14
Views
0
CrossRef citations to date
0
Altmetric
Research Article

FedPAR: Federated PARAFAC2 tensor factorization for computational phenotyping

&

References

  • Acar, D. A. E., Zhao, Y., Navarro, R. M., Mattina, M., Whatmough, P. N., & Saligrama, V. (2021). Federated learning based on dynamic regularization. arXiv Preprint arXiv:2111.04263.
  • Afshar, A., Perros, I., Papalexakis, E. E., Searles, E., Ho, J., & Sun, J. (2018). COPA: Constrained parafac2 for sparse & large datasets [Paper presentation]. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (pp. 793–802). https://doi.org/10.1145/3269206.3271775
  • Afshar, A., Perros, I., Park, H., Defilippi, C., Yan, X., Stewart, W., … Sun, J. (2020). TASTE: Temporal and static tensor factorization for phenotyping electronic health records. In Proceedings of the ACM Conference on Health, Inference, and Learning (pp. 193–203.).
  • Ayala Solares, J. R., Diletta Raimondi, F. E., Zhu, Y., Rahimian, F., Canoy, D., Tran, J., Pinho Gomes, A. C., Payberah, A. H., Zottoli, M., Nazarzadeh, M., Conrad, N., Rahimi, K., … Salimi-Khorshidi, G, Others. (2020). Deep learning for electronic health records: A comparative review of multiple deep neural architectures. Journal of Biomedical Informatics, 101, 103337. https://doi.org/10.1016/j.jbi.2019.103337
  • Banda, J. M., Seneviratne, M., Hernandez-Boussard, T., & Shah, N. H. (2018). Advances in electronic phenotyping: From rule-based definitions to machine learning models. Annual Review of Biomedical Data Science, 1(1), 53–68. https://doi.org/10.1146/annurev-biodatasci-080917-013315
  • Becker, F., Smilde, A. K., & Acar, E. (2023). Unsupervised EHR-based phenotyping via matrix and tensor decompositions. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(4), e1494.
  • Che, Z., Kale, D., Li, W., Bahadori, M. T., & Liu, Y. (2015). Deep computational phenotyping. Proceedings of [Paper presentation].The 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (pp. 507–516). https://doi.org/10.1145/2783258.2783365
  • Di, H., Yang, Y., Ye, H., & Chang, X. (2023). PPFL: A personalized federated learning framework for heterogeneous population. arXiv Preprint arXiv:2310.14337.
  • Feng, J., Zhu, X., Wang, F., Huang, S., & Chen, C. (2020). A learning framework for personalized random utility maximization (RUM) modeling of user behavior. IEEE Transactions on Automation Science and Engineering: A Publication of the IEEE Robotics and Automation Society, 19(1), 510–521. https://doi.org/10.1109/tase.2020.3041411
  • Harshman, R. A., et al. (1972). Parafac2: Mathematical and technical notes. UCLA Working Papers in Phonetics, 22(3044), 122215.
  • Ho, J. C., Ghosh, J., Steinhubl, S. R., Stewart, W. F., Denny, J. C., Malin, B. A., & Sun, J. (2014). Limestone: High-throughput candidate phenotype generation via tensor factorization. Journal of Biomedical Informatics, 52, 199–211. https://doi.org/10.1016/j.jbi.2014.07.001
  • Ho, J. C., Ghosh, J., & Sun, J. (2014). Marble: High-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 115–124.).
  • Johnson, A. E. W., Pollard, T. J., Shen, L., Lehman, L.-W H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A., & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific Data, 3(1), 160035. https://doi.org/10.1038/sdata.2016.35
  • Kim, Y., El-Kareh, R., Sun, J., Yu, H., & Jiang, X. (2017). Discriminative and distinct phenotyping by constrained tensor factorization. Scientific Reports, 7(1), 1114. https://doi.org/10.1038/s41598-017-01139-y
  • Kim, Y., Sun, J., Yu, H., & Jiang, X. (2017). Federated tensor factorization for computational phenotyping [Paper presentation]. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 887–895). https://doi.org/10.1145/3097983.3098118
  • Kontar R., Shi N., Yue X., Chung S., Byon E., Chowdhury M., Jin J., Kontar W., Masoud N., Noueihed M., Okwudire C. E., Raskutti G., Saigal R., Singh K., Ye Z. (2021). The internet of federated things (IoFT). IEEE Access 9, 156071–156113.
  • Konyar, E., & Reisi Gahrooei, M. (2024). Federated generalized scalar-on-tensor regression. Journal of Quality Technology, 56(1), 20–37.
  • Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60. https://doi.org/10.1109/MSP.2020.2975749
  • Lin, Y., Liu, K., Byon, E., Qian, X., Liu, S., & Huang, S. (2018). A collaborative learning framework for estimating many individualized regression models in a heterogeneous population. IEEE Transactions on Reliability, 67(1), 328–341. https://doi.org/10.1109/TR.2017.2767941
  • Ma, J., Zhang, Q., Lou, J., Ho, J. C., Xiong, L., & Jiang, X. (2019). Privacy-preserving tensor factorization for collaborative health data analysis [Paper presentation]. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 1291–1300). https://doi.org/10.1145/3357384.3357878
  • Ma, J., Zhang, Q., Lou, J., Xiong, L., & Ho, J. C. (2021). Communication efficient federated generalized tensor factorization for collaborative health data analytics [Paper presentation]. In Proceedings of the Web Conference 2021 (pp. 171–182). https://doi.org/10.1145/3442381.3449832
  • McMahan, B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. (2017). Communication-efficient learning of deep networks from decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017 (Vol. 54), Fort Lauderdale, Florida, USA. JMLR, W&CP.
  • Palau, A. S., Dhada, M. H., Bakliwal, K., & Parlikad, A. K. (2019). An industrial multi-agent system for real-time distributed collaborative prognostics. Engineering Applications of Artificial Intelligence, 85, 590–606. https://doi.org/10.1016/j.engappai.2019.07.013
  • Perros, I., Papalexakis, E. E., Wang, F., Vuduc, R., Searles, E., Thompson, M., & Sun, J. (2017). SPARTan: Scalable PARAFAC2 for large & sparse data. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 375–384.).
  • Pikoula, M., Quint, J. K., Nissen, F., Hemingway, H., Smeeth, L., & Denaxas, S. (2019). Identifying clinically important copd sub-types using data-driven approaches in primary care population based electronic health records. BMC Medical Informatics and Decision Making, 19(1), 86. https://doi.org/10.1186/s12911-019-0805-0
  • Ren, Y., Lou, J., Xiong, L., & Ho, J. C. (2020). Robust irregular tensor factorization and completion for temporal health data analysis [Paper presentation]. Proceedings of [Paper presentation].The 29th ACM International Conference on Information & Knowledge Management. (pp. 1295–1304). https://doi.org/10.1145/3340531.3411982
  • Ren, Y., Lou, J., Xiong, L., Ho, J. C., Jiang, X., & Bhavani, S. (2022). MULTIPAR: Supervised irregular tensor factorization with multi-task learning. arXiv Preprint arXiv:2208.00993.
  • Schönemann, P. H. (1966). A generalized solution of the orthogonal procrustes problem. Psychometrika, 31(1), 1–10. https://doi.org/10.1007/BF02289451
  • Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2017). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589–1604. https://doi.org/10.1109/JBHI.2017.2767063
  • Solares, J. R. A., Raimondi, F. E. D., Zhu, Y., Rahimian, F., Canoy, D., Tran, J., … & Salimi-Khorshidi, G. (2020). Deep learning for electronic health records: A comparative review of multiple deep neural architectures. Journal of biomedical informatics, 101, 103337.
  • Wang, Y., Chen, R., Ghosh, J., Denny, J. C., Kho, A., Chen, Y., … Sun, J. (2015). Rubik: Knowledge guided tensor factorization and completion for health data analytics [Paper presentation]. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1265–1274). https://doi.org/10.1145/2783258.2783395
  • Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology, 10(2), 1–19. https://doi.org/10.1145/3298981
  • Yin, K., Afshar, A., Ho, J. C., Cheung, W. K., Zhang, C., & Sun, J. (2020). LogPar: Logistic PARAFAC2 factorization for temporal binary data with missing values [Paper presentation]. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (pp. 1625–1635). https://doi.org/10.1145/3394486.3403213
  • Yin, K., Cheung, W. K., Fung, B. C., & Poon, J. (2021). TedPar: Temporally dependent PARAFAC2 factorization for phenotype-based disease progression modeling. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM) (pp. 594–602).
  • Zhang, C., Fanaee-T, H., & Thoresen, M. (2021). Feature extraction from unequal length heterogeneous ehr time series via dynamic time warping and tensor decomposition. Data Mining and Knowledge Discovery, 35(4), 1760–1784. https://doi.org/10.1007/s10618-020-00724-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.