104
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigating the Use of Changes in Facial Features as Indicators of Physical Workload

ORCID Icon & ORCID Icon
Pages 48-58 | Received 14 Aug 2022, Accepted 19 Jun 2023, Published online: 16 Jul 2023

References

  • Asadi, H., Zhou, G., Lee, J. J., Aggarwal, V., & Yu, D. (2020). A computer vision approach for classifying isometric grip force exertion levels. Ergonomics, 63(8), 1010–1026. https://doi.org/10.1080/00140139.2020.1745898
  • Balasubramanian, V., Adalarasu, K., & Regulapati, R. (2009). Comparing dynamic and stationary standing postures in an assembly task. International Journal of Industrial Ergonomics, 39(5), 649–654. https://doi.org/10.1016/j.ergon.2008.10.017
  • Borg, G. (1998). Borg’s perceived exertion and pain scales. Human Kinetics.
  • Bosch, T., Mathiassen, S. E., Visser, B., Looze, M. D., & Dieën, J. V. (2011). The effect of work pace on workload, motor variability and fatigue during simulated light assembly work. Ergonomics, 54(2), 154–168. https://doi.org/10.1080/00140139.2010.538723
  • Burghardt, G. M., Bartmess‐LeVasseur, J. N., Browning, S. A., Morrison, K. E., Stec, C. L., Zachau, C. E., & Freeberg, T. M. (2012). Perspectives–minimizing observer bias in behavioral studies: A review and recommendations. Ethology, 118(6), 511–517. https://doi.org/10.1111/j.1439-0310.2012.02040.x
  • Chen, Y. L., Chiou, W. K., Tzeng, Y. T., Lu, C. Y., & Chen, S. C. (2017). A rating of perceived exertion scale using facial expressions for conveying exercise intensity for children and young adults. Journal of Science and Medicine in Sport, 20(1), 66–69. https://doi.org/10.1016/j.jsams.2016.05.009
  • De Morree, H. M., & Marcora, S. M. (2010). The face of effort: Frowning muscle activity reflects effort during a physical task. Biological Psychology, 85(3), 377–382. https://doi.org/10.1016/j.biopsycho.2010.08.009
  • Håkansson, M. (2019). [Lean Transformation of Industrial Work: Understanding What Supports Socially Sustainable Working Conditions During Lean Manufacturing]. [Doctoral dissertation]. KTH Royal Institute of Technology)
  • Hansson, G.-Å., Balogh, I., Ohlsson, K., Granqvist, L., Nordander, C., Arvidsson, I., Åkesson, I., Unge, J., Rittner, R., Strömberg, U., & Skerfving, S. (2009). Physical workload in various types of work: Part I. Wrist and forearm. International Journal of Industrial Ergonomics, 39(1), 221–233. https://doi.org/10.1016/j.ergon.2008.04.003
  • Haque, M. A., Irani, R., Nasrollahi, K., & Moeslund, T. B. (2016). Facial video‐based detection of physical fatigue for maximal muscle activity. IET Computer Vision, 10(4), 323–330. https://doi.org/10.1049/iet-cvi.2015.0215
  • Harju, J., Tarniceriu, A., Parak, J., Vehkaoja, A., Yli-Hankala, A., & Korhonen, I. (2018). Monitoring of heart rate and inter-beat intervals with wrist plethysmography in patients with atrial fibrillation. Physiological Measurement, 39(6), 065007. https://doi.org/10.1088/1361-6579/aac9a9
  • Huang, D. H., Chou, S. W., Chen, Y. L., & Chiou, W. K. (2014). Frowning and jaw clenching muscle activity reflects the perception of effort during incremental workload cycling. Journal of Sports Science & Medicine, 13(4), 921.
  • Hwang, I. S., Chen, Y. C., & Wu, P. S. (2009). Differential load impact upon arm tremor dynamics and coordinative strategy between postural holding and position tracking. European Journal of Applied Physiology, 105(6), 945–957. https://doi.org/10.1007/s00421-009-0981-1
  • Hwang, S., Seo, J., Jebelli, H., & Lee, S. (2016). Feasibility analysis of heart rate monitoring of construction workers using a photoplethysmography (PPG) sensor embedded in a wristband-type activity tracker. Automation in Construction, 71, 372–381. https://doi.org/10.1016/j.autcon.2016.08.029
  • Hwang, S., & Lee, S. (2017). Wristband-type wearable health devices to measure construction workers’ physical demands. Automation in Construction, 83, 330–340. https://doi.org/10.1016/j.autcon.2017.06.003
  • Jaric, S. (2002). Muscle strength testing: Use of normalisation for body size. Sports Medicine (Auckland, N.Z.), 32(10), 615–631. https://doi.org/10.2165/00007256-200232100-00002
  • Khanal, S. R., Barroso, J., Sampaio, J., & Filipe, V. (2018)., February). Classification of physical exercise intensity by using facial expression analysis [Paper presentation].2018 Second International Conference on Computing Methodologies and Communication (ICCMC), In (pp. 765–770). IEEE. https://doi.org/10.1109/ICCMC.20180.8488080
  • Khanal, S. R., Fonseca, A., Marques, A., Barroso, J., & Filipe, V. (2018, June). Physical exercise intensity monitoring through eye-blink and mouth’s shape analysis [Paper presentation].2018 2nd International Conference on Technology and Innovation in Sports, Health and Wellbeing (TISHW) (, pp. 1, In -5). IEEE. https://doi.org/10.1109/TISHW.2018.8559556
  • Lee, H., Lee, J., & Shin, M. (2019). Using wearable ECG/PPG sensors for driver drowsiness detection based on distinguishable pattern of recurrence plots. Electronics, 8(2), 192. https://doi.org/10.3390/electronics8020192
  • Lee, S. C., Cha, M. C., Hwangbo, H., Mo, S., & Ji, Y. G. (2018). Smartphone form factors: Effects of width and bottom bezel on touch performance, workload, and physical demand. Applied Ergonomics, 67, 142–150. https://doi.org/10.1016/j.apergo.2017.10.002
  • Lee, T. H. (2016). Endurance time, muscular activity and the hand/arm tremor for different exertion forces of holding. International Journal of Occupational Safety and Ergonomics : JOSE, 22(1), 71–76. https://doi.org/10.1080/10803548.2015.1117781
  • Li, X., Gül, M., & Al-Hussein, M. (2019). An improved physical demand analysis framework based on ergonomic risk assessment tools for the manufacturing industry. International Journal of Industrial Ergonomics, 70, 58–69. https://doi.org/10.1016/j.ergon.2019.01.004
  • Lutz, T. J., Starr, H., Smith, C. A., Stewart, A. M., Monroe, M. J., Joines, S. M., & Mirka, G. A. (2001). The use of mirrors during an assembly task: A study of ergonomics and productivity. Ergonomics, 44(2), 215–228. https://doi.org/10.1080/00140130120518
  • Ma, C. C., Gu, J. K., Charles, L. E., Andrew, M. E., Dong, R. G., & Burchfiel, C. M. (2018). Work-related upper extremity musculoskeletal disorders in the United States: 2006, 2009, and 2014 National Health Interview Survey. Work (Reading, Mass.), 60(4), 623–634. https://doi.org/10.3233/WOR-182770
  • MacKay, D. M. (1963). Psychophysics of perceived intensity: A theoretical basis for Fechner’s and Stevens’ laws. Science, 139(3560), 1213–1216. https://doi.org/10.1126/science.139.3560.1213.b
  • Madgwick, S. O., Harrison, A. J., & Vaidyanathan, R. (2011, June) Estimation of IMU and MARG orientation using a gradient descent algorithm. In 2011 IEEE International Conference on Rehabilitation Robotics (pp. 1–7.) Ieee
  • Maman, Z. S., Yazdi, M. A. A., Cavuoto, L. A., & Megahed, F. M. (2017). A data-driven approach to modeling physical fatigue in the workplace using wearable sensors. Applied Ergonomics, 65, 515–529. https://doi.org/10.1016/j.apergo.2017.02.001
  • Miles, K. H., Clark, B., Périard, J. D., Goecke, R., & Thompson, K. G. (2018). Facial feature tracking: A psychophysiological measure to assess exercise intensity? Journal of Sports Sciences, 36(8), 934–941. https://doi.org/10.1080/02640414.2017.1346275
  • Moore, J., & Garg, A. (1995). The strain index: A proposed method to analyze jobs for risk of distal upper extremity disorders. American Industrial Hygiene Association Journal, 56(5), 443–458. https://doi.org/10.1080/15428119591016863
  • Polat, O., Mutlu, Ö., & Özgormus, E. (2018). A mathematical model for assembly line balancing problem type 2 under ergonomic workload constraint. The Ergonomics Open Journal, 11(1), 1–10. https://doi.org/10.2174/1875934301811010001
  • Stegeman, D. F., Blok, J. H., Hermens, H. J., & Roeleveld, K. (2000). Surface EMG models: Properties and applications. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 10(5), 313–326. https://doi.org/10.1016/s1050-6411(00)00023-7
  • Stock, M. S., Olinghouse, K. D., Mota, J. A., Drusch, A. S., & Thompson, B. J. (2016). Muscle group specific changes in the electromechanical delay following short-term resistance training. Journal of Science and Medicine in Sport, 19(9), 761–765. https://doi.org/10.1016/j.jsams.2015.11.002
  • Timme, S., & Brand, R. (2020). Affect and exertion during incremental physical exercise: Examining changes using automated facial action analysis and experiential self-report. PLoS One, 15(2), e0228739. https://doi.org/10.1371/journal.pone.0228739
  • Uchida, M. C., Carvalho, R., Tessutti, V. D., Bacurau, R. F. P., Coelho-Júnior, H. J., Capelo, L. P., Ramos, H. P., Dos Santos, M. C., Teixeira, L. F. M., & Marchetti, P. H. (2018). Identification of muscle fatigue by tracking facial expressions. PloS One, 13(12), e0208834. https://doi.org/10.1371/journal.pone.0208834
  • Wang, H., Hwang, J., Lee, K. S., Kwag, J. S., Jang, J. S., & Jung, M. C. (2014). Upper body and finger posture evaluations at an electric iron assembly plant. Human Factors and Ergonomics in Manufacturing & Service Industries, 24(2), 161–171. https://doi.org/10.1002/hfm.20362
  • Yan, X., Raj, S., Huang, B., Park, S. Y., & Newman, M. W. (2020). Toward lightweight In-situ self-reporting: An exploratory study of alternative smartwatch interface designs in context. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(4), 1–22. https://doi.org/10.1145/3432212
  • Yu, Y., Li, H., Yang, X., & Umer, W. (2018). Estimating construction workers‘physical wokrload by fusing computer vision and smart insole technologies. In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction (Vol. 35, pp. 1–8). IAARC Publications.
  • Zadeh, A., Chong Lim, Y., Baltrusaitis, T., & Morency, L. P. (2017). Convolutional experts constrained local model for 3d facial landmark detection. In Proceedings of the IEEE International Conference on Computer Vision Workshops (pp. 2519–2528).
  • Zhai, J., & Barreto, A. (2006). Stress detection in computer users through non-invasive monitoring of physiological signals. Biomedical Sciences Instrumentation. 2006(42), 495–500.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.