210
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A Literature Review on Safety Perception and Trust during Human–Robot Interaction with Autonomous Mobile Robots That Apply to Industrial Environments

ORCID Icon & ORCID Icon
Pages 6-27 | Received 13 Apr 2023, Accepted 10 Nov 2023, Published online: 08 Jan 2024

References

  • Alves, C., Cardoso, A., Colim, A., Bicho, E., Braga, A. C., Cunha, J., Faria, C., & Rocha, L. A. (2022). Human–robot interaction in industrial settings: Perception of multiple participants at a crossroad intersection scenario with different courtesy cues. Robotics, 11(3), 59. https://doi.org/10.3390/robotics11030059
  • American National Standards Institute/Robotic Industries Association. (2020). American National Standard for industrial mobile robots - Safety requirements part 1: Requirements for the industrial mobile robot (ANSI/RIA R15.08-1-2020).
  • Angerer, S., Strassmair, C., Staehr, M., Roettenbacher, M., & Robertson, N. M. (2012). Give me a hand—The potential of mobile assistive robots in automotive logistics and assembly applications. In H. Greiner (Eds.), IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 111–116). IEEE. https://doi.org/10.1109/TePRA.2012.6215663
  • Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International Journal of Social Robotics, 1(1), 71–81. https://doi.org/10.1007/s12369-008-0001-3
  • Batista, M. R., Macharet, D. G., & Romero, R. A. F. (2020). Socially acceptable navigation of people with multi-robot teams. Journal of Intelligent & Robotic Systems, 98(2), 481–510. https://doi.org/10.1007/s10846-019-01080-4
  • Berx, N., Pintelon, L., & Decré, W. (2021). Psychosocial impact of collaborating with an autonomous mobile robot: Results of an exploratory case study. In C. Bethel & A. Paiva (Eds.), ACM/IEEE International Conference on Human-Robot Interaction (pp. 280–282). IEEE Computer Society. https://doi.org/10.1145/3434074.3447176
  • Bethel, C. L., Salomon, K., Murphy, R. R., & Burke, J. L. (2007). Survey of psychophysiology measurements applied to human-robot interaction. In RO-MAN 2007 - The 16th IEEE International Symposium on Robot and Human Interactive Communication (pp. 732–737). IEEE. https://doi.org/10.1109/ROMAN.2007.4415182
  • Bonarini, A. (2020). Communication in human-robot interaction. Current Robotics Reports, 1(4), 279–285. https://doi.org/10.1007/s43154-020-00026-1
  • Brandl, C., Mertens, A., & Schlick, C. M. (2016). Human-robot interaction in assisted personal services: Factors influencing distances that humans will accept between themselves and an approaching service robot. Human Factors and Ergonomics in Manufacturing & Service Industries, 26(6), 713–727. https://doi.org/10.1002/hfm.20675
  • Breazeal, C. (2003). Toward sociable robots. Robotics and Autonomous Systems, 42(3-4), 167–175. https://doi.org/10.1016/s0921-8890(02)00373-1
  • Brock, D., McClimens, B., Wasylyshyn, C., Trafton, J. G., & McCurry, M. (2010). Evaluating the utility of auditory perspective-taking in robot speech presentations. In S. Ystad, M. Aramaki, R. Kronland-Martinet, & K. Jensen (Eds.), Auditory Display. CMMR ICAD 2009 2009. Lecture Notes in Computer Science (Vol 5954, pp. 266–286). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-12439-6_14
  • Bunz, E., Chadalavada, R. T., Andreasson, H., Krug, R., Schindler, M., & Lilienthal, A. (2016, August 31). Spatial augmented reality and eye tracking for evaluating human robot interaction [Workshop]. RO-MAN 2016 Workshop: Workshop on Communicating Intentions in Human-Robot Interaction, New York, NY, USA.
  • Chadalavada, R. T., Andreasson, H., Krug, R., & Lilienthal, A. J. (2015). That’s on my mind! robot to human intention communication through on-board projection on shared floor space. In T. Duckett & A. Tapus (Eds.), 2015 European Conference on Mobile Robots (ECMR) (pp. 1–6). IEEE. https://doi.org/10.1109/ECMR.2015.7403771
  • Chadalavada, R. T., Andreasson, H., Schindler, M., Palm, R., & Lilienthal, A. J. (2020). Bi-directional navigation intent communication using spatial augmented reality and eye-tracking glasses for improved safety in human–robot interaction. Robotics and Computer-Integrated Manufacturing, 61, 101830. https://doi.org/10.1016/j.rcim.2019.101830
  • Chanseau, A., Dautenhahn, K., Koay, K. L., & Salem, M. (2016). Who is in charge? Sense of control and robot anxiety in human-robot interaction. In S.Y. Okita, B. Mutlu, & T. Shibata (Eds.), 25th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2016 (pp. 743–748). IEEE. https://doi.org/10.1109/ROMAN.2016.7745202
  • Che, Y., Culbertson, H., Tang, C. W., Aich, S., & Okamura, A. M. (2018). Facilitating human-mobile robot communication via haptic feedback and gesture teleoperation. ACM Transactions on Human-Robot Interaction, 7(3), 1–23. https://doi.org/10.1145/3243503
  • Che, Y., Okamura, A. M., & Sadigh, D. (2020). Efficient and trustworthy social navigation via explicit and implicit robot–human communication. IEEE Transactions on Robotics, 36(3), 692–707. https://doi.org/10.1109/TRO.2020.2964824
  • Che, Y., Sun, C. T., & Okamura, A. M. (2018). Avoiding human-robot collisions using haptic communication. In A. Zelinsky (Eds.), IEEE International Conference on Robotics and Automation (pp. 5828–5834). IEEE. https://doi.org/10.1109/ICRA.2018.8460946
  • Chen, Y., Yang, C., Gu, Y., & Hu, B. (2022). Influence of mobile robots on human safety perception and system productivity in wholesale and retail trade environments: A pilot study. IEEE Transactions on Human-Machine Systems, 52(4), 624–635. https://doi.org/10.1109/THMS.2021.3134553
  • Chen, Z., Jiang, C., & Guo, Y. (2018). Pedestrian-robot interaction experiments in an exit corridor. In P. Oh & F. Park (Eds.), 15th International Conference on Ubiquitous Robots (pp. 29–34). IEEE. https://doi.org/10.1109/URAI.2018.8441839
  • Chinthaka, P., Premachandra, C., & Amarakeerthi, S. (2018). Effective natural communication between human hand and mobile robot using Raspberry-pi. IEEE.
  • Chiou, M., Hawes, N., Stolkin, R., Shapiro, K. L., Kerlin, J. R., & Clouter, A. (2016). Towards the principled study of variable autonomy in mobile robots. IEEE.
  • Coovert, M. D., Lee, T., Shindev, I., & Sun, Y. (2014). Spatial augmented reality as a method for a mobile robot to communicate intended movement. Computers in Human Behavior, 34, 241–248. https://doi.org/10.1016/j.chb.2014.02.001
  • Cosgun, A., Florencio, D. A., & Christensen, H. I. (2013). Autonomous person following for telepresence robots. In R. Dillmann & R. Siegwart (Eds.), IEEE International Conference on Robotics and Automation (pp. 4335–4342). IEEE. https://doi.org/10.1109/ICRA.2013.6631191
  • Dautenhahn, K., Walters, M., Woods, S., Koay, K. L., Nehaniv, C. L., Sisbot, E. A., Alami, R., & Siméon, T. (2006). How may I serve you? A robot companion approaching a seated person in a helping context. In M. A. Goodrich, A. C. Schultz, & D.J. Bruemmer (Eds.), Proceedings of the 2006 ACM Conference on Human-Robot Interaction (pp. 172–179). Association for Computing Machinery. https://doi.org/10.1145/1121241.1121272
  • Fauadi, M. H. F. M., Akmal, S., Ali, M. M., Anuar, N. I., Ramlan, S., Noor, A. Z. M., & Awang, N. (2018). Intelligent vision-based navigation system for mobile robot: A technological review. Periodicals of Engineering and Natural Sciences (PEN), 6(2), 47–57. https://doi.org/10.21533/pen.v6i2.174
  • Fernandez, R., John, N., Kirmani, S., Hart, J., Sinapov, J., & Stone, P. (2018). Passive demonstrations of light-based robot signals for improved human interpretability. In 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (pp. 234–239). IEEE. https://doi.org/10.1109/ROMAN.2018.8525728
  • Fiore, S. M., Wiltshire, T. J., Lobato, E. J. C., Jentsch, F. G., Huang, W. H., & Axelrod, B. (2013). Toward understanding social cues and signals in human-robot interaction: Effects of robot gaze and proxemic behavior. Frontiers in Psychology, 4(NOV), 859. https://doi.org/10.3389/fpsyg.2013.00859
  • Fischer, K., Jensen, L. C., Suvei, S., & Bodenhagen, L. (2016). Between legibility and contact: The role of gaze in robot approach. In S.Y. Okita, B. Mutlu, & T. Shibata (Eds.), 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (pp. 646–651). IEEE. https://doi.org/10.1109/ROMAN.2016.7745186
  • Green, S. A., Richardson, S. M., Stiles, R. J., Billinghurst, M., & Chase, J. G. (2008). Multimodal metric study for human-robot collaboration. In P. Dini (Eds.), 1st International Conference on Advances in Computer-Human Interaction (pp. 218–223). Advances in Computer-Human Interaction. https://doi.org/10.1109/ACHI.2008.8
  • Hall, E. T. (1966). The hidden dimension. Anchor Books.
  • Hancock, P. A., Billings, D. R., Schaefer, K. E., Chen, J. Y., De Visser, E. J., & Parasuraman, R. (2011). A meta-analysis of factors affecting trust in human-robot interaction. Human Factors, 53(5), 517–527. https://doi.org/10.1177/0018720811417254
  • Hart, J., Mirsky, R., Xiao, X., Tejeda, S., Mahajan, B., Goo, J., Baldauf, K., Owen, S., & Stone, P. (2020). Using human-inspired signals to disambiguate navigational intentions. In A.R. Wagner, D. Feil-Seifer, K.S. Haring, S. Rossi, T. Williams, H. He, & S. Sam Ge (Eds.), ICSR 2020: Social robotics (pp. 320–331). Springer. https://doi.org/10.1007/978-3-030-62056-1_27
  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (task load index): Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Advances in psychology (Vol. 52, pp. 139–183). Elsevier B.V. https://doi.org/10.1016/S0166-4115(08)62386-9
  • Hoggenmueller, M., Chen, J., & Hespanhol, L. (2020). Emotional expressions of non-humanoid urban robots: The role of contextual aspects on interpretations. Association for Computing Machinery, Inc.
  • Hopko, S., Wang, J., & Mehta, R. (2022). Human factors considerations and metrics in shared space human-robot collaboration: A systematic review. Frontiers in Robotics and AI, 9, 799522. https://doi.org/10.3389/frobt.2022.799522
  • Huettenrauch, H., Eklundh, K. S., Green, A., & Topp, E. A. (2006). Investigating spatial relationships in human-robot interaction. In W. Hamel, Y. Liu, B. Siciliano, & S. Sugano (Eds.), IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5052–5059). IEEE. https://doi.org/10.1109/IROS.2006.282535
  • International Organization for Standardization. (2021). ISO 8373:2021 robotics—Vocabulary. ISO/TC 299.
  • Jevtić, A., Doisy, G., Parmet, Y., & Edan, Y. (2015). Comparison of interaction modalities for mobile indoor robot guidance: Direct physical interaction, person following, and pointing control. IEEE Transactions on Human-Machine Systems, 45(6), 653–663. https://doi.org/10.1109/THMS.2015.2461683
  • Johannsen, G. (2001). Auditory displays in human–machine interfaces of mobile robots for non-speech communication with humans. Journal of Intelligent and Robotic Systems, 32(2), 161–169. https://doi.org/10.1023/A:1013953213049
  • Johannsen, G. (2004). Auditory displays in human-machine interfaces. Proceedings of the IEEE, 92(4), 742–758. https://doi.org/10.1109/JPROC.2004.825905
  • Joosse, M., Lohse, M., Berkel, N. V., Sardar, A., & Evers, V. (2021). Making appearances: How robots should approach people. ACM Transactions on Human-Robot Interaction, 10(1), 1–24. https://doi.org/10.1145/3385121
  • Jost, J., Kirks, T., Chapman, S., & Rinkenauer, G. (2021). Keep distance with a smile - User characteristics in human-robot collaboration. In M. Behnam & L.L. Bello (Eds.), IEEE International Conference on Emerging Technologies and Factory Automation, ETFA (pp. 1–8). IEEE. https://doi.org/10.1109/ETFA45728.2021.9613601
  • Kaiser, F. G., Glatte, K., & Lauckner, M. (2019). How to make nonhumanoid mobile robots more likable: Employing kinesic courtesy cues to promote appreciation. Applied Ergonomics, 78(July 2019), 70–75. https://doi.org/10.1016/j.apergo.2019.02.004
  • Koay, K. L., Dautenhahn, K., Woods, S. N., & Walters, M. L. (2006). Empirical results from using a comfort level device in human-robot interaction studies. In M. A. Goodrich, A. C. Schultz, & D.J. Bruemmer (Eds.), Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction (pp. 194–201). Association for Computing Machinery. https://doi.org/10.1145/1121241.1121276
  • Koay, K. L., Sisbot, E. A., Syrdal, D. S., Walters, M. L., Dautenhahn, K., & Alami, R. (2007). Exploratory study of a robot approaching a person in the context of handing over an object. In AAAI Spring Symposium: Multidisciplinary Collaboration for Socially Assistive Robotics (pp. 18–24). AAAI.
  • Kosinski, T., Obaid, M., Wozniak, P. W., Fjeld, M., & Kucharski, J. (2016). A fuzzy data-based model for human-robot proxemics. In S.Y. Okita, B. Mutlu, & T. Shibata (Eds.), 25th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2016 (pp. 335–340). IEEE. https://doi.org/10.1109/ROMAN.2016.7745152
  • Kruse, T., Pandey, A. K., Alami, R., & Kirsch, A. (2013). Human-aware robot navigation: A survey. Robotics and Autonomous Systems, 61(12), 1726–1743. https://doi.org/10.1016/j.robot.2013.05.007
  • Lasota, P. A., Fong, T., & Shah, J. A. (2017). A survey of methods for safe human-robot interaction. Foundations and Trends in Robotics, 5(3), 261–349. https://doi.org/10.1561/2300000052
  • Lauckner, M., Kobiela, F., & Manzey, D. (2014). ‘Hey robot, please step back!’ - Exploration of a spatial threshold of comfort for human-mechanoid spatial interaction in a hallway scenario. In F. Amirabdollahian, R. Aylett, & P. A. Vargas (Eds.), The 23rd IEEE International Symposium on Robot and Human Interactive Communication (pp. 780–787). IEEE. https://doi.org/10.1109/ROMAN.2014.6926348
  • Laugwitz, B., Held, T., & Schrepp, M. (2008). Construction and evaluation of a user experience questionnaire. In A. Holzinger (Eds.), Symposium of the Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Computer Society (pp. 63–76). Springer. https://doi.org/10.1007/978-3-540-89350-9_6
  • Leichtmann, B., & Nitsch, V. (2020). How much distance do humans keep toward robots? Literature review, meta-analysis, and theoretical considerations on personal space in human-robot interaction. Journal of Environmental Psychology, 68(April 2020), 101386. https://doi.org/10.1016/j.jenvp.2019.101386
  • Liang, C.-J., & Cheng, M. H. (2023). Trends in robotics research in occupational safety and health: A scientometric analysis and review. International Journal of Environmental Research and Public Health, 20(10), 5904. https://doi.org/10.3390/ijerph20105904
  • Lichtenthäler, C., Peters, A., Griffiths, S., & Kirsch, A. (2013). Social navigation - Identifying robot navigation patterns in a path crossing scenario. In G. Herrmann, M.J. Pearson, A. Lenz, P. Bremner, A. Spiers, & U. Leonards (Eds.), International Conference on Social Robotics 2013: Social Robotics. Lecture Notes in Computer Science (pp. 84–93). Springer. https://doi.org/10.1007/978-3-319-02675-6_9
  • Lo, S. Y., Yamane, K., & Sugiyama, K. I. (2019). Perception of pedestrian avoidance strategies of a self-balancing mobile robot. In D. Sun & F. Arai (Eds.), 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1243–1250). IEEE. https://doi.org/10.1109/IROS40897.2019.8968191
  • MacArthur, K. R., Stowers, K., & Hancock, P. A. (2017). Human-robot interaction: Proximity and speed—Slowly back away from the robot!. In P. Savage-Knepshield & J. Chen (Eds.), Advances in human factors in robots and unmanned systems (pp. 365–374). Springer. https://doi.org/10.1007/978-3-319-41959-6_30
  • Markis, A., Papa, M., Kaselautzke, D., Rathmair, M., Sattinger, V., & Brandstötter, M. (2019). Safety of mobile robot systems in industrial applications. In A. Pichler, P. M. Roth, R. Sablatnig, G. Stübl, & M. Vincze (Eds.), Proceedings of the ARW & OAGM Workshop (pp. 26–31). Verlag der Technischen Universität Graz. https://doi.org/10.3217/978-3-85125-663-5-04
  • Matsumaru, T. (2006). Mobile robot with preliminary-announcement and display function of forthcoming motion using projection equipment. In K. Dautenhahn & C. L. Nehaniv (Eds.), ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication (pp. 443–450). IEEE. https://doi.org/10.1109/ROMAN.2006.314368
  • Mavrogiannis, C., Hutchinson, A. M., MacDonald, J., Alves-Oliveira, P., & Knepper, R. A. (2019). Effects of distinct robot navigation strategies on human behavior in a crowded environment. In J. Kim, A. Tapus, D. Sirkin, M. Jung, & S.S. Kwak (Eds.), 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 421–430). IEEE Computer Society. https://doi.org/10.1109/HRI.2019.8673115
  • May , A. D., Dondrup, C., & Hanheide, M. (2015). Show me your moves! Conveying navigation intention of a mobile robot to humans. In T. Duckett & A. Tapus (Eds.), 2015 European Conference on Mobile Robots (ECMR) (pp. 1–6). IEEE. https://doi.org/10.1109/ECMR.2015.7324049
  • Mead, R., & Matarić, M. J. (2015). Robots have needs too: People adapt their proxemic preferences to improve autonomous robot recognition of human social signals. AISB Convention.
  • Mead, R., & Matarić, M. J. (2016). Robots have needs too: How and why people adapt their proxemic behavior to improve robot social signal understanding. Journal of Human-Robot Interaction, 5(2), 48–68. https://doi.org/10.5898/JHRI.5.2.Mead
  • Mumm, J., & Mutlu, B. (2011). Human-robot proxemics: Physical and psychological distancing in human-robot interaction. In A. Billard, P. Kahn, J. Adams, & J.G. Trafton (Eds.), Proceedings of the 6th ACM/IEEE International Conference on Human-Robot Interaction (pp. 331–338). ACM/IEEE. https://doi.org/10.1145/1957656.1957786
  • Neggers, M. M. E., Cuijpers, R. H., & Ruijten, P. A. M. (2018). Comfortable passing distances for robots. In S.S. Ge, J.-J. Cabibihan, M.A. Salichs, E. Broadbent, H. He, A.R. Wagner, & A. Castro-González (Eds.), International conference on social robotics 2018: Social robotics. Lecture notes in computer science (pp. 431–440). Springer. https://doi.org/10.1007/978-3-030-05204-1_42
  • Neggers, M. M. E., Cuijpers, R. H., Ruijten, P. A. M., & Ijsselsteijn, W. A. (2022). Determining shape and size of personal space of a human when passed by a robot. International Journal of Social Robotics, 14(2), 561–572. https://doi.org/10.1007/s12369-021-00805-6
  • Nomura, S., Inoue, T., Takahashi, Y., & Nakamura, T. (2014). Learning control based on intention recognition by inverted two-wheeled mobile robot through interactive operation. In Joint 7th International Conference on Soft Computing and Intelligent Systems, SCIS 2014 and 15th International Symposium on Advanced Intelligent Systems (pp. 117–122). IEEE. https://doi.org/10.1109/SCIS-ISIS.2014.7044740
  • Pacchierotti, E., Christensen, H. I., & Jensfelt, P. (2006). Evaluation of passing distance for social robots. In K. Dautenhahn & C. L. Nehaniv (Eds.), ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication (pp. 315–320). IEEE. https://doi.org/10.1109/ROMAN.2006.314436
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://doi.org/10.1016/j.ijsu.2021.105906
  • Pandey, A., Pandey, S., & Parhi, D. (2017). Mobile robot navigation and obstacle avoidance techniques: A review. International Robotics & Automation Journal, 2(3), 96–105. https://doi.org/10.15406/iratj.2017.02.00023
  • Pourmehr, S., Thomas, J., & Vaughan, R. (2016). What untrained people do when asked "make the robot come to you. In C. Bartneck, Y. Nagai, A. Paiva, & S. Šabanović (Eds.), 11th Annual ACM/IEEE International Conference on Human-Robot Interaction (pp. 495–496). IEEE Computer Society. https://doi.org/10.1109/HRI.2016.7451823
  • Rossi, S., Staffa, M., Bove, L., Capasso, R., & Ercolano, G. (2017). User’s personality and activity influence on HRI comfortable distances. In A. Kheddar, E. Yoshida, S.S. Ge, K. Suzuki, J.-J. Cabibihan, F. Eyssel, & H. He (Eds.), International Conference on Social Robotics 2017: Social Robotics. Lecture Notes in Computer Science (pp. 167–177). Springer. https://doi.org/10.1007/978-3-319-70022-9_17
  • Rubagotti, M., Tusseyeva, I., Baltabayeva, S., Summers, D., & Sandygulova, A. (2022). Perceived safety in physical human–robot interaction—A survey. Robotics and Autonomous Systems, 151(May 2022), 104047. https://doi.org/10.1016/j.robot.2022.104047
  • Sanders, T. L., MacArthur, K., Volante, W., Hancock, G., MacGillivray, T., Shugars, W., & Hancock, P. A. (2017). Trust and prior experience in human-robot interaction. Proceedings of the Human Factors and Ergonomics Society, 61(1), 1809–1813. (https://doi.org/10.1177/1541931213601934
  • Schneier, M., Schneier, M., & Bostelman, R. (2015). Literature review of mobile robots for manufacturing. NIST interagency/internal report (NISTIR). National Institute of Standards and Technology.
  • Sheridan, T. B. (2016). Human–robot interaction: Status and challenges. Human Factors, 58(4), 525–532. https://doi.org/10.1177/0018720816644364
  • Shiomi, M., Zanlungo, F., Hayashi, K., & Kanda, T. (2014). Towards a socially acceptable collision avoidance for a mobile robot navigating among pedestrians using a pedestrian model. International Journal of Social Robotics, 6(3), 443–455. https://doi.org/10.1007/s12369-014-0238-y
  • Shomin, M., Vaidya, B., Hollis, R., & Forlizzi, J. (2015). Human-approaching trajectories for a person-sized balancing robot. In K. Yamane & J. Forlizzi (Eds.), Proceedings of IEEE Workshop on Advanced Robotics and its Social Impacts, ARSO (pp. 20–25). IEEE. https://doi.org/10.1109/ARSO.2014.7020974
  • Shrestha, M. C., Kobayashi, A., Onishi, T., Uno, E., Yanagawa, H., Yokoyama, Y., Kamezaki, M., Schmitz, A., & Sugano, S. (2016). Intent communication in navigation through the use of light and screen indicators. In C. Bartneck, Y. Nagai, A. Paiva, & S. Šabanović (Eds.), 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 523–524). IEEE. https://doi.org/10.1109/HRI.2016.7451837
  • Shrestha, M. C., Onishi, T., Kobayashi, A., Kamezaki, M., & Sugano, S. (2018). Communicating directional intent in robot navigation using projection indicators. In R. Chellali, W. Chen, F. Mastrogiovani, A. Kumar Pandey, H. Wang, & T. Inamura (Eds.), 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (pp. 746–751). IEEE. https://doi.org/10.1109/ROMAN.2018.8525528
  • Siino, R. M., Chung, J., & Hinds, P. J. (2008). Colleague vs. tool: Effects of disclosure in human-robot collaboration. In M. Buss & K. Kühnlenz (Eds.), RO-MAN 2008 - The 17th IEEE International Symposium on Robot and Human Interactive Communication (pp. 558–562). IEEE. https://doi.org/10.1109/ROMAN.2008.4600725
  • Suvei, S. D., Vroon, J., Somoza Sanchéz, V. V., Bodenhagen, L., Englebienne, G., Krüger, N., & Evers, V. (2018). “I would like to get close to you”: Making robot personal space invasion less intrusive with a social gaze cue. In M. Antona & C. Stephanidis (Eds.), UAHCI 2018: Universal Access in Human-Computer Interaction. Virtual, Augmented, and Intelligent Environments. Lecture Notes in Computer Science (pp. 366–385). Springer. https://doi.org/10.1007/978-3-319-92052-8_29
  • Syrdal, D. S., Dautenhahn, K., Woods, S., Walters, M. L., & Koay, K. L. (2006). Doing the right thing wrong’ - Personality and tolerance to uncomfortable robot approaches. In K. Dautenhahn & C. L. Nehaniv (Eds.), ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication (pp. 183–188). IEEE. https://doi.org/10.1109/ROMAN.2006.314415
  • Takayama, L., & Pantofaru, C. (2009). Influences on proxemic behaviors in human-robot interaction. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5495–5502). IEEE. https://doi.org/10.1109/IROS.2009.5354145
  • Thomas, J., & Vaughan, R. (2019). Right of way, assertiveness and social recognition in human-robot doorway interaction. In D. Sun & F. Arai (Eds.), 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 333–339). IEEE. https://doi.org/10.1109/IROS40897.2019.8967862
  • Tzafestas, S. G. (2018). Mobile robot control and navigation: A global overview. Journal of Intelligent & Robotic Systems, 91(1), 35–58. https://doi.org/10.1007/s10846-018-0805-9
  • Unger, H., Markert, T., & Müller, E. (2018). Evaluation of use cases of autonomous mobile robots in factory environments. Procedia Manufacturing, 17, 254–261. https://doi.org/10.1016/j.promfg.2018.10.044
  • Unhelkar, V. V., Siu, H. C., & Shah, J. A. (2014). Comparative performance of human and mobile robotic assistants in collaborative fetch-and-deliver tasks. In G. Sagerer, M. Imai, T. Belpaeme, & A. Thomaz (Eds.), ACM/IEEE International Conference on Human Robot Interaction (HRI ) (pp. 82–89). IEEE Computer Society. https://doi.org/10.1145/2559636.2559655
  • Vasic, M., & Billard, A. (2013). Safety issues in human-robot interactions. In R. Dillmann & R. Siegwart (Eds.), IEEE International Conference on Robotics and Automation (pp. 197–204). IEEE. https://doi.org/10.1109/ICRA.2013.6630576
  • Vassallo, C., Olivier, A.-H., Souères, P., Crétual, A., Stasse, O., & Pettré, J. (2017). How do walkers avoid a mobile robot crossing their way? Gait & Posture, 51, 97–103. https://doi.org/10.1016/j.gaitpost.2016.09.022
  • Vassallo, C., Olivier, A.-H., Souères, P., Crétual, A., Stasse, O., & Pettré, J. (2018). How do walkers behave when crossing the way of a mobile robot that replicates human interaction rules? Gait & Posture, 60, 188–193. https://doi.org/10.1016/j.gaitpost.2017.12.002
  • Villani, V., Sabattini, L., Riggio, G., Levratti, A., Secchi, C., & Fantuzzi, C. (2017). Interacting with a mobile robot with a natural infrastructure-less interface. IFAC-PapersOnLine, 50(1), 12753–12758. https://doi.org/10.1016/j.ifacol.2017.08.1829
  • Villani, V., Sabattini, L., Secchi, C., & Fantuzzi, C. (2018). A framework for affect-based natural human-robot interaction. In 27th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2018 (pp. 1038–1044). IEEE. https://doi.org/10.1109/ROMAN.2018.8525658
  • Walters, M. L., Dautenhahn, K., Te Boekhorst, R., Koay, K. L., Kaouri, C., Woods, S., Nehaniv, C., Lee, D., & Werry, I. (2005). The influence of subjects’ personality traits on personal spatial zones in a human-robot interaction experiment. In K. Kawamura & A.C. Schultz (Eds.), ROMAN 2005 - IEEE International Workshop on Robot and Human Interactive Communication (pp. 347–352). IEEE. https://doi.org/10.1109/ROMAN.2005.1513803
  • Walters, M. L., Dautenhahn, K., Woods, S. N., & Koay, K. L. (2007). Robotic etiquette: Results from user studies involving a fetch and carry task. In A. Schultz, C. Breazeal, T. Fong, & S. Kiesler (Eds.), 2007 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 317–324). IEEE. https://doi.org/10.1145/1228716.1228759
  • Walters, M. L., Syrdal, D. S., Koay, K. L., Dautenhahn, K., & Boekhorst, R. T (2008). Human approach distances to a mechanical-looking robot with different robot voice styles. In M. Buss & K. Kühnlenz (Eds.), RO-MAN 2008 - The 17th IEEE International Symposium on Robot and Human Interactive Communication (pp. 707–712). IEEE. https://doi.org/10.1109/ROMAN.2008.4600750
  • Warta, S. F., Newton, O. B., Song, J., Best, A., & Fiore, S. M. (2018). Effects of social cues on social signals in human-robot interaction during a hallway navigation task. Proceedings of the Human Factors and Ergonomics Society, 62(1), 1128–1132. https://doi.org/10.1177/1541931218621258
  • Wiltshire, T. J., Lobato, E. J. C., Garcia, D. R., Fiore, S. M., Jentsch, F. G., Huang, W. H., & Axelrod, B. (2015). Effects of robotic social cues on interpersonal attributions and assessments of robot interaction behaviors. Proceedings of the Human Factors and Ergonomics Society, 59(1), 801–805. https://doi.org/10.1177/1541931215591245
  • Zhang, B., Amirian, J., Eberle, H., Pettré, J., Holloway, C., & Carlson, T. (2022). From HRI to CRI: Crowd robot interaction—Understanding the effect of robots on crowd motion: Empirical study of pedestrian dynamics with a wheelchair and a pepper robot. International Journal of Social Robotics, 14(3), 631–643. https://doi.org/10.1007/s12369-021-00812-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.