450
Views
1
CrossRef citations to date
0
Altmetric
Methods, Models, & Theories

Imposing Motion Variability for Ergonomic Human-Robot Collaboration

ORCID Icon, , , , , & show all
Pages 123-134 | Received 18 Jul 2023, Accepted 07 Mar 2024, Published online: 18 Mar 2024

References

  • Ajoudani, A., Zanchettin, A. M., Ivaldi, S., Albu-Schäffer, A., Kosuge, K., & Khatib, O. (2018). Progress and prospects of the human–robot collaboration. Autonomous Robots, 42(5), 957–975. https://doi.org/10.1007/s10514-017-9677-2
  • Bazarevsky, V., Grishchenko, I., Raveendran, K., Zhu, T., Zhang, F., & Grundmann, M. (2020). Blazepose: On-device real-time body pose tracking. arXiv Preprint arXiv, 2006, 10204.
  • Busch, B., Maeda, G., Mollard, Y., Demangeat, M., & Lopes, M. (2017). Postural optimization for an ergonomic human-robot interaction. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2778–2785). IEEE.
  • Commissaris, D. A., Toussaint, H. M., & Hirschfeld, H. (2001). Anticipatory postural adjustments in a bimanual, whole-body lifting task seem not only aimed at minimising anterior–posterior centre of mass displacements. Gait & Posture, 14(1), 44–55. https://doi.org/10.1016/s0966-6362(01)00098-4
  • Demiris, Y. (2009). Knowing when to assist: Developmental issues in lifelong assistive robotics [Paper presentation]. Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3357–3360). IEEE. https://doi.org/10.1109/IEMBS.2009.5333182
  • Dupont, F., Léger, P. M., Begon, M., Lecot, F., Sénécal, S., Labonté-Lemoyne, E., & Mathieu, M. E. (2019). Health and productivity at work: Which active workstation for which benefits: A systematic review. Occupational and Environmental Medicine, 76(5), 281–294. https://doi.org/10.1136/oemed-2018-105397
  • Eng, J. J., & Winter, D. A. (1993). Estimations of the horizontal displacement of the total body centre of mass: Considerations during standing activities. Gait & Posture, 1(3), 141–144. https://doi.org/10.1016/0966-6362(93)90055-6
  • Fortini, L., Lorenzini, M., Kim, W., De Momi, E., & Ajoudani, A. (2020). A framework for real-time and personalisable human ergonomics monitoring. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 11101 – 11107.). IEEE.
  • Franklin, C. S., Dominguez, E. G., Fryman, J. D., & Lewandowski, M. L. (2020). Collaborative robotics: New era of human–robot cooperation in the workplace. Journal of Safety Research, 74, 153–160. https://doi.org/10.1016/j.jsr.2020.06.013
  • Gihleb, R., Giuntella, O., Stella, L., & Wang, T. (2022). Industrial robots, workers’ safety, and health. Labour Economics, 78, 102205. https://doi.org/10.1016/j.labeco.2022.102205
  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139–183). North-Holland.
  • Hignett, S., & McAtamney, L. (2000). Rapid entire body assessment (REBA). Applied Ergonomics, 31(2), 201–205. https://doi.org/10.1016/s0003-6870(99)00039-3
  • Hogan, N., & Sternad, D. (2009). Sensitivity of smoothness measures to movement duration, amplitude, and arrests. Journal of Motor Behavior, 41(6), 529–534. https://doi.org/10.3200/35-09-004-RC
  • Kim, T., & Hinds, P. (2006). Who should I blame? Effects of autonomy and transparency on attributions in human-robot interaction. In IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (pp. 80–85). IEEE.
  • Kim, W., Lorenzini, M., Balatti, P., Wu, Y., & Ajoudani, A. (2019). Towards ergonomic control of collaborative effort in multi-human mobile-robot teams. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3005 – 3011). IEEE.
  • Luttmann, A., Jager, M., Griefahn, B., Caffier, G., & Liebers, F. (2003). Preventing musculoskeletal disorders in the workplace.
  • Madeleine, P., Voigt, M., & Mathiassen, S. E. (2008). The size of cycle-to-cycle variability in biomechanical exposure among butchers performing a standardised cutting task. Ergonomics, 51(7), 1078–1095. https://doi.org/10.1080/00140130801958659
  • Mathiassen, S. E., Möller, T., & Forsman, M. (2003). Variability in mechanical exposure within and between individuals performing a highly constrained industrial work task. Ergonomics, 46(8), 800–824. https://doi.org/10.1080/0014013031000090125
  • Matjačić, Z., Zadravec, M., & Olenšek, A. (2018). Feasibility of robot-based perturbed-balance training during treadmill walking in a high-functioning chronic stroke subject: A case-control study. Journal of Neuroengineering and Rehabilitation, 15(1), 32. https://doi.org/10.1186/s12984-018-0373-z
  • Maurice, P., Padois, V., Measson, Y., & Bidaud, P. (2017). Human-oriented design of collaborative robots. International Journal of Industrial Ergonomics, 57, 88–102. https://doi.org/10.1016/j.ergon.2016.11.011
  • Merlo, E., Lamon, E., Fusaro, F., Lorenzini, M., Carfì, A., Mastrogiovanni, F., & Ajoudani, A. (2023). An ergonomic role allocation framework for dynamic human–robot collaborative tasks. Journal of Manufacturing Systems, 67, 111–121. https://doi.org/10.1016/j.jmsy.2022.12.011
  • Olensek, A., Zadravec, M., Rudolf, M., Humar, M. G., Tomsic, I., Bizovicar, N., Goljarm, N., & Matjačić, Z. (2018). A novel approach to robot-supported training of symmetry, propulsion and balance during walking after stroke: A case study. In IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob) (pp. 408 – 413). IEEE.
  • Onnasch, L., Wickens, C. D., Li, H., & Manzey, D. (2014). Human performance consequences of stages and levels of automation: An integrated meta-analysis. Human Factors, 56(3), 476–488. https://doi.org/10.1177/0018720813501549
  • Ortenzi, V., Cosgun, A., Pardi, T., Chan, W. P., Croft, E., & Kulic, D. (2021). Object handovers: A review for robotics. IEEE Transactions on Robotics, 37(6), 1855–1873. https://doi.org/10.1109/TRO.2021.3075365
  • Parastegari, S., Abbasi, B., Noohi, E., & Zefran, M. (2017). Modeling human reaching phase in human-human object handover with application in robot-human handover. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3597 – 3602). IEEE.
  • Parasuraman, R., Barnes, M., Cosenzo, K., & Mulgund, S. (2007). Adaptive automation for human-robot teaming in future command and control systems. The International C2 Journal, 1(2), pp.43–68.
  • Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse, disuse, abuse. Human Factors: The Journal of the Human Factors and Ergonomics Society, 39(2), 230–253. https://doi.org/10.1518/001872097778543886
  • Pehlivan, A. U., Losey, D. P., Rose, C. G., & O’Malley, M. K. (2017). Maintaining subject engagement during robotic rehabilitation with a minimal assist-as-needed (mAAN) controller [Paper presentation]. In International Conference on Rehabilitation Robotics (ICORR) (pp. 62 – 67). IEEE. https://doi.org/10.1109/ICORR.2017.8009222
  • Peshkin, M., Brown, D. A., Santos-Munné, J. J., Makhlin, A., Lewis, E., Colgate, J. E., Patton, J., & Schwandt, D. (2005). KineAssist: A robotic overground gait and balance training device. In International Conference on Rehabilitation Robotics (ICORR) (pp. 241 – 246). IEEE.
  • Peternel, L., Kim, W., Babič, J., & Ajoudani, A. (2017, November). Towards ergonomic control of human-robot co-manipulation and handover [Paper presentation]. 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids) (pp. 55 – 60). IEEE. https://doi.org/10.1109/HUMANOIDS.2017.8239537
  • Plagenhoef, S., Evans, F. G., & Abdelnour, T. (1983). Anatomical data for analyzing human motion. Research Quarterly for Exercise and Sport, 54(2), 169–178. https://doi.org/10.1080/02701367.1983.10605290
  • Punnett, L., & Wegman, D. H. (2004). Work-related musculoskeletal disorders: The epidemiologic evidence and the debate. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 14(1), 13–23. https://doi.org/10.1016/j.jelekin.2003.09.015
  • Rauter, G., Sigrist, R., Marchal-Crespo, L., Vallery, H., Riener, R., & Wolf, P. (2011). Assistance or challenge? Filling a gap in user-cooperative control. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3068 – 3073.). IEEE.
  • Sarbat, I., & Ozmehmet Tasan, S. (2022). Ergonomics indicators: A proposal for sustainable process performance measurement in ergonomics. Ergonomics, 65(1), 3–38. https://doi.org/10.1080/00140139.2021.1953614
  • Schmidt, H., Hesse, S., Bernhardt, R., & Krüger, J. (2005). HapticWalker – A novel haptic foot device. ACM Transactions on Applied Perception, 2(2), 166–180. https://doi.org/10.1145/1060581.1060589
  • Schneider, E., Copsey, S., & Irastorza, X. (2010). OSH [Occupational safety and health] in figures: Work-related musculoskeletal disorders in the EU-facts and figures. Office for Official Publications of the European Communities.
  • Shafti, A., Ataka, A., Lazpita, B. U., Shiva, A., Wurdemann, H. A., & Althoefer, K. (2019). Real-time robot-assisted ergonomics. In International Conference on Robotics and Automation (ICRA) (pp. 1975 – 1981). IEEE.
  • Shaham, M. H., Skopin, M., Hochsztein, H., Mabulu, K., Milburn, L., Tukpah, J., Tunik, A., Winn, J., Zolotas, M., Erdoğmuş, D., & Padır, T. (2022). Human-supervised automation test cell to accelerate personal protective equipment manufacturing during the COVID-19 pandemic. In IEEE International Symposium on Technologies for Homeland Security (HST) (pp. 1 – 8). IEEE.
  • Srinivasan, D., & Mathiassen, S. E. (2012). Motor variability in occupational health and performance. Clinical Biomechanics (Bristol, Avon), 27(10), 979–993. https://doi.org/10.1016/j.clinbiomech.2012.08.007
  • Stapley, P. J., Pozzo, T., Cheron, G., & Grishin, A. (1999). Does the coordination between posture and movement during human whole-body reaching ensure center of mass stabilization? Experimental Brain Research, 129(1), 134–146. https://doi.org/10.1007/s002210050944
  • Summers, K., Jinnett, K., & Bevan, S. (2015). Musculoskeletal disorders, workforce health and productivity in the United States. The center for workforced health and performance. Lancaster University.
  • Tee, K. S., Low, E., Saim, H., Zakaria, W. N. W., Khialdin, S. B. M., Isa, H., Awad, M. I., & Soon, C. F. (2017). A study on the ergonomic assessment in the workplace. In AIP Conference Proceedings, 1883(1): 020034–1–020034-11.
  • van der Spaa, L., Gienger, M., Bates, T., & Kober, J. (2020). Predicting and optimizing ergonomics in physical human-robot cooperation tasks. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1799 – 1805). IEEE.
  • Watson, F., Fino, P. C., Thornton, M., Heracleous, C., Loureiro, R., & Leong, J. J. (2021). Use of the margin of stability to quantify stability in pathologic gait–a qualitative systematic review. BMC Musculoskeletal Disorders, 22(1), 597. https://doi.org/10.1186/s12891-021-04466-4
  • Zare, M., Sagot, J. C., & Roquelaure, Y. (2018). Within and between individual variability of exposure to work-related musculoskeletal disorder risk factors. International Journal of Environmental Research and Public Health, 15(5), 1003. https://doi.org/10.3390/ijerph15051003
  • Zolotas, M., & Demiris, Y. (2019). Towards explainable shared control using augmented reality. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3020 – 3026). IEEE.
  • Zolotas, M., Luo, R., Bazzi, S., Saha, D., Mabulu, K., Kloeckl, K., & Padır, T. (2022). Productive inconvenience: Facilitating posture variability by stimulating robot-to-human handovers. In IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (pp. 122–128). IEEE.