116
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Probabilistic framework for quantifying infrastructure systems’ resilience against floods

ORCID Icon & ORCID Icon
Received 01 Jul 2023, Accepted 05 Mar 2024, Published online: 24 Mar 2024

References

  • Abuaku, B. K., Zhou, J., Li, X., Li, S., Li, X., Liu, A., Yang, T., & Tan, H. (2009). Morbidity and mortality among populations suffering floods in Hunan, China: The role of socioeconomic status. Journal of Flood Risk Management, 2(3), 222–228. https://doi.org/10.1111/j.1753-318X.2009.01037.x
  • Adler, M., & Ziglio, E. (1996). Gazing into the oracle: The Delphi method and its application to social policy and public health. Jessica Kingsley Publishers.
  • Aghababaei, M., & Mahsuli, M. (2018). Detailed seismic risk analysis of buildings using structural reliability methods. Probabilistic Engineering Mechanics, 53, 23–38. https://doi.org/10.1016/j.probengmech.2018.04.001
  • Alshehri, S. A., Rezgui, Y., & Li, H. (2015). Delphi-based consensus study into a framework of community resilience to disaster. Natural Hazards, 75(3), 2221–2245. https://doi.org/10.1007/s11069-014-1423-x
  • Apel, H., Merz, B., & Thieken, A. H. (2008). Quantification of uncertainties in flood risk assessments. International Journal of River Basin Management, 6(2), 149–162. https://doi.org/10.1080/15715124.2008.9635344
  • Azamathulla, H. M., Ahmad, Z., & Ghani, A. Ab. (2013). An expert system for predicting Manning’s roughness coefficient in open channels by using gene expression programming. Neural Computing and Applications, 23(5), 1343–1349. https://doi.org/10.1007/s00521-012-1078-z
  • Baratian, A., & Kashani, H. (2022). Probabilistic framework to quantify the seismic resilience of natural gas distribution networks. International Journal of Disaster Risk Reduction, 81, 103282. https://doi.org/10.1016/j.ijdrr.2022.103282
  • Bierens, J. J. (2006). Handbook on drowning: Prevention, rescue, treatment (Vol. 50). Springer Science & Business Media.
  • Brazdova, M., & Riha, J. (2014). A simple model for the estimation of the number of fatalities due to floods in central Europe. Natural Hazards and Earth System Sciences, 14(7), 1663–1676. https://doi.org/10.5194/nhess-14-1663-2014
  • Bremond, P., Grelot, F., & Agenais, A.-L. (2013). Economic evaluation of flood damage to agriculture–review and analysis of existing methods. Natural Hazards and Earth System Sciences, 13(10), 2493–2512. https://doi.org/10.5194/nhess-13-2493-2013
  • Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752. https://doi.org/10.1193/1.1623497
  • Bulti, D. T., & Abebe, B. G. (2020). A review of flood modeling methods for urban pluvial flood application. Modeling Earth Systems and Environment, 6(3), 1293–1302. https://doi.org/10.1007/s40808-020-00803-z
  • CEIWR-HEC. (2018). HEC-FIA flood impact analysis technical reference. US Army Corps of Engineers—Hydrologic Engineering Center.
  • Chow, V.T (1959). Open-channel hydraulics. New York: McGraw-Hill.
  • Christian, J., Duenas‐Osorio, L., Teague, A., Fang, Z., & Bedient, P. (2013). Uncertainty in floodplain delineation: Expression of flood hazard and risk in a gulf coast watershed. Hydrological Processes, 27(19), 2774–2784. https://doi.org/10.1002/hyp.9360
  • Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010). Framework for analytical quantification of disaster resilience. Engineering Structures, 32(11), 3639–3649. https://doi.org/10.1016/j.engstruct.2010.08.008
  • Davis, C. A. (2021). Understanding functionality and operability for infrastructure system resilience. Natural Hazards Review, 22(1), 06020005. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000431
  • de Brito, M. M., Evers, M., & Höllermann, B. (2017). Prioritization of flood vulnerability, coping capacity and exposure indicators through the delphi technique: A case study in Taquari-Antas basin, Brazil. International Journal of Disaster Risk Reduction, 24, 119–128. https://doi.org/10.1016/j.ijdrr.2017.05.027
  • Delphi, M. (2012). Application of characteristics method for flood routing (Case study: Karun river). Journal of Geology & Mining Research, 4(1), 8–12.
  • De Moel, H., Aerts, J. C., & Koomen, E. (2011). Development of flood exposure in the Netherlands during the 20th and 21st century. Global Environmental Change, 21(2), 620–627. https://doi.org/10.1016/j.gloenvcha.2010.12.005
  • Didier, M., Broccardo, M., Esposito, S., & Stojadinovic, B. (2018). A compositional demand/supply framework to quantify the resilience of civil infrastructure systems (re-CoDeS). Sustainable and Resilient Infrastructure, 3(2), 86–102. https://doi.org/10.1080/23789689.2017.1364560
  • Dingman, S. L., & Sharma, K. P. (1997). Statistical development and validation of discharge equations for natural channels. Journal of Hydrology, 199(1–2), 13–35. https://doi.org/10.1016/S0022-1694(96)03313-6
  • Douris, J., and Kim, G. (2021). The atlas of mortality and economic losses from weather, climate and water extremes (1970–2019).Geneva: World Meteorological Organization (WMO).
  • Dutta, D., Herath, S., & Musiake, K. (2003). A mathematical model for flood loss estimation. Journal of Hydrology, 277(1–2), 24–49. https://doi.org/10.1016/S0022-1694(03)00084-2
  • Ellingwood, B. R., Rosowsky, D. V., Li, Y., & Kim, J. H. (2004). Fragility assessment of light-frame wood construction subjected to wind and earthquake hazards. Journal of Structural Engineering, 130(12), 1921–1930. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(1921)
  • Esteban, M., Onuki, M., Ikeda, I., & Akiyama, T. (2015). Reconstruction following the 2011 Tohoku earthquake tsunami: Case study of Otsuchi Town in Iwate prefecture, Japan. In Esteban, M., H. Takagi and T. Shibayama (Eds.), Handbook of coastal disaster mitigation for engineers and planners (pp. 615–631). Elsevier. https://doi.org/10.1016/B978-0-12-801060-0.00029-0
  • Fahad, M. G. R., Nazari, R., Motamedi, M. H., & Karimi, M. (2022). A decision-making framework integrating fluid and solid systems to assess resilience of coastal communities experiencing extreme storm events. Reliability Engineering & System Safety, 221, 108388. https://doi.org/10.1016/j.ress.2022.108388
  • Federal Emergency Management Agency (FEMA). (2001). Multi-hazard Loss Estimation Methodology Flood Model-Hazus-MH Technical Manual. 570.
  • Forkuo, E. K. (2011). Flood hazard mapping using aster image data with GIS. International Journal of Geomatics & Geosciences, 1(4), 932–950.
  • Förster, S., Kuhlmann, B., Lindenschmidt, K. E., & Bronstert, A. (2008). Assessing flood risk for a rural detention area. Natural Hazards and Earth System Sciences, 8(2), 311–322. https://doi.org/10.5194/nhess-8-311-2008
  • Gangwal, U., & Dong, S. (2022). Critical facility accessibility rapid failure early-warning detection and redundancy mapping in urban flooding. Reliability Engineering & System Safety, 224, 108555. https://doi.org/10.1016/j.ress.2022.108555
  • Garrote, J., Bernal, N., Díez-Herrero, A., Martins, L. R., & Bodoque, J. M. (2019). Civil engineering works versus self-protection measures for the mitigation of floods economic risk. A case study from a new classification criterion for cost-benefit analysis. International Journal of Disaster Risk Reduction, 37, 101157. https://doi.org/10.1016/j.ijdrr.2019.101157
  • Ghimire, E., & Sharma, S. (2021). Flood damage assessment in HAZUS using various resolution of data and one-dimensional and two-dimensional HEC-RAS depth grids. Natural Hazards Review, 22(1), 04020054. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000430
  • Gong, Y., Liu, P., Zhang, J., Liu, D., Zhang, X., & Zhang, X. (2020). Considering different streamflow forecast horizons in the quantitative flood risk analysis for a multi-reservoir system. Reliability Engineering & System Safety, 204, 107128. https://doi.org/10.1016/j.ress.2020.107128
  • Goodell, C. (2014). Breaking the Hec-Ras code: A user’s guide to automating Hec-Ras. h2ls.
  • Greco, F., Lonetti, P., & Blasi, P. N. (2021). Impact mitigation measures for bridges under extreme flood actions. Journal of Fluids and Structures, 106, 103381. https://doi.org/10.1016/j.jfluidstructs.2021.103381
  • Guganesharajah, K., Lyons, D. J., Parsons, S. B., & Lloyd, B. J. (2006). Influence of uncertainties in the estimation procedure of floodwater level. Journal of Hydraulic Engineering, 132(10), 1052–1060. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1052)
  • Heidari, A. (2009). Structural master plan of flood mitigation measures. Natural Hazards and Earth System Sciences, 9(1), 61–75. https://doi.org/10.5194/nhess-9-61-2009
  • Iran Urban Planning and Architecture Studies and Research Center, Amaish of Khuzestan province. (2013).
  • Jibhakate, S. M., Timbadiya, P., & Patel, P. (2023). Multiparameter flood hazard, socioeconomic vulnerability and flood risk assessment for densely populated coastal city. Journal of Environmental Management, 344, 118405. https://doi.org/10.1016/j.jenvman.2023.118405
  • Jongman, B., Kreibich, H., Apel, H., Barredo, J. I., Bates, P. D., Feyen, L., Gericke, A., Neal, J., Aerts, J. C., & Ward, P. J. (2012). Comparative flood damage model assessment: Towards a European approach. Natural Hazards and Earth System Sciences, 12(12), 3733–3752. https://doi.org/10.5194/nhess-12-3733-2012
  • Jonkman, S. N. (2007). Loss of life estimation in flood risk assessment, [Ph.D. Thesis], Delft University.
  • Jonkman, S. N., Bočkarjova, M., Kok, M., & Bernardini, P. (2008). Integrated hydrodynamic and economic modelling of flood damage in the Netherlands. Ecological Economics, 66(1), 77–90. https://doi.org/10.1016/j.ecolecon.2007.12.022
  • Jonkman, S. N., & Kelman, I. (2005). An analysis of the causes and circumstances of flood disaster deaths. Disasters, 29(1), 75–97. https://doi.org/10.1111/j.0361-3666.2005.00275.x
  • Jordan, E., & Javernick-Will, A. (2013). Indicators of community recovery: Content analysis and Delphi approach. Natural Hazards Review, 14(1), 21–28. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000087
  • Karamouz, M., Fereshtehpour, M., Ahmadvand, F., & Zahmatkesh, Z. (2016). Coastal flood damage estimator: An alternative to FEMA’s HAZUS platform. Journal of Irrigation & Drainage Engineering, 142(6), 04016016. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001017
  • Khakzad, N., & Van Gelder, P. (2018). Vulnerability of industrial plants to flood-induced natechs: A Bayesian network approach. Reliability Engineering & System Safety, 169, 403–411. https://doi.org/10.1016/j.ress.2017.09.016
  • Khanmohammadi, S., Farahmand, H., & Kashani, H. (2018). A system dynamics approach to the seismic resilience enhancement of hospitals. International Journal of Disaster Risk Reduction, 31, 220–233. https://doi.org/10.1016/j.ijdrr.2018.05.006
  • Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences, 67(1), 251–264. https://doi.org/10.1007/s12665-011-1504-z
  • Kim, T. H., Kim, B., & Han, K.-Y. (2019). Application of fuzzy TOPSIS to flood hazard mapping for levee failure. Water, 11(3), 592. https://doi.org/10.3390/w11030592
  • Klaus, S., Kreibich, H., Merz, B., Kuhlmann, B., & Schröter, K. (2016). Large-scale, seasonal flood risk analysis for agricultural crops in Germany. Environmental Earth Sciences, 75(18), 1–13. https://doi.org/10.1007/s12665-016-6096-1
  • Komi, K., Neal, J., Trigg, M. A., & Diekkrüger, B. (2017). Modelling of flood hazard extent in data sparse areas: A case study of the Oti River basin, West Africa. Journal of Hydrology: Regional Studies, 10, 122–132. https://doi.org/10.1016/j.ejrh.2017.03.001
  • Kousky, C., & Walls, M. (2014). Floodplain conservation as a flood mitigation strategy: Examining costs and benefits. Ecological Economics, 104, 119–128. https://doi.org/10.1016/j.ecolecon.2014.05.001
  • Landucci Gabriele, A. G., Alessandro, T., & Valerio, C. (2012). Release of hazardous substances in flood events: Damage model for atmospheric storage tanks. Reliability Engineering & System Safety, 106, 200–216. https://doi.org/10.1016/j.ress.2012.05.010
  • Lehman, W., Dunn, C., and Light, M. (2014). Using HEC-FIA to identify the consequences of flood events. In 6th International Conference on Flood Management (ICFM6), São Paulo, Brasil. Retrieved June 16, 2021, from http://eventos.abrh.org.br/icfm6/proceedings/papers/PAP014378.pdf
  • Leon, A. S., & Goodell, C. (2016). Controlling hec-ras using matlab. Environmental Modelling & Software, 84, 339–348. https://doi.org/10.1016/j.envsoft.2016.06.026
  • Li, J., Duenas-Osorio, L., Chen, C., & Shi, C. (2016). Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment. Reliability Engineering & System Safety, 156, 24–33. https://doi.org/10.1016/j.ress.2016.07.003
  • Liu, H., Tatano, H., & Kajitani, Y. (2021). Estimating lifeline resilience factors using post-disaster business recovery data. Earthquake Spectra, 37(2), 567–586. https://doi.org/10.1177/8755293020952455
  • Liu, H., Tatano, H., & Samaddar, S. (2023). Analysis of post-disaster business recovery: Differences in industrial sectors and impacts of production inputs. International Journal of Disaster Risk Reduction, 87, 103577. https://doi.org/10.1016/j.ijdrr.2023.103577
  • Loucks, D. P., Stedinger, J. R., Davis, D. W., & Stakhiv, E. Z. (2008). Private and public responses to flood risks. International Journal of Water Resources Development, 24(4), 541–553. https://doi.org/10.1080/07900620801923286
  • McClymont, K., Morrison, D., Beevers, L., & Carmen, E. (2020). Flood resilience: A systematic review. Journal of Environmental Planning and Management, 63(7), 1151–1176. https://doi.org/10.1080/09640568.2019.1641474
  • McGrath, H., Stefanakis, E., & Nastev, M. (2015). Sensitivity analysis of flood damage estimates: A case study in Fredericton, New Brunswick. International Journal of Disaster Risk Reduction, 14, 379–387. https://doi.org/10.1016/j.ijdrr.2015.09.003
  • Melville, B. W., & Coleman, S. E. (2000). Bridge scour. Water Resources Publication.
  • Merz, B., Kreibich, H., Schwarze, R., & Thieken, A. (2010). Review article “Assessment of economic flood damage”. Natural Hazards and Earth System Sciences, 10(8), 1697–1724. https://doi.org/10.5194/nhess-10-1697-2010
  • Mohammadi, M., Darabi, H., Mirchooli, F., Bakhshaee, A., & Torabi Haghighi, A. (2021). Flood risk mapping and crop-water loss modeling using water footprint analysis in agricultural watershed, northern Iran. Natural Hazards, 105(2), 2007–2025. https://doi.org/10.1007/s11069-020-04387-w
  • Mohammadi, S., & Kashefipour, S. M. (2014). Numerical modeling of flow in riverine basins using an improved dynamic roughness coefficient. Water Resources, 41(4), 412–420. https://doi.org/10.1134/S0097807814040149
  • Morshedi, M. A., & Kashani, H. (2020). A system dynamics model to evaluate the housing market response to vulnerability reduction promotion policies. International Journal of Disaster Risk Reduction, 44, 101438. https://doi.org/10.1016/j.ijdrr.2019.101438
  • Mudashiru, R. B., Sabtu, N., Abustan, I., & Balogun, W. (2021). Flood hazard mapping methods: A review. Journal of Hydrology, 603, 126846. https://doi.org/10.1016/j.jhydrol.2021.126846
  • Mu, J.-B., & Zhang, X.-F. (2007). Real-time flood forecasting method with 1-D unsteady flow model. Journal of Hydrodynamics, 19(2), 150–154. https://doi.org/10.1016/S1001-6058(07)60041-9
  • Nasrazadani, H., & Mahsuli, M. (2020). Probabilistic framework for evaluating community resilience: integration of risk models and agent-based simulation. Journal of Structural Engineering, 146(11), 04020250. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002810
  • Nastev, M., & Todorov, N. (2013). Hazus: A standardized methodology for flood risk assessment in Canada. Canadian Water Resources Journal, 38(3), 223–231. https://doi.org/10.1080/07011784.2013.801599
  • Nofal, O. M., & Van De Lindt, J. W. (2022). Understanding flood risk in the context of community resilience modeling for the built environment: Research needs and trends. Sustainable and Resilient Infrastructure, 7(3), 171–187. https://doi.org/10.1080/23789689.2020.1722546
  • Nofal, O. M., van de Lindt, J. W., & Do, T. Q. (2020). Multi-variate and single-variable flood fragility and loss approaches for buildings. Reliability Engineering & System Safety, 202, 106971. https://doi.org/10.1016/j.ress.2020.106971
  • Oladokun, V. O., Proverbs, D. G., & Lamond, J. (2017). Measuring flood resilience: A fuzzy logic approach. International Journal of Building Pathology and Adaptation, 35(5), 470–487. https://doi.org/10.1108/IJBPA-12-2016-0029
  • Oliver, J., Qin, X. S., Madsen, H., Rautela, P., Joshi, G. C., & Jorgensen, G. (2019). A probabilistic risk modelling chain for analysis of regional flood events. Stochastic Environmental Research and Risk Assessment, 33(4–6), 1057–1074. https://doi.org/10.1007/s00477-019-01681-3
  • Ölmez, H. N., & Deniz, D. (2023). Assembly-based flood Repair Cost and Time Models for Industrial Buildings in Turkey. Reliability Engineering & System Safety, 238, 109444. https://doi.org/10.1016/j.ress.2023.109444
  • O’Sullivan, J. J., Bradford, R. A., Bonaiuto, M., De Dominicis, S., Rotko, P., Aaltonen, J., Waylen, K., & Langan, S. J. (2012). Enhancing flood resilience through improved risk communications. Natural Hazards and Earth System Sciences, 12(7), 2271–2282. https://doi.org/10.5194/nhess-12-2271-2012
  • Othman, A., El-Saoud, W. A., Habeebullah, T., Shaaban, F., & Abotalib, A. Z. (2023). Risk assessment of flash flood and soil erosion impacts on electrical infrastructures in overcrowded mountainous urban areas under climate change. Reliability Engineering & System Safety, 236, 109302. https://doi.org/10.1016/j.ress.2023.109302
  • Ouyang, M. (2014). Review on modeling and simulation of interdependent critical infrastructure systems. Reliability Engineering & System Safety, 121, 43–60. https://doi.org/10.1016/j.ress.2013.06.040
  • Ouyang, M., & Wang, Z. (2015). Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis. Reliability Engineering & System Safety, 141, 74–82. https://doi.org/10.1016/j.ress.2015.03.011
  • Pant, R., Thacker, S., Hall, J. W., Alderson, D., & Barr, S. (2018). Critical infrastructure impact assessment due to flood exposure. Journal of Flood Risk Management, 11(1), 22–33. https://doi.org/10.1111/jfr3.12288
  • Pathak, C. S., Teegavarapu, R. S., Olson, C., Singh, A., Lal, A. W., Polatel, C., Zahraeifard, V., & Senarath, S. U. (2015). Uncertainty analyses in hydrologic/hydraulic modeling: Challenges and proposed resolutions. Journal of Hydrologic Engineering, 20(10), 02515003. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001231
  • Paul, B. K., & Mahmood, S. (2016). Selected physical parameters as determinants of flood fatalities in Bangladesh, 1972–2013. Natural Hazards, 83(3), 1703–1715. https://doi.org/10.1007/s11069-016-2384-z
  • Penning-Rowsell, E., Johnson, C., Tunstall, S., Tapsell, S., Morris, J., Chatterton, J., & Green, C. (2005). The benefits of flood and coastal risk management: A handbook of assessment techniques. ISBN 1904750516.
  • Pereira, S., Diakakis, M., Deligiannakis, G., & Zêzere, J. L. (2017). Comparing flood mortality in Portugal and Greece (Western and eastern Mediterranean). International Journal of Disaster Risk Reduction, 22, 147–157. https://doi.org/10.1016/j.ijdrr.2017.03.007
  • Petrucci, O. (2022). Review article: Factors leading to the occurrence of flood fatalities: A systematic review of research papers published between 2010 and 2020. Natural Hazards and Earth System Sciences, 22(1), 71–83. https://doi.org/10.5194/nhess-22-71-2022
  • Poretti, I., & De Amicis, M. (2011). An approach for flood hazard modelling and mapping in the medium Valtellina. Natural Hazards and Earth System Sciences, 11(4), 1141–1151. https://doi.org/10.5194/nhess-11-1141-2011
  • Pregnolato, M., Ford, A., Wilkinson, S. M., & Dawson, R. J. (2017). The impact of flooding on road transport: A depth-disruption function. Transportation research part D: Transport and environment. Transportation Research, Part D: Transport & Environment, 55, 67–81. https://doi.org/10.1016/j.trd.2017.06.020
  • Prior, T., & Hagmann, J. (2014). Measuring resilience: Methodological and political challenges of a trend security concept. Journal of Risk Research, 17(3), 281–298. https://doi.org/10.1080/13669877.2013.808686
  • Qiang, Y. (2019). Flood exposure of critical infrastructures in the United States. International Journal of Disaster Risk Reduction, 39, 101240. https://doi.org/10.1016/j.ijdrr.2019.101240
  • Rachunok, B., & Nateghi, R. (2020). The sensitivity of electric power infrastructure resilience to the spatial distribution of disaster impacts. Reliability Engineering & System Safety, 193, 106658. https://doi.org/10.1016/j.ress.2019.106658
  • Raillani, H., Hammadi, L., El Ballouti, A., Barbu, V. S., & Souza De Cursi, E. (2023). Uncertainty quantification for disaster modelling: Flooding as a case study. Stochastic Environmental Research and Risk Assessment, 37(7), 1–12. https://doi.org/10.1007/s00477-023-02419-y
  • Ramirez-Marquez, J. E., Rocco, C. M., Barker, K., & Moronta, J. (2018). Quantifying the resilience of community structures in networks. Reliability Engineering & System Safety, 169, 466–474. https://doi.org/10.1016/j.ress.2017.09.019
  • Realo, C., Monjardin, C. E. F., Tan, F. J., & Tarun, J. F. (2021). Structural damage and life loss analysis on the riverine Barangays of Manghinao River Basin with different flood warning issuance time using HEC-FIA.
  • Reuter, H. I., Nelson, A., & Jarvis, A. (2007). An evaluation of void‐filling interpolation methods for SRTM data. International Journal of Geographical Information Science, 21(9), 983–1008. https://doi.org/10.1080/13658810601169899
  • Schinke, R., Kaidel, A., Golz, S., Naumann, T., López-Gutiérrez, J. S., & Garvin, S. (2016). Analysing the effects of flood-resilience technologies in urban areas using a synthetic model approach. ISPRS International Journal of Geo-Information, 5(11), 202. https://doi.org/10.3390/ijgi5110202
  • Serre, D., Barroca, B., Balsells, M., & Becue, V. (2018). Contributing to urban resilience to floods with neighbourhood design: The case of Am Sandtorkai/Dalmannkai in Hamburg. Journal of Flood Risk Management, 11(S1), S69–S83. https://doi.org/10.1111/jfr3.12253
  • Shrestha, B. B., Kawasaki, A., & Zin, W. W. (2021). Development of flood damage functions for agricultural crops and their applicability in regions of Asia. Journal of Hydrology: Regional Studies, 36, 100872. https://doi.org/10.1016/j.ejrh.2021.100872
  • Steen, R., & Ferreira, P. (2020). Resilient flood-risk management at the municipal level through the lens of the functional resonance analysis Model. Reliability Engineering & System Safety, 204, 107150. https://doi.org/10.1016/j.ress.2020.107150
  • Stephens, T. A., & Bledsoe, B. P. (2020). Probabilistic mapping of flood hazards: Depicting uncertainty in streamflow, land use, and geomorphic adjustment. Anthropocene, 29, 100231. https://doi.org/10.1016/j.ancene.2019.100231
  • Sulong, S., & Romali, N. S. (2022). Flood damage assessment: A review of multivariate flood damage models. Geomate Journal, 22(93), 106–113. https://doi.org/10.21660/2022.93.gxi439
  • Sulzer, S., Rutschmann, P., & Kinzelbach, W. (2002). Flood discharge prediction using two-dimensional inverse modeling. Journal of Hydraulic Engineering, 128(1), 46–54. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(46)
  • Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F., Dutta, D., & Kim, S. J. E. M. (2017). Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling & Software, 90, 201–216. https://doi.org/10.1016/j.envsoft.2017.01.006
  • Thieken, A. H., Olschewski, A., Kreibich, H., Kobsch, S., & Merz, B. (2008). Development and evaluation of FLEMOps–a new flood loss estimation MOdel for the private sector. WIT Transactions on Ecology and the Environment, 118, 315–324. https://doi.org/10.2495/FRIAR080301
  • Timbadiya, P., Patel, P., & Porey, P. (2015). A 1D–2D coupled hydrodynamic model for river flood prediction in a coastal urban floodplain. Journal of Hydrologic Engineering, 20(2), 05014017. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001029
  • Tong, P. (2021). Characteristics, dimensions and methods of current assessment for urban resilience to climate-related disasters: A systematic review of the literature. International Journal of Disaster Risk Reduction, 60, 102276. https://doi.org/10.1016/j.ijdrr.2021.102276
  • USACE. (2016). HEC-RAS river analysis system hydraulic reference manual. Version 5.0. Hydrol. Eng. Cent.(hec). US Army Corps Eng.
  • US Army Corps of Engineers, N.O.D. (2006). Depth-damage relationship for structures, content, and vehicles and content-to-structure value ratios (CSVR) in support of the Donaldsonville to the gulf, Louisiana. U.S. Army Corps of Engineers.
  • Van Der Knijff, J. M., Younis, J., & De Roo, A. P. J. (2010). LISFLOOD: A GIS‐based distributed model for river basin scale water balance and flood simulation. International Journal of Geographical Information Science, 24(2), 189–212. https://doi.org/10.1080/13658810802549154
  • Vatanchi, S. M., & Maghrebi, M. F. (2019). Uncertainty in rating-curves due to manning roughness coefficient. Water Resources Management, 33(15), 5153–5167. https://doi.org/10.1007/s11269-019-02421-6
  • Vermeulen, S. J., Aggarwal, P. K., Ainslie, A., Angelone, C., Campbell, B. M., Challinor, A. J., Hansen, J. W., Ingram, J. S., Jarvis, A., Kristjanson, P., Lau, C., Nelson, G. C., Thornton, P. K., & Wollenberg, E. (2012). Options for support to agriculture and food security under climate change. Environmental Science & Policy, 15(1), 136–144. https://doi.org/10.1016/j.envsci.2011.09.003
  • Vugrin, E. D., Warren, D. E., Ehlen, M. A., & Camphouse, R. C. (2010). A framework for assessing the resilience of infrastructure and economic systems. In Gopalakrishnan, K., Peeta, S. (Eds.), Sustainable and Resilient Critical Infrastructure Systems: Simulation, Modeling, and Intelligent Engineering, (pp. 77–116).Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11405-2_3
  • Wagenaar, D., De Jong, J., & Bouwer, L. M. (2017). Multi-variable flood damage modelling with limited data using supervised learning approaches. Natural Hazards and Earth System Sciences, 17(9), 1683–1696. https://doi.org/10.5194/nhess-17-1683-2017
  • Wang, H. V., Loftis, J. D., Liu, Z., Forrest, D., & Zhang, J. (2014). The storm surge and sub-grid inundation modeling in New York City during hurricane sandy. Journal of Marine Science and Engineering, 2(1), 226–246. https://doi.org/10.3390/jmse2010226
  • Warner, M., & Kahan, D. (2008). Market-oriented agricultural infrastructure: Appraisal of public-private partnerships. FAO.
  • Watson, M. (2013). Agricultural infrastructure developmentimperative for sustainable food production: a Zimbabwean perspective. Russian Journal of Agricultural & Socio-Economic Sciences, 24(12), 13–21. https://doi.org/10.18551/rjoas.2013-12.02
  • Wolfgang, K. (2005). Flood risk = hazard • values • vulnerability. Water International, 30(1), 58–68. https://doi.org/10.1080/02508060508691837
  • Yari, A., Ostadtaghizadeh, A., Ardalan, A., Zarezadeh, Y., Rahimiforoushani, A., & Bidarpoor, F. (2020). Risk factors of death from flood: Findings of a systematic review. Journal of Environmental Health Science and Engineering, 18(2), 1643–1653. https://doi.org/10.1007/s40201-020-00511-x
  • Yoe, C. (1994). Framework for estimating national economic development benefits and other beneficial effects of flood warning and preparedness systems. Army Engineer INST for Water Resourses Alexandria Va.
  • Yu, I., Necesito, I. V., Kim, H., Cheong, T. S., & Jeong, S. (2017). Development of multivariate flood damage function for flood damage assessment in Gunsan City, Korea. Journal of the Korean Society of Hazard Mitigation, 17(2), 247–258. https://doi.org/10.9798/KOSHAM.2017.17.2.247
  • Zhai, G., Fukuzono, T., & Ikeda, S. (2006). An empirical model of fatalities and injuries due to floods in japan 1. JAWRA Journal of the American Water Resources Association, 42(4), 863–875. https://doi.org/10.1111/j.1752-1688.2006.tb04500.x
  • Zhao, G., Pang, B., Xu, Z., Yue, J., & Tu, T. (2018). Mapping flood susceptibility in mountainous areas on a national scale in China. Science of the Total Environment, 615, 1133–1142. https://doi.org/10.1016/j.scitotenv.2017.10.037
  • Zhong, S., Clark, M., Hou, X. Y., Zang, Y. L., & FitzGerald, G. (2013). 2010–2011 Q ueensland floods: Using H addon’s M atrix to define and categorise public safety strategies. Emergency Medicine Australasia, 25(4), 345–352. https://doi.org/10.1111/1742-6723.12097

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.