142
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The influence of channel morphology and hydraulic complexity on larval pallid sturgeon (Scaphirhynchus albus) drift and dispersal dynamics in the Fort Peck Segment, Upper Missouri River: insights from particle tracking simulations

Received 24 Jul 2023, Accepted 24 Jan 2024, Published online: 20 Apr 2024

References

  • Braaten P, Fuller D, Lott R, Ruggles M, Brandt T, Legare R, Holm R. 2012. An experimental test and models of drift and dispersal processes of pallid sturgeon (Scaphirhynchus albus) free embryos in the Missouri River. Environ Biol Fish. 93(3):377–392. doi: 10.1007/s10641-011-9925-9.
  • Braaten PJ, Campana SE, Fuller DB, Lott RD, Bruch RM, Jordan GR. 2015. Age estimations of wild pallid sturgeon (Scaphirhynchus albus, Forbes & Richardson 1905) based on pectoral fin spines, otoliths and bomb radiocarbon: inferences on recruitment in the dam-fragmented Missouri River. J Appl Ichthyol. 31(5):821–829. doi: 10.1111/jai.12873.
  • Braaten PJ, Fuller DB, Holte LD, Lott RD, Viste W, Brandt TF, Legare RG. 2008. Drift dynamics of larval pallid sturgeon and shovelnose sturgeon in a natural side channel of the Upper Missouri River, Montana. N American J Fish Manag. 28(3):808–826. doi: 10.1577/M06-285.1.
  • Braaten PJ, Fuller DB, Lott RD, Ruggles MP, Holm RJ. 2010. Spatial distribution of drifting pallid sturgeon larvae in the Missouri River inferred from two net designs and multiple sampling locations. N American J Fish Manag. 30(4):1062–1074. doi: 10.1577/M09-149.1.
  • Braaten PJ, Holley C. 2021. Pallid sturgeon free embryo drift and dispersal experiment data from the Upper Missouri River, Montana and North Dakota, 2019: U.S. Geological Survey Data Release. doi: 10.5066/P9N2MFV8.
  • Braaten PJ, Holm RJ, Powell J, Heist EJ, Buhman AC, Holley CT, Delonay AJ, Haddix TM, Wilson RH, Jacobson RB. 2022. Growth and survival rates of dispersing free embryos and settled larvae of pallid sturgeon (Scaphirhynchus albus) in the Missouri River, Montana and North Dakota. Environ Biol Fish. 105(8):993–1014. doi: 10.1007/s10641-022-01294-w.
  • Call BC, Erwin SO, Bulliner EA. 2024. Supporting files for particle tracking simulations of the Upper Missouri River near Wolf Point, MT. U.S. Geological Survey data. doi: 10.5066/P975PH68.
  • Chojnacki KA, Dodson MJ, George AE, Candrl JS, Delonay AJ. 2022. Ontogenetic development of pallid sturgeon (Scaphirhynchus albus) and shovelnose sturgeon (Scaphirhynchus platorynchus) from hatch through yolk absorption. Ecol Freshwater Fish. 32(1):209–231. doi: 10.1111/eff.12680.
  • Chojnacki KA, Erwin SO, George AE, Candrl JS, Jacobson RB, Delonay AJ. 2020. Physical characteristics and simulated transport of pallid sturgeon and shovelnose sturgeon eggs. J Freshwater Ecol. 35(1):73–94. doi: 10.1080/02705060.2020.1736191.
  • Coutant CC. 2004. A riparian habitat hypothesis for successful reproduction of white sturgeon. Rev Fish Sci. 12(1):23–73. (doi: 10.1080/10641260490273023.
  • Delonay AJ, Chojnacki KA, Jacobson RB, Albers JL, Braaten PJ, Bulliner EA, Elliott CM, Erwin SO, Fuller DB, Haas JD, et al. 2016. Ecological requirements for pallid sturgeon reproduction and recruitment in the Missouri River: a synthesis of science, 2005-2012. U.S. Geological Survey Scientific Investigations Report 2015–5145. 224. doi: 10.3133/sir20155145.
  • Elliott CM, Delonay AJ, Chojnacki KA, Jacobson RB. 2020. Characterization of Pallid Sturgeon (Scaphirhynchus albus) spawning habitat in the Lower Missouri River. J Appl Ichthyol. 36(1):25–38. doi: 10.1111/jai.13994.
  • Erwin SO, Bulliner EA, Fischenich C, Jacobson RB, Braaten PJ, Delonay AJ. 2018. Evaluating flow management as a strategy to recover an endangered sturgeon species in the Upper Missouri River, USA. River Res Apps. 34(10):1254–1266. doi: 10.1002/rra.3371.
  • Erwin SO, Jacobson RB. 2014. Influence of channel morphology and flow regime on larval drift of pallid sturgeon on the Lower Missouri River. River Res Apps. 31(5):538–551. doi: 10.1002/rra.2752.
  • Fischenich JC, Mccomas R, Meier D, Tripe J, Pridal D, Boyd P, Gibson S, Hickey J, Econopouly T, Strong L. 2018. Habitat analyses for the Missouri River effects analysis. 176 pages. https://usace.contentdm.oclc.org/utils/getfile/collection/p16021coll7/id/8074.
  • Fischenich JC, Reynolds SA, Halteman P. 2021. Fort Peck EIS Alternative effects on pallid sturgeon: Model documentation and study report. 280 pages. https://usace.contentdm.oclc.org/utils/getfile/collection/p16021coll7/id/8074.
  • Fischer HB, List EJ, Koh RCY, Imberger J, Brooks NH. 1979. Mixing in Inland and Coastal Waters. New York (NY): Academic.
  • Fischer HB. 1973. Longitudinal dispersion and turbulent mixing in open channel flow. Annu Rev Fluid Mech. 5(1):59–78. doi: 10.1146/annurev.fl.05.010173.000423.
  • Galat DL, Berry CR, Jr., Peters EJ, White RG. 2005. Missouri River Basin. In: Benke AC, Cushing CE, editors. Rivers of North America. Oxford: Elsevier.
  • Garcia T, Jackson PR, Murphy EA, Valocchi AJ, Garcia MH. 2013. Development of a Fluvial Egg Drift Simulator to evaluate the transport and dispersion of Asian carp eggs in rivers. Ecol Modell. 263:211–222. doi: 10.1016/j.ecolmodel.2013.05.005.
  • Garcia T, Murphy EA, Jackson PR, Garcia MH. 2015. Application of the FluEgg model to predict transport of Asian carp eggs in the Saint Joseph River (Great Lakes tributary). J Great Lakes Res. 41(2):374–386. doi: 10.1016/j.jglr.2015.02.003.
  • Guy CS, Treanor HB, Kappenman KM, Scholl EA, Ilgen JE, Webb M. 2015. Broadening the regulated-river management paradigm: a case study of the forgotten dead zone hindering pallid sturgeon recovery. Fisheries. 40(1):6–14. doi: 10.1080/03632415.2014.987236.
  • Humphries P, King A, Mccasker N, Kopf RK, Stoffels R, Zampatti B, Price A. 2019. Riverscape recruitment: a conceptual synthesis of drivers of fish recruitment in rivers. Can J Fish Aquat Sci. 77(2):213–225. doi: 10.1139/cjfas-2018-0138.
  • Jacobson RB, Elliott CM, Bulliner EA. 2023a. Geomorphic classification framework for assessing reproductive ecology of Scaphirhynchus albus (pallid sturgeon), Fort Peck segment, Upper Missouri River, Montana and North Dakota. Scientific Investigations Report 2023-5109. 15 pages. doi: 10.3133/sir20235109.
  • Jacobson RB, Elliott CM, Bulliner EA. 2023b. Geomorphic variables for classification of the Upper Missouri River, Montana and North Dakota. U.S. Geological Survey data. doi: 10.5066/P92HVKT3.
  • Jacobson RB, Elliott CM, Huhmann BL. 2010. Development of a channel classification to evaluate potential for cottonwood restoration, lower segments of the Middle Missouri River, South Dakota and Nebraska. Scientific Investigations Report 2010-5208. Scientific Investigations Report 2010-5208. 38 pages. doi: 10.3133/sir20105208.
  • Jordan GR, Heist EJ, Braaten PJ, Delonay AJ, Hartfield P, Herzog DP, Kappenman KM, Webb M. 2016. Status of knowledge of the pallid sturgeon (Scaphirhynchus albus Forbes and Richardson, 1905). J Appl Ichthyol. 32(Suppl. S1):191–207. doi: 10.1111/jai.13239.
  • Kynard B, Henyey E, Horgan M. 2002. Ontogenetic behaviour, migration, and social behaviour of pallid sturgeon (Scaphirhynchus albus) and shovelnose sturgeon (S. platorynchus) with notes on the adaptive significance of body color. Environ Biol Fish. 63(4):389–403. doi: 10.1023/A:1014950202783.
  • Lechner A, Keckeis H, Humphries P. 2016. Patterns and processes in the drift of early developmental stages of fish in rivers: a review. Rev Fish Biol Fisheries. 26(3):471–489. doi: 10.1007/s11160-016-9437-y.
  • Lechner A, Keckeis H, Schludermann E, Humphries P, Mccasker N, Tritthart M. 2014. Hydraulic forces impact larval fish drift in the free flowing section of a large European river. Ecohydrology. 7(2):648–658. doi: 10.1002/eco.1386.
  • Li G, Elliott CM, Call BC, Chapman DC, Jacobson RB, Wang B. 2023. Evaluations of Lagrangian egg drift models: from a laboratory flume to large channelized rivers. Ecol Modell. 475:110200. doi: 10.1016/j.ecolmodel.2022.110200.
  • Li G, Wang B, Elliott CM, Call BC, Chapman DC, Jacobson RB. 2022. A three-dimensional Lagrangian particle tracking model for predicting transport of eggs of rheophilic-spawning carps in turbulent rivers. Ecol Modell. 470:110035. doi: 10.1016/j.ecolmodel.2022.110035.
  • Marotz BL, Lorang MS. 2018. Pallid sturgeon larvae: the drift dispersion hypothesis. J Appl Ichthyol. 34(2):373–381. doi: 10.1111/jai.13569.
  • Mccasker N, Humphries P, Meredith S, Klomp N. 2014. Contrasting patterns of larval mortality in two sympatric riverine fish species: a test of the critical period hypothesis. PLoS One. 9(10):e109317. doi: 10.1371/journal.pone.0109317.
  • Mcdonald R, Nelson JM. 2020. A Lagrangian particle-tracking approach to modelling larval drift in rivers. J Ecohydraul. 6(1):17–35. doi: 10.1080/24705357.2019.1709102.
  • Mcdonald RR, Prescott AB, Foks NL. 2020. fluvial-particle. doi: 10.5066/P9K1U4O0.
  • Mion JB, Stein RA, Marschall EA. 1998. River discharge drives survival of larval walleye. Ecol Appl. 8(1):88–103. doi: 10.1890/1051-0761(1998)008[0088:RDDSOL]2.0.CO;2.
  • Mrnak J. 2019. Effect of water velocity and temperature on energy use, behavior, and mortality of pallid sturgeon Scaphirhynchus albus larvae. Master of Science in Wildlife and Fisheries Sciences, South Dakota State University. https://openprairie.sdstate.edu/cgi/viewcontent.cgi?article=4296&context=etd.
  • Mrnak JT, Heironimus LB, James DA, Chipps SR. 2020. Effect of water velocity and temperature on energy use, behaviour and mortality of pallid sturgeon Scaphirhynchus albus larvae. J Fish Biol. 97(6):1690–1700. doi: 10.1111/jfb.14532.
  • Nelson JM, Mcdonald RR. 1997. Mechanics and modeling of flow and bed evolution in lateral separation eddies. Glen Canyon Environmental Studies Report. 68 pages. http://www.riversimulator.org/Resources/GCMRC/PhysicalResources/Nelson1996.pdf.
  • Nelson JM, Shimizu Y, Abe T, Asahi K, Gamou M, Inoue T, Iwasaki T, Kakinuma T, Kawamura K, Kimura I, et al. 2016. The international river interface cooperative: public domain flow and morphodynamics software for education and applications. Adv Water Resour. 93(July 2016):62–74. doi: 10.1016/j.advwatres.2015.09.017.
  • Parsons DR, Jackson PR, Czuba JA, Engel FL, Rhoads BL, Oberg KA, Best JL, Mueller DS, Johnson KK, Riley JD. 2013. Velocity Mapping Toolbox (VMT): a processing and visualization suite for moving-vessel ADCP measurements. Earth Surf Processes Landf. 38(11):1244–1260. doi: 10.1002/esp.3367.
  • Python Core Team. 2018. Python: A dynamic, open source programming language. 3.6.5 ed. Beaverton (OR): Python Software Foundation.
  • U.S. Army Corps of Engineers. 2015. Missouri River Recovery Program Managment Plan Environmental Impact Statement Existing Conditions Unsteady HEC-RAS Model Calibration Report. 598 pages. https://usace.contentdm.oclc.org/digital/collection/p16021coll7/id/3067/.
  • U.S. Army Corps of Engineers. 2021. Fort Peck Dam Test Release Final Environmental Impact Statement. 608 pages. https://usace.contentdm.oclc.org/digital/collection/p16021coll7/id/19203/rec/76.
  • U.S. Geological Survey. 2021. USGS ImageryOnly Base Map. https://apps.nationalmap.gov/services/.
  • U.S. Geological Survey. 2022. National Water Information System data available on the World Wide Web (USGS Water Data for the Nation). doi: 10.5066/F7P55KJN.
  • United States Department of Agriculture. 2019. National Agricultural Imagery Program. doi: 10.5066/F7QN651G.