1,853
Views
0
CrossRef citations to date
0
Altmetric
Articles

Urban Visual Intelligence: Studying Cities with Artificial Intelligence and Street-Level Imagery

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 876-897 | Received 12 Jul 2021, Accepted 12 Dec 2023, Published online: 08 Apr 2024

References

  • Ahlfeldt, G., and A. Mastro. 2012. Valuing iconic design: Frank Lloyd Wright architecture in Oak Park, Illinois. Housing Studies 27 (8):1079–99. doi: 10.1080/02673037.2012.728575.
  • Anguelov, D., C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon, A. Ogale, L. Vincent, and J. Weaver. 2010. Google Street View: Capturing the world at street level. Computer Magazine.43 (6):32–38. doi: 10.1109/MC.2010.170.
  • Arnheim, R. 1965. Art and visual perception: A psychology of the creative eye. Berkeley: University of California Press.
  • Baevski, A., Y. Zhou, A. Mohamed, and M. Auli. 2020. Wav2vec 2.0: A framework for self-supervised learning of speech representations. Advances in Neural Information Processing Systems 33:12449–60.
  • Batty, M. 2021. Defining urban science. In Urban informatics, ed. W. Shi, M. F. Goodchild, M. Batty, M.-P. Kwan, and A. Zhang, 15–28. Singapore: Springer.
  • Bau, D., J.-Y. Zhu, H. Strobelt, A. Lapedriza, B. Zhou, and A. Torralba. 2020. Understanding the role of individual units in a deep neural network. Proceedings of the National Academy of Sciences of the United States of America 117 (48):30071–78. doi: 10.1073/pnas.1907375117.
  • Biljecki, F., and K. Ito. 2021. Street view imagery in urban analytics and GIS: A review. Landscape and Urban Planning 215:104217. doi: 10.1016/j.landurbplan.2021.104217.
  • Biljecki, F., T. Zhao, X. Liang, and Y. Hou. 2023. Sensitivity of measuring the urban form and greenery using street-level imagery: A comparative study of approaches and visual perspectives. International Journal of Applied Earth Observation and Geoinformation 122:103385. doi: 10.1016/j.jag.2023.103385.
  • Brown, T., B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. 2020. Language models are few-shot learners. Advances in Neural Information Processing Systems 33:1877–1901.
  • Chen, J., L. Chen, Y. Li, W. Zhang, and Y. Long. 2023. Measuring physical disorder in urban street spaces: A large-scale analysis using street view images and deep learning. Annals of the American Association of Geographers 113 (2):469–87. doi: 10.1080/24694452.2022.2114417.
  • Chen, L., Y. Lu, Q. Sheng, Y. Ye, R. Wang, and Y. Liu. 2020. Estimating pedestrian volume using street view images: A large-scale validation test. Computers, Environment and Urban Systems 81:101481. doi: 10.1016/j.compenvurbsys.2020.101481.
  • Chen, L.-C., Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), ed. V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, 801–18. Munich, Germany: Springer.
  • Chen, S., and F. Biljecki. 2023. Automatic assessment of public open spaces using street view imagery. Cities 137:104329. doi: 10.1016/j.cities.2023.104329.
  • Cinnamon, J., and L. Jahiu. 2021. Panoramic street-level imagery in data-driven urban research: A comprehensive global review of applications, techniques, and practical considerations. ISPRS International Journal of Geo-Information 10 (7):471. doi: 10.3390/ijgi10070471.
  • Clifton, K. J., A. Livi Smith, and D. Rodriguez. 2007. The development and testing of an audit for the pedestrian environment. Landscape and Urban Planning 80 (1–2):95–110. doi: 10.1016/j.landurbplan.2006.06.008.
  • Cullen, G. 1961. The concise townscape. London and New York: Routledge/Architectural Press London.
  • den Braver, N. R., J. G. Kok, J. D. Mackenbach, H. Rutter, J.-M. Oppert, S. Compernolle, J. W. Twisk, J. Brug, J. W. Beulens, and J. Lakerveld. 2020. Neighbourhood drivability: Environmental and individual characteristics associated with car use across Europe. The International Journal of Behavioral Nutrition and Physical Activity 17 (1):8. doi: 10.1186/s12966-019-0906-2.
  • Doersch, C., S. Singh, A. Gupta, J. Sivic, and A. Efros. 2012. What makes Paris look like Paris? ACM Transactions on Graphics 31 (4):1–9. doi: 10.1145/2185520.2185597.
  • Duarte, F., and C. Ratti. 2021. What urban cameras reveal about the city: The work of the Senseable City Lab. In Urban informatics, ed. W. Shi, M. F. Goodchild, M. Batty, M.-P. Kwan, and A. Zhang, 491–502. Singapore: Springer.
  • Dubey, A., N. Naik, D. Parikh, R. Raskar, and C. A. Hidalgo. 2016. Deep learning the city: Quantifying urban perception at a global scale. In European conference on computer vision, ed. B. Leibe, J. Matas, N. Sebe, and M. Welling, 196–212. Berlin: Springer.
  • Egli, V., C. Zinn, L. Mackay, N. Donnellan, K. Villanueva, S. Mavoa, D. J. Exeter, S. Vandevijvere, and M. Smith. 2019. Viewing obesogenic advertising in children’s neighbourhoods using Google Street View. Geographical Research 57 (1):84–97. doi: 10.1111/1745-5871.12291.
  • Fan, Z., F. Zhang, and B. P. Loo. 2022. Rhythm of transit stations—Uncovering the activity-travel dynamics of transit-oriented development in the US. IEEE Transactions on Intelligent Transportation Systems 23 (8):12503–17. doi: 10.1109/TITS.2021.3115103.
  • Fan, Z., F. Zhang, B. P. Loo, and C. Ratti. 2023. Urban visual intelligence: Uncovering hidden city profiles with street view images. Proceedings of the National Academy of Sciences of the United States of America 120 (27):e2220417120. doi: 10.1073/pnas.2220417120.
  • Feuillet, T., H. Charreire, C. Roda, M. Ben Rebah, J. Mackenbach, S. Compernolle, K. Glonti, H. Bárdos, H. Rutter, I. De Bourdeaudhuij, et al. 2016. Neighbourhood typology based on virtual audit of environmental obesogenic characteristics. Obesity Reviews 17(Suppl. 1):19–30. doi: 10.1111/obr.12378.
  • Filomena, G., J. A. Verstegen, and E. Manley. 2019. A computational approach to “The image of the city.” Cities 89:14–25. doi: 10.1016/j.cities.2019.01.006.
  • Fotheringham, A. S., and D. W. Wong. 1991. The modifiable areal unit problem in multivariate statistical analysis. Environment and Planning A: Economy and Space 23 (7):1025–44. doi: 10.1068/a231025.
  • Freestone, R. 2011. Reconciling beauty and utility in early city planning: The contribution of John Nolen. Journal of Urban History 37 (2):256–77. doi: 10.1177/0096144210391594.
  • Gao, S., Y. Hu, and W. Li, eds. 2024. Introduction to geospatial artificial intelligence (GeoAI). In Handbook of geospatial artificial intelligence, 3–16. Boca Raton, FL: CRC Press.
  • Gao, S., K. Janowicz, D. R. Montello, Y. Hu, J.-A. Yang, G. McKenzie, Y. Ju, L. Gong, B. Adams, and B. Yan. 2017. A data-synthesis-driven method for detecting and extracting vague cognitive regions. International Journal of Geographical Information Science 31 (6):1–27. doi: 10.1080/13658816.2016.1273357.
  • Ge, Z., S. Liu, F. Wang, Z. Li, and J. Sun. 2021. Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430.
  • Gebru, T., J. Krause, Y. Wang, D. Chen, J. Deng, E. L. Aiden, and L. Fei-Fei. 2017. Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States. Proceedings of the National Academy of Sciences of the United States of America 114 (50):13108–13. doi: 10.1073/pnas.1700035114.
  • Gehl, J. 1971. Life between buildings: Using public space. Washington, DC: Danish Architectural Press.
  • Goel, R., L. M. Garcia, A. Goodman, R. Johnson, R. Aldred, M. Murugesan, S. Brage, K. Bhalla, and J. Woodcock. 2018. Estimating city-level travel patterns using street imagery: A case study of using Google Street View in Britain. PLoS ONE 13 (5):e0196521. doi: 10.1371/journal.pone.0196521.
  • Goodchild, M. F. 2007. Citizens as sensors: The world of volunteered geography. GeoJournal 69 (4):211–21. doi: 10.1007/s10708-007-9111-y.
  • Goodchild, M. F., A. S. Fotheringham, P. Kedron, and W. Li. 2020. Introduction: Forum on reproducibility and replicability in geography. Annals of the American Association of Geographers 111 (5):1271–74. doi: 10.1080/24694452.2020.1806030.
  • Goodchild, M. F., and W. Li. 2021. Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences 118 (35):e2015759118. doi: 10.1073/pnas.2015759118.
  • Gullón, P., H. M. Badland, S. Alfayate, U. Bilal, F. Escobar, A. Cebrecos, J. Diez, and M. Franco. 2015. Assessing walking and cycling environments in the streets of Madrid: Comparing on-field and virtual audits. Journal of Urban Health: Bulletin of the New York Academy of Medicine 92 (5):923–39. doi: 10.1007/s11524-015-9982-z.
  • Hankey, S., W. Zhang, H. T. Le, P. Hystad, and P. James. 2021. Predicting bicycling and walking traffic using street view imagery and destination data. Transportation Research Part DTransport and Environment 90:102651. doi: 10.1016/j.trd.2020.102651.
  • He, H., X. Lin, Y. Yang, and Y. Lu. 2020. Association of street greenery and physical activity in older adults: A novel study using pedestrian-centered photographs. Urban Forestry & Urban Greening 55:126789. doi: 10.1016/j.ufug.2020.126789.
  • He, K., G. Gkioxari, P. Dollár, and R. Girshick. 2017. Mask R-CNN. In Proceedings of the IEEE international conference on computer vision, ed. L. O’Conner, 2980–88. Danvers, MA: IEEE.
  • He, K., X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, ed. T. Tuytelaars, F-F. Li, and R. Bajcsy, 770–78. Las Vegas, NV: IEEE.
  • He, N., and G. Li. 2021. Urban neighbourhood environment assessment based on street view image processing: A review of research trends. Environmental Challenges 4:100090. doi: 10.1016/j.envc.2021.100090.
  • Helbich, M., Y. Yao, Y. Liu, J. Zhang, P. Liu, and R. Wang. 2019. Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China. Environment International 126:107–17. doi: 10.1016/j.envint.2019.02.013.
  • Hong, J., D. McArthur, and V. Raturi. 2020. Did safe cycling infrastructure still matter during a COVID-19 lockdown? Sustainability 12 (20):8672. doi: 10.3390/su12208672.
  • Hu, C.-B., F. Zhang, F.-Y. Gong, C. Ratti, and X. Li. 2020. Classification and mapping of urban canyon geometry using Google Street View images and deep multitask learning. Building and Environment 167:106424. doi: 10.1016/j.buildenv.2019.106424.
  • Huang, G., Z. Liu, K. Q. Weinberger, and L. van der Maaten. 2017. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, ed. R. Chellappa, A. Hoogs, Z. Zhang, 2261–69. Honolulu, HI: IEEE.
  • Huang, J., T. Fei, Y. Kang, J. Li, Z. Liu, and G. Wu. 2023. Estimating urban noise along road network from street view imagery. International Journal of Geographical Information Science 38 (1):128–55. doi: 10.1080/13658816.2023.2274475.
  • Huang, Y., F. Zhang, Y. Gao, W. Tu, F. Duarte, C. Ratti, D. Guo, and Y. Liu. 2023. Comprehensive urban space representation with varying numbers of street-level images. Computers, Environment and Urban Systems 106:102043. doi: 10.1016/j.compenvurbsys.2023.102043.
  • Ibrahim, M. R., J. Haworth, and T. Cheng. 2020. Understanding cities with machine eyes: A review of deep computer vision in urban analytics. Cities 96:102481. doi: 10.1016/j.cities.2019.102481.
  • Ibrahim, M. R., J. Haworth, and T. Cheng. 2021. Urban-i: From urban scenes to mapping slums, transport modes, and pedestrians in cities using deep learning and computer vision. Environment and Planning B: Urban Analytics and City Science 48 (1):76–93. doi: 10.1177/2399808319846517.
  • Isola, P. D., J. N. Bogert, K. M. Chapple, S. Israr, T. L. Gillespie, and J. A. Weinberg. 2019. Google Street View assessment of environmental safety features at the scene of pedestrian automobile injury. The Journal of Trauma and Acute Care Surgery 87 (1):82–86. doi: 10.1097/TA.0000000000002338.
  • James, P., R. F. Banay, J. E. Hart, and F. Laden. 2015. A review of the health benefits of greenness. Current Epidemiology Reports 2 (2):131–42. doi: 10.1007/s40471-015-0043-7.
  • Janowicz, K., R. Zhu, J. Verstegen, G. McKenzie, B. Martins, and L. Cai. 2022. Six GIScience ideas that must die. AGILE 3:1–8. doi: 10.5194/agile-giss-3-7-2022.
  • Johnson, E. B., A. Tidwell, and S. V. Villupuram. 2020. Valuing curb appeal. The Journal of Real Estate Finance and Economics 60 (1–2):111–33. doi: 10.1007/s11146-019-09713-z.
  • Johnson, N. S., and H. C. Gabler. 2015. Injury outcome in crashes with guardrail end terminals. Traffic Injury Prevention 16(Suppl. 2):S103–S108. doi: 10.1080/15389588.2015.1065976.
  • Kang, Y., J. Abraham, V. Ceccato, F. Duarte, S. Gao, L. Ljungqvist, F. Zhang, P. Näsman, and C. Ratti. 2023. Assessing differences in safety perceptions using GeoAI and survey across neighbourhoods in Stockholm, Sweden. Landscape and Urban Planning 236:104768. doi: 10.1016/j.landurbplan.2023.104768.
  • Kang, Y., Q. Jia, S. Gao, X. Zeng, Y. Wang, S. Angsuesser, Y. Liu, X. Ye, and T. Fei. 2019. Extracting human emotions at different places based on facial expressions and spatial clustering analysis. Transactions in GIS 23 (3):450–80. doi: 10.1111/tgis.12552.
  • Kang, Y., F. Zhang, S. Gao, H. Lin, and Y. Liu. 2020. A review of urban physical environment sensing using street view imagery in public health studies. Annals of GIS 26 (3):261–75. doi: 10.1080/19475683.2020.1791954.
  • Kang, Y., F. Zhang, S. Gao, W. Peng, and C. Ratti. 2021. Human settlement value assessment from a place perspective: Considering human dynamics and perceptions in house price modeling. Cities 118:103333. doi: 10.1016/j.cities.2021.103333.
  • Kang, Y., F. Zhang, W. Peng, S. Gao, J. Rao, F. Duarte, and C. Ratti. 2020. Understanding house price appreciation using multi-source big geo-data and machine learning. Land Use Policy 111:104919. doi: 10.1016/j.landusepol.2020.104919.
  • Kedron, P., W. Li, S. Fotheringham, and M. Goodchild. 2021. Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science 35 (3):427–45. doi: 10.1080/13658816.2020.1802032.
  • Keralis, J. M., M. Javanmardi, S. Khanna, P. Dwivedi, D. Huang, T. Tasdizen, and Q. C. Nguyen. 2020. Health and the built environment in United States cities: Measuring associations using Google Street View-derived indicators of the built environment. BMC Public Health 20 (1):215. doi: 10.1186/s12889-020-8300-1.
  • Khosla, A., B. An An, J. J. Lim, and A Torralba. 2014. Looking beyond the visible scene. In Proceedings of the IEEE conference on computer vision and pattern recognition, ed. S. Dickinson, M. Turk, and D. Metaxas, 3710–17. Columbus, OH: IEEE.
  • Kim, A. M. 2015. Sidewalk city: Remapping public space in Ho Chi Minh City. Chicago: University of Chicago Press.
  • Kirillov, A., E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, et al. 2023. Segment anything. arXiv preprint arXiv:2304.02643.
  • Kruse, J., Y. Kang, Y.-N. Liu, F. Zhang, and S. Gao. 2021. Places for play: Understanding human perception of playability in cities using street view images and deep learning. Computers, Environment and Urban Systems 90:101693. doi: 10.1016/j.compenvurbsys.2021.101693.
  • Kwon, J.-H., and G.-H. Cho. 2020. An examination of the intersection environment associated with perceived crash risk among school-aged children: Using street-level imagery and computer vision. Accident: Analysis and Prevention 146:105716. doi: 10.1016/j.aap.2020.105716.
  • Larkin, A., and P. Hystad. 2019. Evaluating street view exposure measures of visible green space for health research. Journal of Exposure Science & Environmental Epidemiology 29 (4):447–56. doi: 10.1038/s41370-018-0017-1.
  • Laumer, D., N. Lang, N. van Doorn, O. Mac Aodha, P. Perona, and J. D. Wegner. 2020. Geocoding of trees from street addresses and street-level images. ISPRS Journal of Photogrammetry and Remote Sensing 162:125–36. doi: 10.1016/j.isprsjprs.2020.02.001.
  • Law, S., B. Paige, and C. Russell. 2019. Take a look around: Using street view and satellite images to estimate house prices. ACM Transactions on Intelligent Systems and Technology 10 (5):1–19. doi: 10.1145/3342240.
  • Lawlor, D., C. Bedford, M. Taylor, and S. Ebrahim. 2003. Geographical variation in cardiovascular disease, risk factors, and their control in older women: British women’s heart and health study. Journal of Epidemiology and Community Health 57 (2):134–40. doi: 10.1136/jech.57.2.134.
  • Lee, I.-M., E. J. Shiroma, F. Lobelo, P. Puska, S. N. Blair, and P. T. Katzmarzyk for the Lancet Physical Activity Series Working Group. 2012. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 380 (9838):219–29. doi: 10.1016/S0140-6736(12)61031-9.
  • Less, E. L., P. McKee, T. Toomey, T. Nelson, D. Erickson, S. Xiong, and R. Jones-Webb. 2015. Matching study areas using Google Street View: A new application for an emerging technology. Evaluation and Program Planning 53:72–79. doi: 10.1016/j.evalprogplan.2015.08.002.
  • Lewicka, M. 2008. Place attachment, place identity, and place memory: Restoring the forgotten city past. Journal of Environmental Psychology 28 (3):209–31. doi: 10.1016/j.jenvp.2008.02.001.
  • Li, W., C.-Y. Hsu, and M. Hu. 2021. Tobler’s first law in GeoAI: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers 111 (7):1–19. doi: 10.1080/24694452.2021.1877527.
  • Li, X., C. Zhang, and W. Li. 2015. Does the visibility of greenery increase perceived safety in urban areas? Evidence from the Place Pulse 1.0 dataset. ISPRS International Journal of Geo-Information 4 (3):1166–83. doi: 10.3390/ijgi4031166.
  • Liang, X., T. Zhao, and F. Biljecki. 2023. Revealing spatio-temporal evolution of urban visual environments with street view imagery. Landscape and Urban Planning 237:104802. doi: 10.1016/j.landurbplan.2023.104802.
  • Liu, L., B. Zhou, J. Zhao, and B. D. Ryan. 2016. C-IMAGE: City cognitive mapping through geo-tagged photos. GeoJournal 81 (6):817–61. doi: 10.1007/s10708-016-9739-6.
  • Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. 2016. SSD: Single shot multibox detector. In European conference on computer vision, 21–37. Berlin: Springer.
  • Liu, Y., F. Wang, Y. Xiao, and S. Gao. 2012. Urban land uses and traffic “source-sink areas”: Evidence from GPS-enabled taxi data in Shanghai. Landscape and Urban Planning 106 (1):73–87. doi: 10.1016/j.landurbplan.2012.02.012.
  • Liu, Z., Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. 2021. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision, ed. L. O’Conner, 10012–22. Montreal: IEEE.
  • Liu, Z., A. Yang, M. Gao, H. Jiang, Y. Kang, F. Zhang, and T. Fei. 2019. Towards feasibility of photovoltaic road for urban traffic-solar energy estimation using street view image. Journal of Cleaner Production 228:303–18. doi: 10.1016/j.jclepro.2019.04.262.
  • Lu, Y., C. Sarkar, and Y. Xiao. 2018. The effect of street-level greenery on walking behavior: Evidence from Hong Kong. Social Science & Medicine 208:41–49. doi: 10.1016/j.socscimed.2018.05.022.
  • Lu, Y., Y. Yang, G. Sun, and Z. Gou. 2019. Associations between overhead-view and eye-level urban greenness and cycling behaviors. Cities 88:10–18. doi: 10.1016/j.cities.2019.01.003.
  • Lynch, K. 1960. The image of the city. Cambridge, MA: MIT Press.
  • Lynch, K. 1984. Good city form. Cambridge, MA: MIT Press.
  • Ma, R., W. Wang, F. Zhang, K. Shim, and C. Ratti. 2019. Typeface reveals spatial economic patterns. Scientific Reports 9 (1):15946. doi: 10.1038/s41598-019-52423-y.
  • Mai, G., W. Huang, J. Sun, S. Song, D. Mishra, N. Liu, S. Gao, T. Liu, G. Cong, Y. Hu, et al. 2023. On the opportunities and challenges of foundation models for geospatial artificial intelligence. arXiv preprint arXiv:2304.06798.
  • Mehrabian, A., and J. A. Russell. 1974. An approach to environmental psychology. Cambridge, MA: MIT Press.
  • Milgram, S. 1970. The experience of living in cities: A psychological analysis. New York: Psychology and the Problems of Society.
  • Miranda, A. S., G. Du, C. Gorman, F. Duarte, W. Fajardo, and C. Ratti. 2022. Favelas 4D: Scalable methods for morphology analysis of informal settlements using terrestrial laser scanning data. Environment and Planning B: Urban Analytics and City Science 49 (9):2345–62.
  • Miranda, A. S., Z. Fan, F. Duarte, and C. Ratti. 2021. Desirable streets: Using deviations in pedestrian trajectories to measure the value of the built environment. Computers, Environment and Urban Systems 86:101563. doi: 10.1016/j.compenvurbsys.2020.101563.
  • Mirowski, P., M. K. Grimes, M. Malinowski, K. M. Hermann, K. Anderson, D. Teplyashin, K. Simonyan, K. Kavukcuoglu, A. Zisserman, and R. Hadsell. 2018. Learning to navigate in cities without a map. arXiv preprint arXiv:1804.00168.
  • Mooney, S. J., K. Wheeler-Martin, L. M. Fiedler, C. M. LaBelle, T. Lampe, A. Ratanatharathorn, N. N. Shah, A. G. Rundle, and C. J. DiMaggio. 2020. Development and validation of a Google Street View pedestrian safety audit tool. Epidemiology 31 (2):301–9. doi: 10.1097/EDE.0000000000001124.
  • Morison, B. 2002. On location: Aristotle’s concept of place. Oxford, UK: Oxford University Press on Demand.
  • Mulford, C. 1899. Improvement in city life: Aesthetic progress. New York and London: Routledge.
  • Mulford, L. S. 1899. Plate design. Arts Education Policy Review 1 (6):126.
  • Naik, N., S. D. Kominers, R. Raskar, E. L. Glaeser, and C. A. Hidalgo. 2017. Computer vision uncovers predictors of physical urban change. Proceedings of the National Academy of Sciences of the United States of America 114 (29):7571–76. doi: 10.1073/pnas.1619003114.
  • Nasar, J. L. 1990. The evaluative image of the city. Journal of the American Planning Association 56 (1):41–53. doi: 10.1080/01944369008975742.
  • Nasar, J. L. 1994. Urban design aesthetics: The evaluative qualities of building exteriors. Environment and Behavior 26 (3):377–401. doi: 10.1177/001391659402600305.
  • Nasar, J. L. 1998. The evaluative image of the city. Thousand Oaks, CA: Sage.
  • Nasar, J. L., and K. M. Jones. 1997. Landscapes of fear and stress. Environment and Behavior 29 (3):291–323. doi: 10.1177/001391659702900301.
  • Neyshabur, B., S. Bhojanapalli, D. McAllester, and N. Srebro. 2017. Exploring generalization in deep learning. arXiv preprint arXiv:1706.08947.
  • Nguyen, Q. C., M. Sajjadi, M. McCullough, M. Pham, T. T. Nguyen, W. Yu, H.-W. Meng, M. Wen, F. Li, K. R. Smith, et al. 2018. Neighbourhood looking glass: 360° automated characterisation of the built environment for neighbourhood effects research. Journal of Epidemiology and Community Health 72 (3):260–66. doi: 10.1136/jech-2017-209456.
  • Noyman, A., and K. Larson. 2020. A deep image of the city: Generative urban-design visualization. Challenge 7:30.
  • Ordonez, V., and T. L. Berg. 2014. Learning high-level judgments of urban perception. In European conference on computer vision, ed. D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars, 494–510. Zurich: Springer.
  • Patterson, G., and J. Hays. 2012. Sun attribute database: Discovering, annotating, and recognizing scene attributes. In Proceedings of the IEEE conference on computer vision and pattern recognition, ed. R. Chellappa, B. Kimia, and S. Chun Zhu, 2751–58. Providence, RI: IEEE.
  • Patterson, M. E., and D. R. Williams. 2005. Maintaining research traditions on place: Diversity of thought and scientific progress. Journal of Environmental Psychology 25 (4):361–80. doi: 10.1016/j.jenvp.2005.10.001.
  • Purves, R. S., S. Winter, and W. Kuhn. 2019. Places in information science. Journal of the Association for Information Science and Technology 70 (11):1173–82. doi: 10.1002/asi.24194.
  • Qin, K., Y. Xu, C. Kang, and M.-P. Kwan. 2020. A graph convolutional network model for evaluating potential congestion spots based on local urban built environments. Transactions in GIS 24 (5):1382–1401. doi: 10.1111/tgis.12641.
  • Qiu, W., Z. Zhang, X. Liu, W. Li, X. Li, X. Xu, and X. Huang. 2022. Subjective or objective measures of street environment, which are more effective in explaining housing prices? Zhonghua Wai ke za Zhi 62 (3):202–10. doi: 10.1016/j.landurbplan.2022.104358.
  • Quiñonero-Candela, J., M. Sugiyama, N. D. Lawrence, and A. Schwaighofer. 2009. Dataset shift in machine learning. Cambridge, MA: MIT Press.
  • Radford, A., J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. 2021. Learning transferable visual models from natural language supervision. In International conference on machine learning, ed. J. Langford, 8748–63. San Diego: PMLR.
  • Rapoport, A. 1990. The meaning of the built environment: A nonverbal communication approach. Tucson: University of Arizona Press.
  • Ren, S., K. He, R. Girshick, and J. Sun. 2015. Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems, ed. C. Cortes, D. D. Lee, M. Sugiyama, and R. Garnett, 91–99. Cambridge, MA: MIT Press.
  • Robinson, C. M. 1903. Modern civic art; or, the city made beautiful. New York: G. P. Putnam.
  • Roda, C., H. Charreire, T. Feuillet, J. Mackenbach, S. Compernolle, K. Glonti, M. Ben Rebah, H. Bárdos, H. Rutter, M. McKee, et al. 2016. Mismatch between perceived and objectively measured environmental obesogenic features in European neighbourhoods. Obesity Reviews 17(Suppl. 1):31–41. doi: 10.1111/obr.12376.
  • Russell, B. C., A. Torralba, K. P. Murphy, and W. T. Freeman. 2008. LabelMe: A database and Web-based tool for image annotation. International Journal of Computer Vision 77 (1–3):157–73. doi: 10.1007/s11263-007-0090-8.
  • Rzotkiewicz, A., A. L. Pearson, B. V. Dougherty, A. Shortridge, and N. Wilson. 2018. Systematic review of the use of Google Street View in health research: Major themes, strengths, weaknesses and possibilities for future research. Health & Place 52:240–46. doi: 10.1016/j.healthplace.2018.07.001.
  • Saiz, A., A. Salazar, and J. Bernard. 2018. Crowdsourcing architectural beauty: Online photo frequency predicts building aesthetic ratings. PLoS ONE 13 (7):e0194369. doi: 10.1371/journal.pone.0194369.
  • Salazar-Miranda, A., F. Zhang, M. Sun, P. Leoni, F. Duarte, and C. Ratti. 2023. Smart curbs: Measuring street activities in real-time using computer vision. Landscape and Urban Planning 234:104715. doi: 10.1016/j.landurbplan.2023.104715.
  • Salesses, P., K. Schechtner, and C. A. Hidalgo. 2013. The collaborative image of the city: Mapping the inequality of urban perception. PLoS ONE 8 (7):e68400. doi: 10.1371/journal.pone.0068400.
  • Sampson, R. J., and S. W. Raudenbush. 1999. Systematic social observation of public spaces: A new look at disorder in urban neighborhoods. American Journal of Sociology 105 (3):603–51. doi: 10.1086/210356.
  • Sampson, R. J., and S. W. Raudenbush. 2004. Seeing disorder: Neighborhood stigma and the social construction of “broken windows.” Social Psychology Quarterly 67 (4):319–42. doi: 10.1177/019027250406700401.
  • Seiferling, I., N. Naik, C. Ratti, and R. Proulx. 2017. Green streets—Quantifying and mapping urban trees with street-level imagery and computer vision. Landscape and Urban Planning 165:93–101. doi: 10.1016/j.landurbplan.2017.05.010.
  • Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. 2016. Mastering the game of Go with deep neural networks and tree search. Nature 529 (7587):484–89. doi: 10.1038/nature16961.
  • Sitte, C. 1889. City building according to artistic principles. New York: Columbia University Press.
  • Sorokin, A., and D. Forsyth. 2008. Utility data annotation with Amazon Mechanical Turk. In IEEE computer society conference on computer vision and pattern recognition workshops, ed. N. Ahuja and L. Shapiro, 1–8. Anchorage, AK: IEEE.
  • Suel, E., S. Bhatt, M. Brauer, S. Flaxman, and M. Ezzati. 2021. Multimodal deep learning from satellite and street-level imagery for measuring income, overcrowding, and environmental deprivation in urban areas. Remote Sensing of Environment 257:112339. doi: 10.1016/j.rse.2021.112339.
  • Suel, E., J. W. Polak, J. E. Bennett, and M. Ezzati. 2019. Measuring social, environmental and health inequalities using deep learning and street imagery. Scientific Reports 9 (1):6229. doi: 10.1038/s41598-019-42036-w.
  • Sun, M., C. Han, Q. Nie, J. Xu, F. Zhang, and Q. Zhao. 2022. Understanding building energy efficiency with administrative and emerging urban big data by deep learning in Glasgow. Energy and Buildings 273:112331. doi: 10.1016/j.enbuild.2022.112331.
  • Sun, M., F. Zhang, F. Duarte, and C. Ratti. 2022. Understanding architecture age and style through deep learning. Cities 128:103787. doi: 10.1016/j.cities.2022.103787.
  • Svoray, T., M. Dorman, G. Shahar, and I. Kloog. 2018. Demonstrating the effect of exposure to nature on happy facial expressions via Flickr data: Advantages of non-intrusive social network data analyses and geoinformatics methodologies. Journal of Environmental Psychology 58:93–100. doi: 10.1016/j.jenvp.2018.07.006.
  • Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, ed. H. Bischof, D. Forsyth, C. Schmid, and S. Sclaroff, 1–9. Boston, MA: IEEE.
  • Takano, T., K. Nakamura, and M. Watanabe. 2002. Urban residential environments and senior citizens’ longevity in megacity areas: The importance of walkable green spaces. Journal of Epidemiology and Community Health 56 (12):913–18. doi: 10.1136/jech.56.12.913.
  • Talen, E., and C. Ellis. 2002. Beyond relativism: Reclaiming the search for good city form. Journal of Planning Education and Research 22 (1):36–49. doi: 10.1177/0739456X0202200104.
  • Tanprasert, T., C. Siripanpornchana, N. Surasvadi, and S. Thajchayapong. 2020. Recognizing traffic black spots from street view images using environment-aware image processing and neural network. IEEE Access.8:121469–78. doi: 10.1109/ACCESS.2020.3006493.
  • Tuan, Y.-F. 1977. Space and place: The perspective of experience. Minneapolis: University of Minnesota Press.
  • Tuan, Y.-F. 1979. Landscapes of fear. Minneapolis: University of Minnesota Press.
  • Ulrich, R. S. 1984. View through a window may influence recovery from surgery. Science 224 (4647):420–21. doi: 10.1126/science.6143402.
  • Vargo, J., B. Stone, and K. Glanz. 2012. Google walkability: A new tool for local planning and public health research? Journal of Physical Activity & Health 9 (5):689–97. doi: 10.1123/jpah.9.5.689.
  • Verhoeven, H., L. Van Hecke, D. Van Dyck, T. Baert, N. Van de Weghe, P. Clarys, B. Deforche, and J. Van Cauwenberg. 2018. Differences in physical environmental characteristics between adolescents’ actual and shortest cycling routes: A study using a Google Street View-based audit. International Journal of Health Geographics 17 (1):16. doi: 10.1186/s12942-018-0136-x.
  • Villeneuve, P., R. Ysseldyk, A. Root, S. Ambrose, J. DiMuzio, N. Kumar, M. Shehata, M. Xi, E. Seed, X. Li, et al. 2018. Comparing the normalized difference vegetation index with the Google Street View measure of vegetation to assess associations between greenness, walkability, recreational physical activity, and health in Ottawa, Canada. International Journal of Environmental Research and Public Health 15 (8):1719. doi: 10.3390/ijerph15081719.
  • Wang, J., K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan, X. Wang, et al. 2020. Deep high-resolution representation learning for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 43 (10):3349–64. doi: 10.1109/TPAMI.2020.2983686.
  • Wang, M., and W. Deng. 2018. Deep visual domain adaptation: A survey. Neurocomputing 312:135–53. doi: 10.1016/j.neucom.2018.05.083.
  • Wang, R., M. Helbich, Y. Yao, J. Zhang, P. Liu, Y. Yuan, and Y. Liu. 2019. Urban greenery and mental wellbeing in adults: Cross-sectional mediation analyses on multiple pathways across different greenery measures. Environmental Research 176:108535. doi: 10.1016/j.envres.2019.108535.
  • Wang, R., Y. Lu, J. Zhang, P. Liu, Y. Yao, and Y. Liu. 2019. The relationship between visual enclosure for neighbourhood street walkability and elders’ mental health in China: Using street view images. Journal of Transport & Health 13:90–102. doi: 10.1016/j.jth.2019.02.009.
  • Wang, Z., Q. Liang, F. Duarte, F. Zhang, L. Charron, L. Johnsen, B. Cai, and C. Ratti. 2019. Quantifying legibility of indoor spaces using deep convolutional neural networks: Case studies in train stations. Building and Environment 160:106099. doi: 10.1016/j.buildenv.2019.04.035.
  • Warntz, W. 1989. Newton, the Newtonians, and the Geographia Generalis Varenii. Annals of the Association of American Geographers 79 (2):165–91. doi: 10.1111/j.1467-8306.1989.tb00257.x.
  • Whyte, W. H. 1980. The social life of small urban spaces. Columbia, MO: Public Spaces.
  • Wilson, W. H. 1964. City beautiful movement in Kansas City. Columbia: University of Missouri Press.
  • Wohlwill, J. F. 1976. Environmental aesthetics: The environment as a source of affect. In Human behavior and environment, ed. I. Altman and J. F. Wohlwill, 37–86. Berlin: Springer.
  • Wu, A. N., and F. Biljecki. 2022. GANmapper: Geographical data translation. International Journal of Geographical Information Science 36 (7):1394–1422. doi: 10.1080/13658816.2022.2041643.
  • Xiao, X., C. Fang, and H. Lin. 2020. Characterizing tourism destination image using photos’ visual content. ISPRS International Journal of Geo-Information 9 (12):730. doi: 10.3390/ijgi9120730.
  • Xu, Z., D. Tao, Y. Zhang, J. Wu, and A. C. Tsoi. 2014. Architectural style classification using multinomial latent logistic regression. In European conference on computer vision, ed. D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, 600–15. Berlin: Springer.
  • Yang, J., H. Rong, Y. Kang, F. Zhang, and A. Chegut. 2021. The financial impact of street-level greenery on New York commercial buildings. Landscape and Urban Planning 214:104162. doi: 10.1016/j.landurbplan.2021.104162.
  • Yao, Y., J. Zhang, C. Qian, Y. Wang, S. Ren, Z. Yuan, and Q. Guan. 2021. Delineating urban job–housing patterns at a parcel scale with street view imagery. International Journal of Geographical Information Science 35 (10):1927–50. doi: 10.1080/13658816.2021.1895170.
  • Ye, C., F. Zhang, L. Mu, Y. Gao, and Y. Liu. 2020. Urban function recognition by integrating social media and street-level imagery. Environment and Planning B: Urban Analytics and City Science 48 (6):1430–44. doi: 10.1177/2399808320935467.
  • Yin, L., and Z. Wang. 2016. Measuring visual enclosure for street walkability: Using machine learning algorithms and Google Street View imagery. Applied Geography 76:147–53. doi: 10.1016/j.apgeog.2016.09.024.
  • Yuan, J., Y. Zheng, and X. Xie. 2012. Discovering regions of different functions in a city using human mobility and POIs. In Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, 186–94. Beijing: ACM. doi: 10.1145/2339530.2339561.
  • Zhang, F., F. Duarte, R. Ma, D. Milioris, H. Lin, and C. Ratti. 2016. Indoor space recognition using deep convolutional neural network: A case study at MIT campus. arXiv preprint arXiv:1610.02414.
  • Zhang, F., Z. Fan, Y. Kang, Y. Hu, and C. Ratti. 2021. “Perception bias”: Deciphering a mismatch between urban crime and perception of safety. Landscape and Urban Planning 207:104003. doi: 10.1016/j.landurbplan.2020.104003.
  • Zhang, F., L. Wu, D. Zhu, and Y. Liu. 2019. Social sensing from street-level imagery: A case study in learning spatio-temporal urban mobility patterns. ISPRS Journal of Photogrammetry and Remote Sensing 153:48–58. doi: 10.1016/j.isprsjprs.2019.04.017.
  • Zhang, F., D. Zhang, Y. Liu, and H. Lin. 2018. Representing place locales using scene elements. Computers, Environment and Urban Systems 71:153–64. doi: 10.1016/j.compenvurbsys.2018.05.005.
  • Zhang, F., B. Zhou, L. Liu, Y. Liu, H. H. Fung, H. Lin, and C. Ratti. 2018. Measuring human perceptions of a large-scale urban region using machine learning. Landscape and Urban Planning 180:148–60. doi: 10.1016/j.landurbplan.2018.08.020.
  • Zhang, F., B. Zhou, C. Ratti, and Y. Liu. 2019. Discovering place-informative scenes and objects using social media photos. Royal Society Open Science 6 (3):181375. doi: 10.1098/rsos.181375.
  • Zhang, F., J. Zu, M. Hu, D. Zhu, Y. Kang, S. Gao, Y. Zhang, and Z. Huang. 2020. Uncovering inconspicuous places using social media check-ins and street view images. Computers, Environment and Urban Systems 81:101478. doi: 10.1016/j.compenvurbsys.2020.101478.
  • Zhang, K., M. Chen, Y. Yang, T. Zhong, R. Zhu, F. Zhang, Z. Qian, G. Lü, and J. Yan. 2022. Quantifying the photovoltaic potential of highways in China. Applied Energy 324:119600. doi: 10.1016/j.apenergy.2022.119600.
  • Zhang, L., T. Pei, X. Wang, M. Wu, C. Song, S. Guo, and Y. Chen. 2020. Quantifying the urban visual perception of Chinese traditional-style building with street view images. Applied Sciences 10 (17):5963. doi: 10.3390/app10175963.
  • Zhao, B., S. Zhang, C. Xu, Y. Sun, and C. Deng. 2021. Deep fake geography? When geospatial data encounter artificial intelligence. Cartography and Geographic Information Science 48 (4):338–52. doi: 10.1080/15230406.2021.1910075.
  • Zhao, H., J. Shi, X. Qi, X. Wang, and J. Jia. 2017. Pyramid scene parsing network. In Proceedings of IEEE conference on computer vision and pattern recognition, ed. R. Chellappa, Z. Zhang, and A. Hoogs, 2881–90. Honolulu, HI: IEEE.
  • Zhao, T., X. Liang, W. Tu, Z. Huang, and F. Biljecki. 2023. Sensing urban soundscapes from street view imagery. Computers, Environment and Urban Systems 99:101915. doi: 10.1016/j.compenvurbsys.2022.101915.
  • Zhou, B., A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. 2017. Places: A 10 million image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (6):1452–64. doi: 10.1109/TPAMI.2017.2723009.
  • Zhou, B., H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. 2017. Scene parsing through ADE20K dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition, 5122–30.
  • Zhou, B., H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba. 2019. Semantic understanding of scenes through the ADE20K dataset. International Journal of Computer Vision 127 (3):302–21. doi: 10.1007/s11263-018-1140-0.
  • Zhou, H., L. Liu, M. Lan, W. Zhu, G. Song, F. Jing, Y. Zhong, Z. Su, and X. Gu. 2021. Using Google Street View imagery to capture micro built environment characteristics in drug places, compared with street robbery. Computers, Environment and Urban Systems 88:101631. doi: 10.1016/j.compenvurbsys.2021.101631.
  • Zhu, D., F. Zhang, S. Wang, Y. Wang, X. Cheng, Z. Huang, and Y. Liu. 2020. Understanding place characteristics in geographic contexts through graph convolutional neural networks. Annals of the American Association of Geographers 110 (2):408–20. doi: 10.1080/24694452.2019.1694403.
  • Zou, S., and L. Wang. 2021. Detecting individual abandoned houses from Google Street View: A hierarchical deep learning approach. ISPRS Journal of Photogrammetry and Remote Sensing 175:298–310. doi: 10.1016/j.isprsjprs.2021.03.020.
  • Zünd, D., and L. M. A. Bettencourt. 2021. Street view imaging for automated assessments of urban infrastructure and services. In Urban informatics, ed. W. Shi, M. F. Goodchild, M. Batty, M.-P. Kwan, and A. Zhang. Singapore: Springer.