0011-z.
  • Burgess, S., Thompson, S.G., and Collaboration, C.C.G., 2011. Avoiding bias from weak instruments in Mendelian randomization studies. International journal of epidemiology, 40 (3), 755–764. doi:10.1093/ije/dyr036.
  • Cabral Pinto, M.M.S., et al., 2018. Human predisposition to cognitive impairment and its relation with environmental exposure to potentially toxic elements. Environmental geochemistry and health, 40 (5), 1767–1784. doi:10.1007/s10653-017-9928-3.
  • Caicedo, A., Mayorga, M., and Estrada, M., 2021. Modelling individual perception of barriers to bike use. Transportation Research Procedia, 58, 293–300. doi:10.1016/j.trpro.2021.11.040
  • Calderón-Garcidueñas, L., et al., 2020. Reduced repressive epigenetic marks, increased DNA damage and Alzheimer’s disease hallmarks in the brain of humans and mice exposed to particulate urban air pollution. Environmental research, 183, 109226. doi:10.1016/j.envres.2020.109226.
  • Campagna, M.P., et al., 2021. Epigenome-wide association studies: current knowledge, strategies and recommendations. Clinical epigenetics, 13 (1), 214. doi:10.1186/s13148-021-01200-8.
  • Carek, P.J., Laibstain, S.E., and Carek, S.M., 2011. Exercise for the treatment of depression and anxiety. The international journal of psychiatry in medicine, 41 (1), 15–28. doi:10.2190/PM.41.1.c.
  • Cartwright, N., 2009. What are randomised controlled trials good for? Philosophical studies, 147 (1), 59. doi:10.1007/s11098-009-9450-2.
  • Cazaly, E., et al., 2019. Making sense of the epigenome using data integration approaches. Frontiers in pharmacology, 10, 126. doi:10.3389/fphar.2019.00126.
  • Chandra, M., et al., 2022. Air pollution and cognitive impairment across the life course in humans: a systematic review with specific focus on income level of study area. International journal of environmental research and public health, 19 (3), 1405. doi:10.3390/ijerph19031405.
  • Chen, H., et al., 2017a. Exposure to ambient air pollution and the incidence of dementia: a population-based cohort study. Environment international, 108, 271–277. doi:10.1016/j.envint.2017.08.020.
  • Chen, H., et al., 2017b. Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: a population-based cohort study. Lancet, 389 (10070), 718–726. doi:10.1016/S0140-6736(16)32399-6.
  • Chen, Y., et al., 2022. Long-term exposure to outdoor light at night and mild cognitive impairment: a nationwide study in Chinese veterans. Science of the total environment, 847, 157441. doi:10.1016/j.scitotenv.2022.157441.
  • Cheng, L., et al., 2019. Active travel for active ageing in China: the role of built environment. Journal of transport geography, 76, 142–152. doi:10.1016/j.jtrangeo.2019.03.010.
  • Chi, G.C., et al., 2022. Epigenome-wide analysis of long-term air pollution exposure and DNA methylation in monocytes: results from the multi-ethnic study of atherosclerosis. Epigenetics, 17 (3), 1900028. doi:10.1080/15592294.2021.1900028.
  • Chin-Chan, M., Navarro-Yepes, J., and Quintanilla-Vega, B., 2015. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Frontiers in cellular neuroscience, 9, 124. doi:10.3389/fncel.2015.00124
  • Cho, Y., et al., 2015. Effects of artificial light at night on human health: a literature review of observational and experimental studies applied to exposure assessment. Chronobiology international, 32 (9), 1294–1310. doi:10.3109/07420528.2015.1073158.
  • Clifford, A., et al., 2016. Exposure to air pollution and cognitive functioning across the life course – a systematic literature review. Environmental research, 147, 383–398. doi:10.1016/j.envres.2016.01.018.
  • Colwell, M.L., et al., 2023. Epigenetics and the exposome: DNA methylation as a proxy for health impacts of prenatal environmental exposures. Exposome, 3 (1). doi:10.1093/exposome/osad001.
  • Cooke, P., Janowitz, H., and Dougherty, S.E., 2022. Neuronal redevelopment and the regeneration of neuromodulatory axons in the adult mammalian central nervous system. Frontiers in cellular neuroscience, 16, 872501. doi:10.3389/fncel.2022.872501
  • Crawford, B., et al., 2018. DNA methylation and inflammation marker profiles associated with a history of depression. Human molecular genetics, 27 (16), 2840–2850. doi:10.1093/hmg/ddy199.
  • Crouch, J., et al., 2022. Epigenetic regulation of cellular senescence. Cells, 11 (4), 672. doi:10.3390/cells11040672.
  • Cui, B., et al., 2012. Chronic noise exposure causes persistence of tau hyperphosphorylation and formation of NFT tau in the rat hippocampus and prefrontal cortex. Experimental neurology, 238 (2), 122–129. doi:10.1016/j.expneurol.2012.08.028.
  • Dadvand, P., et al., 2012. Surrounding greenness and exposure to air pollution during pregnancy: an analysis of personal monitoring data. Environmental health perspectives, 120 (9), 1286–1290. doi:10.1289/ehp.1104609.
  • Daiber, A., et al., 2020. Oxidative stress and inflammation contribute to traffic noise-induced vascular and cerebral dysfunction via uncoupling of nitric oxide synthases. Redox biology, 34, 101506. doi:10.1016/j.redox.2020.101506.
  • Dashtipour, K., et al., 2017. Hypermethylation of Synphilin-1, Alpha-Synuclein-Interacting Protein (SNCAIP) gene in the cerebral cortex of patients with sporadic Parkinson’s disease. Brain sciences, 7 (7), 74. doi:10.3390/brainsci7070074.
  • Dekkers, K.F., et al., 2016. Blood lipids influence DNA methylation in circulating cells. Genome biology, 17 (1), 138. doi:10.1186/s13059-016-1000-6.
  • Delgado-Morales, R., et al., 2017. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clinical epigenetics, 9 (1), 67. doi:10.1186/s13148-017-0365-z.
  • de Paiva Vianna, K.M., Alves Cardoso, M.R., and Rodrigues, R.M., 2015. Noise pollution and annoyance: an urban soundscapes study. Noise & health, 17 (76), 125–133. doi:10.4103/1463-1741.155833.
  • Didelez, V. and Sheehan, N., 2007. Mendelian randomization as an instrumental variable approach to causal inference. Statistical methods in medical research, 16 (4), 309–330. doi:10.1177/0962280206077743.
  • Di Micco, R., et al., 2021. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nature reviews molecular cell biology, 22 (2), 75–95. doi:10.1038/s41580-020-00314-w.
  • Dominguez, L.J., et al., 2021. Nutrition, physical activity, and other lifestyle factors in the prevention of cognitive decline and dementia. Nutrients, 13 (11), 4080. doi:10.3390/nu13114080.
  • Dong, Y.T., et al., 2020. Silent mating-type information regulation 2 homolog 1 attenuates the neurotoxicity associated with Alzheimer disease via a mechanism which may involve regulation of peroxisome proliferator-activated receptor gamma coactivator 1-α. The American journal of pathology, 190 (7), 1545–1564. doi:10.1016/j.ajpath.2020.03.015.
  • Dumax-Vorzet, A.F., et al., 2015. Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells. Mutagenesis, 30 (5), 621–633. doi:10.1093/mutage/gev025.
  • Duran-Aniotz, C., et al., 2021. Amyloid pathology arrangements in Alzheimer’s disease brains modulate in vivo seeding capability. Acta neuropathologica communications, 9 (1), 56. doi:10.1186/s40478-021-01155-0.
  • Escobar, C., et al., 2011. Circadian disruption leads to loss of homeostasis and disease. Sleep disorders, 2011, 1–8. doi:10.1155/2011/964510
  • Eze, I.C., et al., 2020. Genome-wide DNA methylation in peripheral blood and long-term exposure to source-specific transportation noise and air pollution: the SAPALDIA study. Environmental health perspectives, 128 (6), 67003. doi:10.1289/EHP6174.
  • Fathabadi, B., et al., 2018. Comparison of blood lead levels in patients with Alzheimer’s disease and healthy people. American journal of Alzheimer’s disease and other dementias, 33 (8), 541–547. doi:10.1177/1533317518794032.
  • Fernandes, J., Arida, R.M., and Gomez-Pinilla, F., 2017. Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neuroscience & biobehavioral reviews, 80, 443–456. doi:10.1016/j.neubiorev.2017.06.012
  • Fiorito, G., et al., 2017. Social adversity and epigenetic aging: a multi-cohort study on socioeconomic differences in peripheral blood DNA methylation. Scientific reports, 7 (1), 16266. doi:10.1038/s41598-017-16391-5.
  • Flies, E.J., et al., 2019. Urban-associated diseases: candidate diseases, environmental risk factors, and a path forward. Environment international, 133, 105187. doi:10.1016/j.envint.2019.105187.
  • Fraser, S.D.S. and Lock, K., 2011. Cycling for transport and public health: a systematic review of the effect of the environment on cycling. European journal of public health, 21 (6), 738–743. doi:10.1093/eurpub/ckq145.
  • Freydenzon, A., et al., 2022. Association between DNA methylation variability and self-reported exposure to heavy metals. Scientific Reports, 12 (1), 10582. doi:10.1038/s41598-022-13892-w.
  • Fuller, R., et al., 2022. Pollution and health: a progress update. The lancet planet health, 6 (6), e535–e47. doi:10.1016/S2542-5196(22)00090-0.
  • Gaine, M.E., Chatterjee, S., and Abel, T., 2018. Sleep deprivation and the epigenome. Frontiers in neural circuits, 12, 14. doi:10.3389/fncir.2018.00014
  • Gao, X., et al., 2022. Short-term exposure of PM(2.5) and epigenetic aging: a quasi-experimental study. Environmental science & technology, 56 (20), 14690–14700. doi:10.1021/acs.est.2c05534.
  • Gascon, M., et al., 2015. Mental health benefits of long-term exposure to residential green and blue spaces: a systematic review. International journal of environmental research and public health, 12 (4), 4354–4379. [Internet]. doi:10.3390/ijerph120404354.
  • Gibney, E.R. and Nolan, C.M., 2010. Epigenetics and gene expression. Heredity, 105 (1), 4–13. doi:10.1038/hdy.2010.54.
  • Gidlöf-Gunnarsson, A. and Öhrström, E., 2007. Noise and well-being in urban residential environments: the potential role of perceived availability to nearby green areas. Landscape and urban planning, 83 (2), 115–126. doi:10.1016/j.landurbplan.2007.03.003.
  • Gidlow, C.J., et al., 2016a. Natural environments and chronic stress measured by hair cortisol. Landscape and urban planning, 148, 61–67. doi:10.1016/j.landurbplan.2015.12.009.
  • Gidlow, C.J., et al., 2016b. Where to put your best foot forward: psycho-physiological responses to walking in natural and urban environments. Journal of environmental psychology, 45, 22–29. doi:10.1016/j.jenvp.2015.11.003.
  • Gondalia, R., et al., 2019. Methylome-wide association study provides evidence of particulate matter air pollution-associated DNA methylation. Environment international, 132, 104723. doi:10.1016/j.envint.2019.03.071.
  • Gonzales, M.M., et al., 2022. Biological aging processes underlying cognitive decline and neurodegenerative disease. Journal of clinical investigation, 132 (10). doi:10.1172/JCI158453.
  • Grigoratos, T. and Martini, G., 2015. Brake wear particle emissions: a review. Environmental science and pollution research, 22 (4), 2491–2504. doi:10.1007/s11356-014-3696-8.
  • Grodstein, F., et al., 2021. The association of epigenetic clocks in brain tissue with brain pathologies and common aging phenotypes. Neurobiology of disease, 157, 105428. doi:10.1016/j.nbd.2021.105428.
  • Guillaumet-Adkins, A., et al., 2017. Epigenetics and oxidative stress in aging. Oxidative medicine and cellular longevity, 2017, 9175806. doi:10.1155/2017/9175806
  • Hahad, O., et al., 2020. Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. International journal of molecular sciences, 21 (12), 4306. doi:10.3390/ijms21124306.
  • Hajat, A., et al., 2021. Confounding by socioeconomic status in epidemiological studies of air pollution and health: challenges and opportunities. Environmental health perspectives, 129 (6), 65001. doi:10.1289/EHP7980.
  • Halperin, D., 2014. Environmental noise and sleep disturbances: a threat to health? Sleep science, 7 (4), 209–212. doi:10.1016/j.slsci.2014.11.003.
  • Hannah, C.-C., Eric, T., and Glen, E.D., 2015. Access to green space, physical activity and mental health: a twin study. Journal of epidemiology and community health, 69 (6), 523. doi:10.1136/jech-2014-204667.
  • Hannon, E., et al., 2018. Characterizing genetic and environmental influences on variable DNA methylation using monozygotic and dizygotic twins. PLoS genetics, 14 (8), e1007544. doi:10.1371/journal.pgen.1007544.
  • Hannum, G., et al., 2013. Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular cell, 49 (2), 359–367. doi:10.1016/j.molcel.2012.10.016.
  • Hara, Y., et al., 2015. Estrogen effects on cognitive and synaptic health over the lifecourse. Physiological reviews, 95 (3), 785–807. doi:10.1152/physrev.00036.2014.
  • Hardeland, R., 2012. Neurobiology, pathophysiology, and treatment of melatonin deficiency and dysfunction. Scientific world journal, 2012, 640389. doi:10.1100/2012/640389
  • Hasan, M., et al., 2022. Urban green space mediates spatiotemporal variation in land surface temperature: a case study of an urbanized city, Bangladesh. Environmental science and pollution research international, 29 (24), 36376–36391. doi:10.1007/s11356-021-17480-9.
  • He, C., et al., 2021. Whole-transcriptome analysis of aluminum-exposed rat hippocampus and identification of ceRNA networks to investigate neurotoxicity of Al. Molecular therapy - nucleic acids, 26, 1401–1417. doi:10.1016/j.omtn.2021.11.010.
  • Heusinkveld, H.J., et al., 2016. Neurodegenerative and neurological disorders by small inhaled particles. NeuroToxicology, 56, 94–106. doi:10.1016/j.neuro.2016.07.007.
  • Hing, B., et al., 2018. Chronic social stress induces DNA methylation changes at an evolutionary conserved intergenic region in chromosome X. Epigenetics, 13 (6), 627–641. doi:10.1080/15592294.2018.1486654.
  • Ho, S.M., et al., 2012. Environmental epigenetics and its implication on disease risk and health outcomes. ILAR journal / national research council, institute of laboratory animal resources, 53 (3–4), 289–305. doi:10.1093/ilar.53.3-4.289.
  • Holliday, K.M., et al., 2022. Gaseous air pollutants and DNA methylation in a methylome-wide association study of an ethnically and environmentally diverse population of U.S. adults. Environmental research, 212 (Pt C), 113360. doi:10.1016/j.envres.2022.113360.
  • Holmström, K.M. and Finkel, T., 2014. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nature reviews molecular cell biology, 15 (6), 411–421. doi:10.1038/nrm3801.
  • Horvath, S., 2013. DNA methylation age of human tissues and cell types. Genome biology, 14 (10), 3156. doi:10.1186/gb-2013-14-10-r115.
  • Horvath, S. and Raj, K., 2018. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature reviews genetics, 19 (6), 371–384. doi:10.1038/s41576-018-0004-3.
  • Hou, Y., et al., 2019. Ageing as a risk factor for neurodegenerative disease. Nature reviews neurology, 15 (10), 565–581. doi:10.1038/s41582-019-0244-7.
  • Huang, Y.T., Hong, F.F., and Yang, S.L., 2021. Atherosclerosis: the culprit and Co-victim of vascular dementia. Frontiers in neuroscience, 15, 673440. doi:10.3389/fnins.2021.673440
  • Hudec, M., et al., 2020. Epigenetic regulation of circadian rhythm and its possible role in diabetes mellitus. International journal of molecular sciences, 21 (8), 3005. doi:10.3390/ijms21083005.
  • Hui, L., 2017. Assessment of the role of ageing and non-ageing factors in death from non-communicable diseases based on a cumulative frequency model. Scientific reports, 7 (1), 8159. doi:10.1038/s41598-017-08539-0.
  • Hunter, D.J., et al., 2019. Impact of aerobic exercise and fatty acid supplementation on global and gene-specific DNA methylation. Epigenetics, 14 (3), 294–309. doi:10.1080/15592294.2019.1582276.
  • Hwang, J.Y., Aromolaran, K.A., and Zukin, R.S., 2017. The emerging field of epigenetics in neurodegeneration and neuroprotection. Nature reviews Neuroscience, 18 (6), 347–361. doi:10.1038/nrn.2017.46.
  • Hystad, P., et al., 2019. Green space associations with mental health and cognitive function: results from the Quebec CARTaGENE cohort. Environmental Epidemiology, 3 (1), e040. (no pagination): doi:10.1097/EE9.0000000000000040.
  • Iso-Markku, P., et al., 2022. Physical activity as a protective factor for dementia and Alzheimer’s disease: systematic review, meta-analysis and quality assessment of cohort and case-control studies. British journal of sports medicine, 56 (12), 701–709. doi:10.1136/bjsports-2021-104981.
  • Iwińska, K., et al., 2018. Cycling in Warsaw, Poland – perceived enablers and barriers according to cyclists and non-cyclists. Transportation research part A: Policy and practice, 113, 291–301. doi:10.1016/j.tra.2018.04.014
  • Jain, P., et al., 2022. Analysis of epigenetic age acceleration and healthy longevity among older US women. JAMA Network Open, 5 (7), e2223285. doi:10.1001/jamanetworkopen.2022.23285.
  • Jennings, V. and Bamkole, O., 2019. The relationship between social cohesion and urban green space: an avenue for health promotion. International journal of environmental research and public health, 16 (3), 452. [Internet]: doi:10.3390/ijerph16030452.
  • Jia, J., et al., 2023. Association between healthy lifestyle and memory decline in older adults: 10 year, population based, prospective cohort study. BMJ: British medical journal, 380, e072691. doi:10.1136/bmj-2022-072691.
  • Jirtle, R.L. and Skinner, M.K., 2007. Environmental epigenomics and disease susceptibility. Nature reviews genetics, 8 (4), 253–262. doi:10.1038/nrg2045.
  • Jo, S., et al., 2021. Association of NO2 and other air pollution exposures with the risk of Parkinson disease. JAMA neurology, 78 (7), 800–808. doi:10.1001/jamaneurol.2021.1335.
  • Junior, D.P.M., Bueno, C., and da Silva, C.M., 2022. The effect of urban green spaces on reduction of particulate matter concentration. Bulletin of environmental contamination and toxicology, 108 (6), 1104–1110. doi:10.1007/s00128-022-03460-3.
  • Ju, Y. and Tam, K.Y., 2022. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural regeneration research, 17 (3), 543–549. doi:10.4103/1673-5374.320970.
  • Kalia, V., et al., 2022. An exposomic framework to uncover environmental drivers of aging. Exposome, 2 (1). doi:10.1093/exposome/osac002.
  • Kandlur, A., Satyamoorthy, K., and Gangadharan, G., 2020. Oxidative stress in cognitive and epigenetic aging: a retrospective glance. Frontiers in molecular neuroscience, 13, 41. doi:10.3389/fnmol.2020.00041
  • Kanherkar, R.R., Bhatia-Dey, N., and Csoka, A.B., 2014. Epigenetics across the human lifespan. Frontiers in cell and developmental biology, 2, 49. doi:10.3389/fcell.2014.00049
  • Kao, C.F., et al., 2020. Gene-based association analysis suggests association of HTR2A with antidepressant treatment response in depressed patients. Frontiers in pharmacology, 11, 559601. doi:10.3389/fphar.2020.559601.
  • Katayama, O., et al., 2020. The association between neighborhood amenities and cognitive function: role of lifestyle activities. Journal of clinical medicine, 9 (7), 2109. doi:10.3390/jcm9072109.
  • Kawahara, M. and Kato-Negishi, M., 2011. Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. International journal of Alzheimer’s disease, 2011, 1–17. doi:10.4061/2011/276393
  • Kempf, A., et al., 2019. A potassium channel β-subunit couples mitochondrial electron transport to sleep. Nature, 568 (7751), 230–234. doi:10.1038/s41586-019-1034-5.
  • Killin, L.O.J., et al., 2016. Environmental risk factors for dementia: a systematic review. BMC geriatrics, 16 (1), 175. doi:10.1186/s12877-016-0342-y.
  • Kim, K.-H., Kabir, E., and Kabir, S., 2015. A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143. doi:10.1016/j.envint.2014.10.005
  • Kim, E.J., Kim, J., and Kim, H., 2020. Neighborhood walkability and active transportation: a correlation study in leisure and shopping purposes. International journal of environmental research and public health, 17 (7), 2178. [Internet]: doi:10.3390/ijerph17072178.
  • Knapskog, M., et al., 2019. Exploring ways of measuring walkability. Transportation research procedia, 41, 264–282. doi:10.1016/j.trpro.2019.09.047.
  • Kular, L. and Jagodic, M., 2020. Epigenetic insights into multiple sclerosis disease progression. Journal of internal medicine, 288 (1), 82–102. doi:10.1111/joim.13045.
  • Lafaille-Magnan, M.E., et al., 2017. Odor identification as a biomarker of preclinical AD in older adults at risk. Neurology, 89 (4), 327–335. doi:10.1212/WNL.0000000000004159.
  • Lahiri, D.K. and Maloney, B., 2010. The “LEARn” (Latent Early-life Associated Regulation) model integrates environmental risk factors and the developmental basis of Alzheimer’s disease, and proposes remedial steps. Experimental gerontology, 45 (4), 291–296. doi:10.1016/j.exger.2010.01.001.
  • Lahiri, D.K., Maloney, B., and Zawia, N.H., 2009. The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases. Molecular Psychiatry, 14 (11), 992–1003. doi:10.1038/mp.2009.82.
  • Landgrave-Gómez, J., Mercado-Gómez, O., and Guevara-Guzmán, R., 2015. Epigenetic mechanisms in neurological and neurodegenerative diseases. Frontiers in cellular neuroscience, 9, 58. doi:10.3389/fncel.2015.00058
  • Le, T.N., et al., 2017. Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. Journal of otolaryngology-head & neck surgery, 46 (1), 41. doi:10.1186/s40463-017-0219-x.
  • Lee, J., et al., 2023. Particulate matter exposure and neurodegenerative diseases: a comprehensive update on toxicity and mechanisms. Ecotoxicology and environmental safety, 266, 115565. doi:10.1016/j.ecoenv.2023.115565.
  • Lee, M.K., et al., 2019. Genome-wide DNA methylation and long-term ambient air pollution exposure in Korean adults. Clinical epigenetics, 11 (1), 37. doi:10.1186/s13148-019-0635-z.
  • Levine, M.E., et al., 2015. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging (Albany NY), 7 (12), 1198–1211. doi:10.18632/aging.100864.
  • Levine, M.E., et al., 2018. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY), 10 (4), 573–591. doi:10.18632/aging.101414.
  • Li, B., et al., 2021. Developmental angiogenesis requires the mitochondrial phenylalanyl-tRNA synthetase. Frontiers in cardiovascular medicine, 8, 724846. doi:10.3389/fcvm.2021.724846.
  • Li, J., et al., 2023. Landscape fire smoke enhances the association between fine particulate matter exposure and acute respiratory infection among children under 5 years of age: findings of a case-crossover study for 48 low- and middle-income countries. Environment international, 171, 107665. doi:10.1016/j.envint.2022.107665.
  • Li, A., Koch, Z., and Ideker, T., 2022. Epigenetic aging: biological age prediction and informing a mechanistic theory of aging. Journal of internal medicine, 292 (5), 733–744. doi:10.1111/joim.13533.
  • Lin, F.C., et al., 2022. Air pollution is associated with cognitive deterioration of Alzheimer’s disease. Gerontology, 68 (1), 53–61. doi:10.1159/000515162.
  • Li, Q.S., Sun, Y., and Wang, T., 2020. Epigenome-wide association study of Alzheimer’s disease replicates 22 differentially methylated positions and 30 differentially methylated regions. Clinical epigenetics, 12 (1), 149. doi:10.1186/s13148-020-00944-z.
  • Liu, C.C., et al., 2019. Association of environmental features and the risk of Alzheimer’s dementia in older adults: a nationwide longitudinal case-control study. International journal of environmental research and public health, 16 (16), 2828. doi:10.3390/ijerph16162828.
  • Liu, J., et al., 2017. Assessment of relationship on excess arsenic intake from drinking water and cognitive impairment in adults and elders in arsenicosis areas. International journal of hygiene and environmental health, 220 (2 Pt B), 424–430. doi:10.1016/j.ijheh.2016.12.004.
  • Liu, R.M., 2022. Aging, cellular senescence, and Alzheimer’s disease. International journal of molecular sciences, 23 (4), 1989. doi:10.3390/ijms23041989.
  • Liu, Z., et al., 2020. Underlying features of epigenetic aging clocks in vivo and in vitro. Aging cell, 19 (10), e13229. doi:10.1111/acel.13229.
  • Livingston, G., et al., 2020. Dementia prevention, intervention, and care: 2020 report of the lancet commission. The lancet, 396 (10248), 413–446. doi:10.1016/S0140-6736(20)30367-6.
  • Lu, A.T., et al., 2019. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY), 11 (2), 303–327. doi:10.18632/aging.101684.
  • Lu, A.T., et al., 2023. Universal DNA methylation age across mammalian tissues. Nature aging, 3 (9), 1144–1166. doi:10.1038/s43587-023-00462-6.
  • Lupolt, S.N., et al., 2022. Key considerations for assessing soil ingestion exposures among agricultural workers. Journal of exposure science & environmental epidemiology, 32 (3), 481–492. doi:10.1038/s41370-021-00339-z.
  • Maas, J., et al., 2009. Social contacts as a possible mechanism behind the relation between green space and health. Health & place, 15 (2), 586–595. doi:10.1016/j.healthplace.2008.09.006.
  • Maasar, M.F., et al., 2021. The comparative methylome and transcriptome after change of direction compared to straight line running exercise in human skeletal muscle. Frontiers in physiology, 12, 619447. doi:10.3389/fphys.2021.619447.
  • Maher, B.A., et al., 2016. Magnetite pollution nanoparticles in the human brain. Proceedings of the national academy of sciences, 113 (39), 10797–10801. doi:10.1073/pnas.1605941113.
  • Maitre, L., et al., 2022. Multi-omics signatures of the human early life exposome. Nature communications, 13 (1), 7024. doi:10.1038/s41467-022-34422-2.
  • Marin, C., et al., 2018. Olfactory dysfunction in neurodegenerative diseases. Current allergy and asthma reports, 18 (8), 42. doi:10.1007/s11882-018-0796-4.
  • Marini, M., et al., 2021. Daily intake of heavy metals and minerals in food – a case study of four Danish dietary profiles. Journal of cleaner production, 280, 124279. doi:10.1016/j.jclepro.2020.124279.
  • Mazzoleni, E., et al., 2023. Outdoor artificial light at night and risk of early-onset dementia: a case-control study in the Modena population, Northern Italy. Heliyon, 9 (7), e17837. doi:10.1016/j.heliyon.2023.e17837.
  • McCrory, C., et al., 2021. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. Journals of gerontology: series A, 76 (5), 741–749. doi:10.1093/gerona/glaa286.
  • McGowan, P.O. and Roth, T.L., 2015. Epigenetic pathways through which experiences become linked with biology. Development & psychopathology, 27 (2), 637–648. doi:10.1017/S0954579415000206.
  • Meng, L., et al., 2022. Chronic noise exposure and risk of dementia: a systematic review and dose-response meta-analysis. Frontiers in public health, 10, 832881. doi:10.3389/fpubh.2022.832881.
  • Meng, Y., Kelly, F.J., and Wright, S.L., 2020. Advances and challenges of microplastic pollution in freshwater ecosystems: a UK perspective. Environmental pollution, 256, 113445. doi:10.1016/j.envpol.2019.113445
  • Mielke, M.M., Vemuri, P., and Rocca, W.A., 2014. Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences. Clinical epidemiology, 6, 37–48. doi:10.2147/CLEP.S37929
  • Millan, M.J., 2014. The epigenetic dimension of Alzheimer’s disease: causal, consequence, or curiosity? Dialogues in clinical neuroscience, 16 (3), 373–393. doi:10.31887/DCNS.2014.16.3/mmillan.
  • Millán-Zambrano, G., et al., 2022. Histone post-translational modifications — cause and consequence of genome function. Nature reviews genetics, 23 (9), 563–580. doi:10.1038/s41576-022-00468-7.
  • Morgensztern, D. et al., 2018. Mutational events in lung cancer: present and developing technologies. In: H.I. Pass, D. Ball, and G.V. Scagliotti, eds. IASLC thoracic oncology 2nd ed. Philadelphia: Elsevier, 95–103.e2.
  • Morley, J.F., et al., 2018. Optimizing olfactory testing for the diagnosis of Parkinson’s disease: item analysis of the university of Pennsylvania smell identification test. Npj Parkinson’s Disease, 4 (1), 2. doi:10.1038/s41531-017-0039-8.
  • Mostafavi, N., et al., 2018. Acute changes in DNA methylation in relation to 24 h personal air pollution exposure measurements: a panel study in four European countries. Environment international, 120, 11–21. doi:10.1016/j.envint.2018.07.026.
  • Mueller, B., Figueroa, A., and Robinson-Papp, J., 2022. Structural and functional connections between the autonomic nervous system, hypothalamic–pituitary–adrenal axis, and the immune system: a context and time dependent stress response network. Neurological sciences, 43 (2), 951–960. doi:10.1007/s10072-021-05810-1.
  • Müller, A., et al., 2020. The pollution conveyed by urban runoff: a review of sources. Science of the total environment, 709, 136125. doi:10.1016/j.scitotenv.2019.136125
  • Münzel, T., et al., 2022. Soil and water pollution and human health: what should cardiologists worry about? Cardiovascular research, 119 (2), 440–449. doi:10.1093/cvr/cvac082.
  • Murata, H., Barnhill, L.M., and Bronstein, J.M., 2022. Air pollution and the risk of Parkinson’s disease: a review. Movement disorders: official journal of the movement disorder society, 37 (5), 894–904. doi:10.1002/mds.28922.
  • Nichols, E., 2022. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the global burden of disease study 2019. Lancet public health, 7 (2), e105–e125. doi:10.1016/S2468-2667(21)00249-8.
  • Noroozi, R., et al., 2021. DNA methylation-based age clocks: from age prediction to age reversion. Aging research reviews, 68, 101314. doi:10.1016/j.arr.2021.101314.
  • Nous, A., Engelborghs, S., and Smolders, I., 2021. Melatonin levels in the Alzheimer’s disease continuum: a systematic review. Alzheimer’s research & therapy, 13 (1), 52. doi:10.1186/s13195-021-00788-6.
  • Oppenheim, H.A., et al., 2013. Exposure to vehicle emissions results in altered blood brain barrier permeability and expression of matrix metalloproteinases and tight junction proteins in mice. Particle and fibre toxicology, 10 (1), 62. doi:10.1186/1743-8977-10-62.
  • Pan, X., et al., 2022a. Associations among drinking water quality, dyslipidemia, and cognitive function for older adults in China: evidence from CHARLS. BMC Geriatrics, 22 (1). doi:10.1186/s12877-022-03375-y.
  • Pan, X., et al., 2022b. Associations among drinking water quality, dyslipidemia, and cognitive function for older adults in China: evidence from CHARLS. BMC geriatrics, 22 (1), 683. doi:10.1186/s12877-022-03375-y.
  • Pandics, T., et al., 2023. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. GeroScience, 45 (6), 3381–3408. doi:10.1007/s11357-023-00913-3.
  • Panes, J.D., et al., 2022. Deciphering the role of PGC-1α in neurological disorders: from mitochondrial dysfunction to synaptic failure. Neural regeneration research, 17 (2), 237–245. doi:10.4103/1673-5374.317957.
  • Pankhurst, Q., et al., 2008. Increased levels of magnetic iron compounds in Alzheimer’s disease. Journal of Alzheimer’s disease: JAD, 13 (1), 49–52. doi:10.3233/JAD-2008-13105.
  • Panni, S., et al., 2020. Non-coding RNA regulatory networks. Biochimica et biophysica acta (BBA)-Gene regulatory mechanisms, 1863 (6), 194417. doi:10.1016/j.bbagrm.2019.194417.
  • Parade, S.H., et al., 2017. Stress exposure and psychopathology alter methylation of the serotonin receptor 2A (HTR2A) gene in preschoolers. Development & psychopathology, 29 (5), 1619–1626. doi:10.1017/S0954579417001274.
  • Patel, P.C., 2019. Light pollution and insufficient sleep: evidence from the United States. American journal of human biology, 31 (6), e23300. doi:10.1002/ajhb.23300.
  • Paul, D.S. and Beck, S., 2014. Advances in epigenome-wide association studies for common diseases. Trends in molecular medicine, 20 (10), 541–543. doi:10.1016/j.molmed.2014.07.002.
  • Peters, R., et al., 2019. Air pollution and dementia: a systematic review. Journal of Alzheimer’s disease: JAD, 70 (s1), S145–s63. doi:10.3233/JAD-180631.
  • Pierce, B.L. and Burgess, S., 2013. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. American journal of epidemiology, 178 (7), 1177–1184. doi:10.1093/aje/kwt084.
  • Pirooznia, S.K., et al., 2012. Epigenetic regulation of axonal growth of drosophila pacemaker cells by histone acetyltransferase tip60 controls sleep. Genetics, 192 (4), 1327–1345. doi:10.1534/genetics.112.144667.
  • Plaza-Diaz, J., et al., 2022. Impact of physical activity and exercise on the epigenome in skeletal muscle and effects on systemic metabolism. Biomedicines, 10 (1), 126. doi:10.3390/biomedicines10010126.
  • Poprac, P., et al., 2017. Targeting free radicals in oxidative stress-related human diseases. Trends in pharmacological sciences, 38 (7), 592–607. doi:10.1016/j.tips.2017.04.005.
  • Rakyan, V.K., et al., 2011. Epigenome-wide association studies for common human diseases. Nature reviews genetics, 12 (8), 529–541. doi:10.1038/nrg3000.
  • Rao, P., Belanger, M.J., and Robbins, J.M., 2022. Exercise, physical activity, and cardiometabolic health: insights into the prevention and treatment of cardiometabolic diseases. Cardiology in review, 30 (4), 167–178. doi:10.1097/CRD.0000000000000416.
  • Rasmussen, M., Zierath, J.R., and Barrès, R., 2014. Dynamic epigenetic responses to muscle contraction. Drug discovery today, 19 (7), 1010–1014. doi:10.1016/j.drudis.2014.03.003.
  • Relton, C. and Smith, G., 2015. Mendelian randomization: applications and limitations in epigenetic studies. Epigenomics, 7 (8), 1239–1243. doi:10.2217/epi.15.88.
  • Rey, R., et al., 2019. Distinct expression pattern of epigenetic machinery genes in blood leucocytes and brain cortex of depressive patients. Molecular neurobiology, 56 (7), 4697–4707. doi:10.1007/s12035-018-1406-0.
  • Richardson, E.A., et al., 2013. Role of physical activity in the relationship between urban green space and health. Public health, 127 (4), 318–324. doi:10.1016/j.puhe.2013.01.004.
  • Rodriguez-Loureiro, L., et al., 2022. Long-term exposure to residential greenness and neurodegenerative disease mortality among older adults: a 13-year follow-up cohort study. Environmental health, 21 (1). doi:10.1186/s12940-022-00863-x.
  • Roe, J.J., et al., 2013. Green space and stress: evidence from cortisol measures in deprived urban communities. International journal of environmental research and public health, 10 (9), 4086–4103. Internet. doi:10.3390/ijerph10094086.
  • Ryu, H.W., et al., 2015. Influence of toxicologically relevant metals on human epigenetic regulation. Toxicological research, 31 (1), 1–9. doi:10.5487/TR.2015.31.1.001.
  • Ryu, Y.S., et al., 2019. Particulate matter-induced senescence of skin keratinocytes involves oxidative stress-dependent epigenetic modifications. Experimental & molecular medicine, 51 (9), 1–14. doi:10.1038/s12276-019-0305-4.
  • Schirmer, L., et al., 2019. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature, 573 (7772), 75–82. doi:10.1038/s41586-019-1404-z.
  • Scorza, F. and Fortunato, G., 2021. Cyclable cities: building feasible scenario through urban space morphology assessment. Journal of urban planning and development, 147 (4). doi:10.1061/(ASCE)UP.1943-5444.0000713.
  • Sharma, V.K., Mehta, V., and Singh, T.G., 2020. Alzheimer’s disorder: epigenetic connection and associated risk factors. Current neuropharmacology, 18 (8), 740–753. doi:10.2174/1570159X18666200128125641.
  • Shen, X.L., et al., 2014. Positive relationship between mortality from Alzheimer’s disease and soil metal concentration in mainland China. Journal of Alzheimer’s disease: JAD, 42 (3), 893–900. doi:10.3233/JAD-140153.
  • Shireby, G.L., et al., 2020. Recalibrating the epigenetic clock: implications for assessing biological age in the human cortex. Brain A journal of neurology, 143 (12), 3763–3775. doi:10.1093/brain/awaa334.
  • Shukla, M., et al., 2017. Mechanisms of melatonin in alleviating Alzheimer’s disease. Current neuropharmacology, 15 (7), 1010–1031. doi:10.2174/1570159X15666170313123454.
  • Skinner, M.K., 2011. Role of epigenetics in developmental biology and transgenerational inheritance. Birth defects research Part C, embryo today: Reviews, 93 (1), 51–55. doi:10.1002/bdrc.20199.
  • Slawsky, E.D., et al., 2022. Neighborhood greenspace exposure as a protective factor in dementia risk among U.S. adults 75 years or older: a cohort study. Environmental health: a global access science source, 21 (1), (no pagination). doi:10.1186/s12940-022-00830-6.
  • Smith, R.G., et al., 2021. A meta-analysis of epigenome-wide association studies in Alzheimer’s disease highlights novel differentially methylated loci across cortex. Nature Communications, 12 (1), 3517. doi:10.1038/s41467-021-23243-4.
  • Smith, G.D. and Ebrahim, S., 2003. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? International journal of epidemiology, 32 (1), 1–22. doi:10.1093/ije/dyg070.
  • Stefanova, N.A., et al., 2015. Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer’s disease-like pathology. Journal of pineal research, 59 (2), 163–177. doi:10.1111/jpi.12248.
  • Su, D., et al., 2018. Chronic noise exposure exacerbates AD-like neuropathology in SAMP8 mice in relation to wnt signaling in the PFC and hippocampus. Scientific reports, 8 (1), 14622. doi:10.1038/s41598-018-32948-4.
  • Sumien, N., et al., 2021. Neurodegenerative disease: roles for sex, hormones, and oxidative stress. Endocrinology, 162 (11). doi:10.1210/endocr/bqab185.
  • Suresh, S., Singh, S.A., and Vellapandian, C., 2022. Bisphenol a exposure links to exacerbation of memory and cognitive impairment: a systematic review of the literature. Neuroscience & biobehavioral reviews, 143, 104939. doi:10.1016/j.neubiorev.2022.104939
  • Światowy, W.J., et al., 2021. Physical activity and DNA methylation in humans. International journal of molecular sciences, 22 (23), 12989. doi:10.3390/ijms222312989.
  • Sylvers, D.L., et al., 2022. Walkable neighborhoods and cognition: implications for the design of health promoting communities. Journal of aging and health, 34 (6–8), 893–904. doi:10.1177/08982643221075509.
  • Tai, X.Y., et al., 2022. Cardiometabolic multimorbidity, genetic risk, and dementia: a prospective cohort study. Lancet healthy longevity, 3 (6), e428–e36. doi:10.1016/S2666-7568(22)00117-9.
  • Takasugi, T., et al., 2021. Community-level educational attainment and dementia: a 6-year longitudinal multilevel study in Japan. BMC Geriatrics, 21 (1), 661. doi:10.1186/s12877-021-02615-x.
  • Takiguchi, M., et al., 2003. Effects of cadmium on DNA-(cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Experimental cell research, 286 (2), 355–365. doi:10.1016/S0014-4827(03)00062-4.
  • Tang, B.L., 2020. Neuropathological mechanisms associated with pesticides in Alzheimer’s disease. Toxics, 8 (2), 21. doi:10.3390/toxics8020021.
  • Tang, X., et al., 2022. Epigenetic clock acceleration is linked to age at onset of Parkinson’s disease. Movement disorders: official journal of the movement disorder society, 37 (9), 1831–1840. doi:10.1002/mds.29157.
  • Terada, T., et al., 2020. In vivo mitochondrial and glycolytic impairments in patients with Alzheimer disease. Neurology, 94 (15), e1592–e604. doi:10.1212/WNL.0000000000009249.
  • Thanassoulis, G. and O’Donnell, C.J., 2009. Mendelian randomization: nature’s randomized trial in the post-genome era. Jama, 3012009 (22), 2386–2388. doi:10.1001/jama.2009.812.
  • Thompson, R.C., et al., 2009. Plastics, the environment and human health: current consensus and future trends. Philosophical transactions of the royal society B: Biological sciences, 364 (1526), 2153–2166. doi:10.1098/rstb.2009.0053.
  • Timmermans, E.J., et al., 2023. Neighbourhood walkability in relation to cognitive functioning in patients with disorders along the heart-brain axis. Health & place, 79, 102956. doi:10.1016/j.healthplace.2022.102956.
  • Umberson, D. and Karas Montez, J., 2010. Social relationships and health: a flashpoint for health policy. Journal of health and social behavior, 51 (1_suppl), S54–S66. doi:10.1177/0022146510383501.
  • United Nations Population Division, 2019. World urbanization prospects: 2018 revision. doi:10.18356/b9e995fe-en.
  • Valavanidis, A., Fiotakis, K., and Vlachogianni, T., 2008. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of environmental science and health, part C, 26 (4), 339–362. doi:10.1080/10590500802494538.
  • Villafuerte, G., et al., 2015. Sleep deprivation and oxidative stress in animal models: a systematic review. Oxidative medicine and cellular longevity, 2015, 234952. doi:10.1155/2015/234952
  • Walker, V.M., et al., 2019. Using the MR-Base platform to investigate risk factors and drug targets for thousands of phenotypes. Wellcome open research, 4, 113. doi:10.12688/wellcomeopenres.15334.1.
  • Walker, W.H., et al., 2020. Circadian rhythm disruption and mental health. Translational psychiatry, 10 (1), 28. doi:10.1038/s41398-020-0694-0.
  • Wang, C., et al., 2020. Associations of annual ambient PM(2.5) components with DNAm PhenoAge acceleration in elderly men: the normative aging study. Environmental pollution, 258, 113690. doi:10.1016/j.envpol.2019.113690
  • Wang, K., et al., 2022. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal transduction and targeted therapy, 7 (1), 374. doi:10.1038/s41392-022-01211-8.
  • Wang, R.Z., et al., 2021. Genetically determined low income modifies Alzheimer’s disease risk. Annals of translational medicine, 9 (15), 1222. doi:10.21037/atm-21-344.
  • Wang, Y., et al., 2020. Independent effect of main components in particulate matter on DNA methylation and DNA methyltransferase: a molecular epidemiology study. Environment international, 134, 105296. doi:10.1016/j.envint.2019.105296.
  • Wang, Z., et al., 2016. Chronic exposure to aluminum and risk of Alzheimer’s disease: a meta-analysis. Neuroscience letters, 610, 200–206. doi:10.1016/j.neulet.2015.11.014.
  • Warraich, U.E., Hussain, F., and Kayani, H.U.R., 2020. Aging - oxidative stress, antioxidants and computational modeling. Heliyon, 6 (5), e04107. doi:10.1016/j.heliyon.2020.e04107.
  • Wei, J., et al., 2021. DNA methyltransferase 3A is involved in the sustained effects of chronic stress on synaptic functions and behaviors. Cerebral cortex (New York, NY: 1991), 31 (4), 1998–2012. doi:10.1093/cercor/bhaa337.
  • White, A.J., et al., 2019. Air pollution, particulate matter composition and methylation-based biologic age. Environment international, 132, 105071. doi:10.1016/j.envint.2019.105071.
  • White, L., et al., 2020. Dementia is associated with earlier mortality for men and women in the United States. Gerontology and geriatric medicine, 6, 2333721420945922. doi:10.1177/2333721420945922
  • White, M.P., et al., 2020. Blue space, health and well-being: a narrative overview and synthesis of potential benefits. Environmental research, 191, 110169. doi:10.1016/j.envres.2020.110169.
  • Wiegand, A., et al., 2021. DNA methylation differences associated with social anxiety disorder and early life adversity. Translational psychiatry, 11 (1), 104. doi:10.1038/s41398-021-01225-w.
  • Williams, M.E., et al., 2023. Higher cortical thickness/volume in Alzheimer’s-related regions: protective factor or risk factor? Neurobiology of aging, 129, 185–194. doi:10.1016/j.neurobiolaging.2023.05.004.
  • Wilson, J. and Xiao, X., 2023. The economic value of health benefits associated with urban park investment. International journal of environmental research and public health, 20 (6), 4815. doi:10.3390/ijerph20064815.
  • Wittenberg, R., et al., 2020. Projections of care for older people with dementia in England: 2015 to 2040. Age and ageing, 49 (2), 264–269. doi:10.1093/ageing/afz154.
  • Wittfeld, K., et al., 2020. Cardiorespiratory fitness and gray matter volume in the temporal, frontal, and cerebellar regions in the general population. Mayo clinic proceedings, 95 (1), 44–56. doi:10.1016/j.mayocp.2019.05.030.
  • World Health Organisation, 2013. Health effects of particulate matter: policy implications for countries in eastern Europe. Caucasus and central Asia.
  • World Health Organisation, 2021. Urban health. Available from: https://www.who.int/news-room/fact-sheets/detail/urban-health.
  • World Health Organisation, 2021. WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide.
  • Wu, J., et al., 2022. Air pollution as a risk factor for Cognitive Impairment No Dementia (CIND) and its progression to dementia: a longitudinal study. Environment international, 160, 107067. doi:10.1016/j.envint.2021.107067.
  • Wu, J.W., et al., 2021. Biological age in healthy elderly predicts aging-related diseases including dementia. Scientific reports, 11 (1), 15929. doi:10.1038/s41598-021-95425-5.
  • Wu, Y.T., et al., 2020. Neighbourhood environment and dementia in older people from high-, middle- and low-income countries: results from two population-based cohort studies. Bmc public health, 20 (1). doi:10.1186/s12889-020-09435-5.
  • Wu, Z., et al., 2021. Gray matter deterioration pattern during Alzheimer’s disease progression: a regions-of-interest based surface morphometry study. Frontiers in aging neuroscience, 13, 593898. doi:10.3389/fnagi.2021.593898.
  • Wu, H., Eckhardt, C.M., and Baccarelli, A.A., 2023. Molecular mechanisms of environmental exposures and human disease. Nature reviews genetics, 24 (5), 332–344. doi:10.1038/s41576-022-00569-3.
  • Xu, R., et al., 2021. Residential surrounding greenness and DNA methylation: an epigenome-wide association study. Environment international, 154, 106556. doi:10.1016/j.envint.2021.106556.
  • Xu, S., Akioma, M., and Yuan, Z., 2021. Relationship between circadian rhythm and brain cognitive functions. Frontiers of optoelectronics, 14 (3), 278–287. doi:10.1007/s12200-021-1090-y.
  • Yang, N. and Sen, P., 2018. The senescent cell epigenome. Aging (Albany NY), 10 (11), 3590–3609. doi:10.18632/aging.101617.
  • Yannatos, I. et al., 2022. Contributions of neighborhood social environment and air pollution exposure to black-white disparities in epigenetic aging. PLoS One, 18 (7), e0287112. doi:10.1371/journal.pone.0287112.
  • Yu, X., et al., 2020. Exposure to air pollution and cognitive impairment risk: a meta-analysis of longitudinal cohort studies with dose-response analysis. Journal of global health, 10 (1), 010417. doi:10.7189/jogh.10.010417.
  • Zeng, B., Liu, G., and Huang, J., 2022. DNA methylation and histone modification in dental-derived mesenchymal stem cells. Stem cell reviews & reports, 18 (8), 2797–2816. doi:10.1007/s12015-022-10413-0.
  • Zhang, L., et al., 2022a. Targeting epigenetics as a promising therapeutic strategy for treatment of neurodegenerative diseases. Biochemical pharmacology, 206, 115295. doi:10.1016/j.bcp.2022.115295.
  • Zhang, L., et al., 2022b. Green space, air pollution, weather, and cognitive function in middle and old age in China. Frontiers in public health, 10. doi:10.3389/fpubh.2022.871104.
  • Zhang, X., et al., 2020. Effects of green space on walking: does size, shape and density matter? Urban studies, 57 (16), 3402–3420. doi:10.1177/0042098020902739.
  • Zhao, Y., et al., 2014. Aluminum-induced amyloidogenesis and impairment in the clearance of amyloid peptides from the central nervous system in Alzheimer’s disease. Frontiers in neurology, 5, 167. doi:10.3389/fneur.2014.00167
  • Zheng, J., et al., 2017. Recent developments in Mendelian randomization studies. Current epidemiology reports, 4 (4), 330–345. doi:10.1007/s40471-017-0128-6.
  • Zhou, A., et al., 2022. Epigenetic aging as a biomarker of dementia and related outcomes: a systematic review. Epigenomics, 14 (18), 1125–1138. doi:10.2217/epi-2022-0209.
  • Zhou, C.C., et al., 2018. Lead exposure induces Alzheimer's disease (AD)-like pathology and disturbes cholesterol metabolism in the young rat brain. Toxicology letters, 296, 173–183. doi:10.1016/j.toxlet.2018.06.1065.
  • Zhou, X., et al., 2022. Alcohol consumption, DNA methylation and colorectal cancer risk: results from pooled cohort studies and Mendelian randomization analysis. International journal of cancer, 151 (1), 83–94. doi:10.1002/ijc.33945.
  • Zukowska, J., et al., 2022. Which transport policies increase physical activity of the whole of society? A systematic review. Journal of transport & health, 27, 101488. doi:10.1016/j.jth.2022.101488.
  • Zuniga-Teran, A.A., et al., 2019. Exploring the influence of neighborhood walkability on the frequency of use of greenspace. Landscape and urban planning, 190, 103609. doi:10.1016/j.landurbplan.2019.103609.