Publication Cover
Applied Earth Science
Transactions of the Institutions of Mining and Metallurgy
Volume 132, 2023 - Issue 3-4
32
Views
0
CrossRef citations to date
0
Altmetric
Articles

Geochemistry of extremely modified chromites from the chrysotile asbestos-bearing Zvishavane Ultramafic Complex, south central Zimbabwe

&
Pages 281-299 | Received 03 May 2023, Accepted 27 Sep 2023, Published online: 09 Nov 2023

References

  • Anhaeusser CR. 1976. The nature of chrysotile asbestos occurrences in Southern Africa; a review. Econ Geol. 71:96–116. doi:10.2113/gsecongeo.71.1.96.
  • Anhaeusser CR. 1979. Rodingite occurrences in some Archaean ultramafic complexes in the Barberton Mountain Land, South Africa. Precambrian Res. 8:49–76. doi:10.1016/0301-9268(79)90038-X.
  • Anhaeusser CR. 1986. The geological setting of chrysotile asbestos occurrences in Southern Africa. In: Anhaeusser CR, Maske S, editor. Mineral deposits of Southern Africa I. Geological Society of South Africa; p. 359–376.
  • Anhaeusser CR. 2001. The anatomy of an extrusive-intrusive Archaean mafic-ultramafic sequence: the Nelshoogte schist belt and Stolzburg layered ultramafic complex, Barberton greenstone belt, South Africa. S Afr J Geol. 104:167–204. doi:10.2113/1040167.
  • Arai S. 1980. Dunite-harzburgite-chromitite complexes as refractory residue in the Sangun-Yamaguchi zone, western Japan. J Petrol. 21:141–165. doi:10.1093/petrology/21.1.141.
  • Arai S, Yurimoto H. 1994. Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products. Econ Geol. 89:1279–1288. doi:10.2113/gsecongeo.89.6.1279.
  • Armstrong JT. 1988. Quantitative analysis of silicate and oxide minerals: comparison of the Monte Carlo, ZAF and Φ(ρZ) procedures. In: Newbury DE, editor. Microbeam analysis. San Francisco (CA): San Francisco Press; p. 239–246.
  • Bach W, Klein F. 2009. The petrology of seafloor rodingites: insights from geochemical reaction path modeling. Lithos. 112:103–117. doi:10.1016/j.lithos.2008.10.022.
  • Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris SE. 2006. Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys Res Lett. 33:L13306. doi:10.1029/2006GL025681.
  • Ballhaus C, Berry RF, Green DH. 1991. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol. 107:27–40. doi:10.1007/BF00311183.
  • Barnes SJ. 2000. Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. J Petrol. 41:387–409.
  • Barnes SJ, Roeder PL. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol. 42:2279–2302. doi:10.1093/petrology/42.12.2279.
  • Bartholomew DS. 1990a. Gold deposits of Zimbabwe: Harare. Zimb Geol Surv Miner Resour Ser. 23:75.
  • Bartholomew DS. 1990b. Base metal and industrial mineral deposits of Zimbabwe, Zimbabwe Geological Survey, Harare. Miner Rresource Ser. 22:154.
  • Beeson MH, Jackson ED. 1969. Chemical composition of altered chromites from the Stillwater complex, Montana. American Mineralogist. 54:1084–1100.
  • Bell JM, Clarke E, de C, Marshall P. 1911. The geology of the Dunn mountain subdivision. Nelson: NZ Geol. Surv Bull. 12: p 78.
  • Blenkinsop TG, Fedo CM, Bickle MJ, Eriksson KA, Martin A, Nisbet EG, Wilson JF. 1993. Ensialic origin for the Ngezi Group, Belingwe greenstone belt, Zimbabwe. Geology. 21:1135–1138. doi:10.1130/0091-7613(1993)021<1135:EOFTNG>2.3.CO;2.
  • Blenkinsop TG, Martin A, Jelsma HA, Vinyu ML. 1997. The Zimbabwe craton. In: De Wit MJ, Ashwal LD, editor. Greenstone Belts. Oxford University Press; p. 567–580.
  • Bliss NW, Maclean WH. 1975. The paragenesis of zoned chromite from central Manitoba. Geochim Cosmochim Acta. 39:973–990. doi:10.1016/0016-7037(75)90042-3.
  • Brügmann GE, Reischmann T, Naldrett AJ, Sutcliffe RH. 1997. Roots of an Archean volcanic arc complex: the Lac des Iles area in Ontario, Canada. Precambrian Res. 81:223–239.
  • Burkhard DJM. 1993. Accessory chromium spinels: their coexistence and alteration in serpentinites. Geochim Cosmochim Acta. 57:1297–1306. doi:10.1016/0016-7037(93)90066-6.
  • Candia MAF, Gaspar JC. 1997. Chromian spinels in metamorphosed ultramafic rocks from Mangabal I and II complexes, Goiás, Brazil. Mineral Petrol. 60:27–40.
  • Çelik OF, Delaloye MF. 2006. Characteristics of ophiolite-related metamorphic rocks in the Beysehir ophiolitic mélange (Central Taurides, Turkey), deduced from whole rock and mineral chemistry. J Asian Earth Sci. 26:461–476. doi:10.1016/j.jseaes.2004.10.008.
  • Chaumba JB. 2017. Hydrothermal alteration in the Main Sulfide Zone at Unki Mine, Shurugwi Subchamber of the Great Dyke, Zimbabwe: evidence from petrography and silicates mineral chemistry. Minerals. 7(7):127. doi:10.3390/min7070127.
  • Chaumba JB. 2018. Origin of the Mashava Igneous Complex, south central Zimbabwe: evidence from Prince Mine chromite compositions. J Geochem Explor. 188:270–289. doi:10.1016/j.gexplo.2018.01.023.
  • Chaumba JB. 2019. Evolution of the North West Arm and the Central Sector of Mashava Igneous Complex in south central Zimbabwe from an investigation of its silicate minerals compositions. Precambrian Res. 324:109–125. doi:10.1016/j.precamres.2019.01.019.
  • Chaumba JB, Mamuse A. 2020. Petrology of the Zvishavane Ultramafic Complex, south-central Zimbabwe, and speculations on why it lacks platinum-group element mineralization. In: Holwell D, Barnes S, Schutesky ME, editor. 14th international Ni-Cu-PGE Symposium & Naldrett Memorial, Abstract Volume & Program Part B. p. 14.
  • Chaumba JB, Mamuse A. 2023. Petrographic and mineral chemistry investigation of the high-grade chrysotile asbestos-bearing Zvishavane Ultramafic Complex, south central Zimbabwe. Geochemistry. 83:125950. doi:10.1016/j.chemer.2023.125950.
  • Chaumba JB, Musa CT. 2020. Geochemistry of the chromitite stringer at the contact of the mafic sequence and the ultramafic sequence in the Unki Mine area, Shurugwi Subchamber of the Great Dyke, Zimbabwe. Can Mineral Mineral. 58:313–333. doi:10.3749/canmin.1900052.
  • Chauvel C, Duprè B, Todt W, Arndt NT, Hoffmann AW. 1983. Pb and Nd isotopic correlation in Archaean and Proterozoic greenstone belts (abstract). EOS Trans Am Geophys Union. 64:330.
  • Colás V, González-Jiménez JM, Camprubí A, Proenza JA, Griffin WL, Fanlo I, O’Reilly SY, Gervilla F, González-Partida E. 2019. A reappraisal of the metamorphic history of the Tehuitzingo chromitite, Puebla State, Mexico. Int Geol Rev. 61:1706–1727.
  • Colás V, González-Jiménez JM, Griffin WL, Fanlo I, Gervilla F, O’Reilly SY, Pearson NJ, Kerestedjian T, Proenza JA. 2014. Fingerprints of metamorphism in chromite: new insights from minor and trace elements. Chem Geol. 389:137–152.
  • Colás V, Padrón-Navarta JA, González-Jiménez JM, Fanlo I, López Sánchez-Vizcaíno V, Gervilla F, Castroviejo R. 2017. The role of silica in the hydrous metamorphism of chromite. Ore Geol Rev. 90:274–286. doi:10.1016/j.oregeorev.2017.02.025.
  • Coleman RG. 1967. Low-temperature reaction zones and alpine rocks of California, Oregon, and Washington. US Geol Surv Bull. 1247:1–49.
  • Cotterill P. 1969. The chromite deposits of Selukwe, Rhodesia. Econ Geol Monogr. 4:154–186.
  • Cotterill P. 1979. The Selukwe schist belt and its chromite deposits. Geol Soc S Afr Spec Publ. 5:229–245.
  • Deer WA, Howie RA, Zussman J. 1992. An introduction to rock forming minerals, 2nd ed. Harlow: Pearson; p. 696.
  • Dick HJB, Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol. 86:54–76.
  • Dirks PHGM, Jelsma HA. 1998. Horizontal accretion and stabilization of the Archean Zimbabwe craton. Geology. 26:11–14. doi:10.1130/0091-7613(1998)026<0011:HAASOT>2.3.CO;2.
  • Dirks PHGM, Jelsma HA. 1998. Silicic layer-parallel shear zones in a Zimbabwean greenstone sequence: horizontal accretion preceding doming. Gondwana Res. 1:177–193. doi:10.1016/S1342-937X(05)70829-7.
  • Dodson MH, Compston W, Williams IS, Wilson JF. 1988. A search for ancient detrital zircons in Zimbabwean sediments. J Geol Soc London. 145:977–983. doi:10.1144/gsjgs.145.6.0977.
  • Dodson MH, Williams IS, Kramers JD. 2001. The Mushandike granite: further evidence for 3.4 Ga magmatism in the Zimbabwe craton. Geol Mag. 138:31–38. doi:10.1017/S0016756801004939.
  • Engvik AK, Putnis A, Fitz Gerald JD, Austrheim H. 2008. Albitization of granitic rocks: the mechanism of replacement of Oligoclase by Albite. The Canadian Mineralogist. 46:1401–1415. doi:10.3749/canmin.46.6.1401.
  • Evans BW, Frost BR. 1975. Chrome-spinel in progressive metamorphism—a preliminary analysis. Geochim Cosmochim Acta. 39:959–972. doi:10.1016/0016-7037(75)90041-1.
  • Fleet ME, Angeli N, Pan Y. 1993. Oriented chlorite lamellae in chromite from the Pedra Branca mafic-ultramafic complex, Ceará, Brazil. Am Mineral. 78:68–74.
  • Frei R, Blenkinsop TG, Schönberg R. 1999. Geochronology of the late Archaean Razi and Chilimanzi suites of granites in Zimbabwe: implications for the late Archaean tectonics of the Limpopo Belt and Zimbabwe Craton. S Afr J Geol. 102:55–64.
  • Frost BR. 1991. Introduction to oxygen fugacity and its petrologic importance. In: Lindsley Donald H, editor. Oxide minerals: petrologic and magnetic significance, Volume 25, Reviews in Mineralogy, Mineralogical Society of America. p. 1–9.
  • Frost BR, Beard JS. 2007. On silica activity and serpentinization. J Petrol. 48:1351–1368. doi:10.1093/petrology/egm021.
  • Frost BR, Beard JS, McCaig A, Condliffe E. 2008. The Formation of micro-rodingites from IODP Hole U1309D: key to understanding the process of Serpentinization. J Petrol. 49:1579–1588. doi:10.1093/petrology/egn038.
  • Gargiulo MF, Bjerg EA, Mogessie A. 2013. Spinel group minerals in metamorphosed ultramafic rocks from Rio de Las Tunas belt, Central Andes, Argentina. Geol Acta. 11:133–148.
  • Garuti G, Pushkarev EV, Zaccarini F, Cabella R, Anikina E. 2003. Chromite composition and platinum-group mineral assemblage in the Uktus Uralian-Alaskan-type complex (Central Urals, Russia). Miner Deposita. 38:312–326. doi:10.1007/s00126-003-0348-1.
  • Gervilla F, Padrón-Navarta J, Kerestedjian T, Sergeeva I, González-Jiménez J, Fanlo I. 2012. Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: a two-stage process. Contrib Mineral Petrol. 164:643–657. doi:10.1007/s00410-012-0763-3.
  • González-Jiménez JM, Barra F, Garrido LNF, Reich M, Satsukawa T, Romero R, Salazar E, Colás V, Orellana F, Rabbia O, et al. 2016. A secondary precious and base metal mineralization in chromitites linked to the development of a Paleozoic accretionary complex in Central Chile. Ore Geol Rev. 78:14–40. doi:10.1016/j.oregeorev.2016.02.017.
  • González-Jiménez JM, Kerestedjian T, Proenza JA, Gervilla F. 2009. Metamorphism on chromite ores from the Dobromirtsi ultramafic Massif, Rhodope Mountains (SE Bulgaria). Geol Acta. 7:413–429.
  • González-Jiménez JM, Reich M, Camprubí A, Gervilla F, Griffin WL, Colás V, O’Reilly SY, Proenza JA, Pearson NJ, Centeno-García E. 2015. Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles. Contrib Mineral Petrol. 170(2):1–20.
  • Grieco G, Merlini A. 2012. Chromite alteration processes within Vourinos ophiolite. Int J Earth Sci. 101:1523–1533. doi:10.1007/s00531-011-0693-8.
  • Haggerty SE. 1991. Oxide mineralogy of the upper mantle. In: Lindsley DH, editor. Oxide minerals: petrologic and magnetic significance. Mineralogical Society of America, Reviews in Mineralogy; Vol. 25, p. 355–416.
  • Hawkesworth CJ, Bickle MJ, Gledhill AR, Wilson JF, Orpen JL. 1979. A 2.9-b.y. event in the Rhodesian Archaean. Earth Planet Sci Lett. 43:285–297. doi:10.1016/0012-821X(79)90213-9.
  • Hazen RM, Papineau MD, Bleeker W, Downs RT, Ferry JM, Mccoy TJ, Sverjensky DA, Yang H. 2008. Mineral evolution. Am Mineral. 93:1693–1720.
  • Hickman MH. 1974. 3,500-Myr-old granite in Southern Africa. Nature. 251:295–296. doi:10.1038/251295a0.
  • Hofmann A, Kusky TM. 2004. Developments in Precambrian geology. Dev Precambrian Geol. 13:487–538. doi:10.1016/S0166-2635(04)13015-6.
  • Horstwood MSA, Nesbitt RW, Noble SR, Wilson JF. 1999. U-Pb zircon evidence for an extensive early Archean craton in Zimbabwe: a reassessment of the timing of craton formation, stabilization, and growth. Geology. 27:707–710.
  • Hövelmann J, Putnis A, Geisler T, Schmidt BC, Golla-Schindler U. 2010. The replacement of plagioclase feldspars by albite: observations from hydrothermal experiments. Contrib Mineral Petrol. 159:43–59. doi:10.1007/s00410-009-0415-4.
  • Hu H, Li J-W, Lentz D, Ren Z, Zhao X-F, Deng X-D, Hall D. 2014. Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit: insights into ore genesis and implication for in-situ chemical analysis of magnetite. Ore Geol Rev. 57:393–405. doi:10.1016/j.oregeorev.2013.07.008.
  • Huston DL, Sun S, Blewett R, Hickman AH, Van Kranendonk M, Phillips D, Baker D, Brauhart C. 2002. The timing of mineralization in the Archean North Pilbara terrain, Western Australia. Econ Geol. 97:733–755.
  • Irvine TN. 1965. Chromian spine1 as a petrogenetic indicator. Part 1, theory. Can J Earth Sci. 2:648–672.
  • Irvine TN. 1967. Chromian spinel as a petrogenetic indicator: part 2. Petrologic applications. Can J Earth Sci. 4:71–103.
  • Jackson ED. 1969. Chemical variation in coexisting chromite and olivine in chromitite zones of the Stillwater Complex. Econ Geol Mon. 4:41–71.
  • Jahn B-M, Condie KC. 1976. On the age of Rhodesian greenstone belts. Contrib Mineral Petrol. 57:317–330. doi:10.1007/BF03542941.
  • Jarosewich E. 2002. Smithsonian microbeam standards. J Res Natl Inst Stand Technol. 107:681–685. doi:10.6028/jres.107.054.
  • Jelsma HA, Dirks PHGM. 2000. Tectonic evolution of a greenstone sequence in northern Zimbabwe: sequential early stacking and pluton diapirism. Tectonics. 19:135–152. doi:10.1029/1999TC900058.
  • Jelsma HA, Dirks PHGM. 2002. Neoarchaean tectonic evolution of the Zimbabwe craton. In: Fowler CMR, Ebinger CJ, Hawkesworth CJ, editor. The early earth: physical, chemical and biological development. London: Geological Society, Special Publications; Vol. 199; p. 183–211. doi:10.1144/GSL.SP.2002.199.01.10.
  • Jelsma HA, Van Der Beek PR, Vinyu ML. 1993. Tectonic evolution of the Bindura-Shamva greenstone belt (northern Zimbabwe): progressive deformation around diapiric batholiths. J Struct Geol. 15:163–176. doi:10.1016/0191-8141(93)90093-P.
  • Jelsma HA, Vinyu ML, Valbracht PJ, Davies GR, Wijbrans JR, Verdurmen EAT. 1996. Constraints on Archaean crustal evolution of the Zimbabwe craton: a U-Pb zircon, Sm-Nd and Pb-Pb whole-rock isotope study. Contrib Mineral Petrol. 124:55–70. doi:10.1007/s004100050173.
  • Kadir S, Erkoyun H. 2015. Characterization and distribution of fibrous tremolite and chrysotile minerals in the Eskisehir region of western Turkey. Clay Mineral. 50:441–458.
  • Kamenetsky VS, Crawford AJ, Meffre S. 2001. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol. 42:655–671.
  • Keep FE. 1929. The geology of the Shabani Mineral Belt, Belingwe district. South Rhod Geol Surv Bull. 12:193.
  • Kimball KL. 1990. Effects of hydrothermal alteration on the compositions of chromian spinels. Contrib Mineral Petrol. 105:337–346. doi:10.1007/BF00306543.
  • Kusky TM. 1998. Tectonic setting and terrane accretion of the Archean Zimbabwe craton. Geology. 26:163–166. doi:10.1130/0091-7613(1998)026<0163:TSATAO>2.3.CO;2.
  • Kyser TK, O’Hanley DS, Wicks FJ. 1999. The origin of fluids associated with serpentinization processes: evidence from stable-isotope compositions. Can Mineral. 37:223–237.
  • Laubscher DH. 1963. The origin and occurrence of chrysotile asbestos and associated rocks in the Shabani and Mashaba area, Southern Rhodesia [Unpublished PhD thesis]. Johannesburg: University of the Witwatersrand. p. 140.
  • Laubscher DH. 1964. The Occurrence and origin of chrysotile asbestos and associated rocks, Southern Rhodesia. In: Haughton SH, editor. The geology of some ore deposits in Southern Africa. Geological Society of South Africa, Special Publication; p. 593–624. Vol. 2. p. 739.
  • Laubscher DH. 1968. The origin and occurrence of chrysotile asbestos in the Shabani and Mashaba areas, Rhodesia. Trans Geol Soc S Afr. 71:195–204. Annexure.
  • Laubscher DH. 1986. Chrysotile asbestos in the Zvishavane (Shabani) and Mashava (Mashaba) areas, Zimbabwe. In: Anhaeusser CR, Maske S, editor. Mineral deposits of Southern Africa, Vols I & II. Geological Society of South Africa; p. 377–393.
  • Lenaz D, Garuti G, Zaccarini F, Cooper RW, Princivalle F. 2012. The Stillwater Complex chromitites: the response of chromite crystal chemistry to magma injection. Geol Acta. 10:33–41.
  • Li C, Ripley EM, Sarkar A, Shin D, Maier WD. 2005. Origin of phlogopite-orthopyroxene inclusions in chromites from the Merensky Reef of the Bushveld Complex, South Africa. Contrib Mineral Petrol. 150:119–130. doi:10.1007/s00410-005-0013-z.
  • Martin A. 1978. The geology of the Belingwe-Shabani Schist Belt. Rhod Geol Surv Bull No. 83, 220 p.
  • Martin A, Nisbet E, Bickle M, Orpen J. 1993. Rock units and stratigraphy of the Belingwe greenstone belt: the complexity of the tectonic setting. In: Bickle M, Nisbet E, editor. The geology of the Belingwe Greenstone Belt, Zimbabwe. Geological Society of Zimbabwe Special Publication; Vol. 2, p. 39–68.
  • Mei Y, Liu W, Sherman DM, Brugger J. 2014. Metal complexation and ion hydration in low density hydrothermal fluids: ab initio molecular dynamics simulation of Cu(I) and Au(I) in chloride solutions (25–1000(C, 1–5000 bar). Geochim Cosmochim Acta. 131:196–212. doi:10.1016/j.gca.2014.01.033.
  • Mellini M, Rumori C, Viti C. 2005. Hydrothermally reset magmatic spinels in retrograde serpentinites: formation of “ferritchromit” rims and chlorite aureoles. Contrib Mineral Petrol. 149:266–275. doi:10.1007/s00410-005-0654-y.
  • Merlini A, Grieco G, Diella V. 2009. Ferritchromite and chromian-chlorite formation in melange-hosted Kalkan chromitite (Southern Urals, Russia). Am Mineral. 94:1459–1467. doi:10.2138/am.2009.3082.
  • Mittwede SK, Schandl ES. 1992. Rodingites from the southern Appalachian piedmont, South Carolina, USA. Eur J Mineral. 4:7–16. doi:10.1127/ejm/4/1/0007.
  • Moorbath S, Taylor PN, Orpen JL, Treloar P, Wilson JF. 1987. First direct radiometric dating of Archaean stromatolitic limestone. Nature. 326:865–867. doi:10.1038/326865a0.
  • Moorbath S, Wilson JF, Goodwin R, Humm M. 1977. Further Rb-Sr age and isotope data on early and late Archaean rocks from the Rhodesian craton. Precambrian Res. 5:229–239. doi:10.1016/0301-9268(77)90030-4.
  • Moorbath SM, Taylor PN, Jones NW. 1986. Dating the oldest terrestrial rocks — fact and fiction. Chem Geol. 57:63–86. doi:10.1016/0009-2541(86)90094-X.
  • Morris HC. 1968. The geology and gold mineralization of the Shabi shear zone, Shabani District, Southern Rhodesia [unpublished PhD thesis]. Johannesburg: University of the Witwatersrand, p. 247.
  • Mukherjee R, Mondal SK, Rosing MT, Frei R. 2010. Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar craton (India): potential parental melts and implications for tectonic setting. Contrib Mineral Petrol. 160:865–885. doi:10.1007/s00410-010-0511-5.
  • Nägler TF, Kramers JD, Kamber BS, Frei R, Prendergast MDA. 1997. Growth of subcontinental lithospheric mantle beneath Zimbabwe started at or before 3.8 Ga: Re-Os study on chromites. Geology. 25:983–986. doi:10.1130/0091-7613(1997)025<0983:GOSLMB>2.3.CO;2.
  • Naldrett AJ, Kinnaird JA, Wilson A, Yudovskaya M, Mcquade S, Chunnett G, Stanley C. 2009. Chromite composition and PGE content of Bushveld chromitites: part 1 - the lower and middle groups. Applied Earth Science. 118:131–161. doi:10.1179/174327509X12550990458004.
  • O’Hanley DS. 1996. Serpentinites: records of tectonic and petrological history. Oxf Monogr Geol Geophys. 34:277.
  • Onyeagocha AC. 1974. Alteration of chromite from the Twin Sisters Dunite, Washington. Am Mineral. 59:608–612.
  • Pagé P, Bédard JH, Tremblay A. 2009. Geochemical variations in a depleted fore-arc mantle: the Ordovician Thetford Mines Ophiolite. Lithos. 113:21–47.
  • Papp JF, Lipin BR. 2006. Chromite. In: Kogel JE, Trivedi NC, Barker JM, Krukowski ST, editor. Industrial minerals and rocks - commodities, markets, and uses. 7th ed. Littleton, CO: Society for Mining, Metallurgy, and Exploration, Inc.; p. 309–333.
  • Paulick H, Bach W, Godard M, De Hoog JCM, Suhr G, Harvey J. 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chem Geol. 234:179–210. doi:10.1016/j.chemgeo.2006.04.011.
  • Polovina JS, Hudson DM, Jones RE. 2004. Petrographic and geochemical characteristics of postmagmatic hydrothermal alteration and mineralization in the JM Reef, Stillwater Complex, Montana. The Canadian Mineralogist. 42:261–277. doi:10.2113/gscanmin.42.2.261.
  • Prendergast MD. 1987. The chromite ore field of the Great Dyke, Zimbabwe. In: Stowe CW, editor. Evolution of chromium ore fields. New York: Van Nostrand-Reinhold; p. 89–108.
  • Proenza JA, Gervilla F, Melgarejo JC, Bodinier JL. 1999. Al- and Cr-rich chromitites from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba): consequence of interaction between volatile-rich melts and peridotite in suprasubduction mantle. Econ Geol. 94:547–566.
  • Proenza JA, Ortega-Gutiérrez F, Camprubi A, Trilla J, Elías-Herrera M, Reyes-Salas M. 2004. Paleozoic serpentinite-enclosed chromitites from Tehuatzingo (Acatlán Complex, southern Mexico): a petrological and mineralogical study. J South Am Earth Sci. 16:649–666.
  • Proenza JA, Zaccarini F, Escayola M, Cábana C, Schalamuk A, Garuti G. 2008. Composition and textures of chromite and platinum-group minerals in chromitites of the western ophiolitic belt from Pampean Ranges of Córdoba, Argentina. Ore Geol Rev. 33:32–48.
  • Purvis AC, Nesbitt RW, Hallberg JA. 1972. The geology of part of the Carr Boyd Rocks Complex and its associated nickel mineralization, Western Australia. Econ Geol. 67:1093–1113. doi:10.2113/gsecongeo.67.8.1093.
  • Python M, Yoshikawa M, Shibata T, Arai S. 2011. Diopsidites and rodingites: serpentinisation and Ca-metasomatism in the Oman ophiolite mantle. In: Srivastava RK, Swarms D, editor. Keys for geodynamic interpretations. Berlin: Springer; p. 401–435.
  • Reed SJ. 2005. Electron microprobe analysis and scanning electron microscopy in Geology, 2nd eds. Cambridge: Cambridge University Press; p. 189.
  • Roberts S, Foster RP, Nesbitt RW. 1990. Mineralization associated with early Precambrian basic magmatism. In: Hall RP, Hughes DJ, editor. Early Precambrian basic magmatism. Glasgow: Blackie; p. 486.
  • Rollinson H. 1995a. Composition and tectonic settings of chromite deposits through time; discussion. Econ Geol. 90:2091–2092. doi:10.2113/gsecongeo.90.7.2091.
  • Rollinson H. 1995b. The relationship between chromite chemistry and the tectonic setting of Archean ultramafic rocks. In: Blenkinsop TG, Tromp P, editor. Sub-Saharan economic geology, Amsterdam, Balkema. p. 7–23.
  • Rollinson H. 2008. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions. Contrib Mineral Petrol. 156:273–288.
  • Rollinson HR. 2005. Chromite in the mantle section of the Oman ophiolite: a new genetic model. Isl ArcIsl Arc. 14:542–550. doi:10.1111/j.1440-1738.2005.00482.x.
  • Schandl ES, Mittwede SK. 2001. Evolution of the Acipayam (Denizli, Turkey) rodingites. Int Geol Rev. 43:611–623. doi:10.1080/00206810109465036.
  • Schandl ES, O’Hanley DS, Wicks FJ. 1989. Rodingites in serpentinized ultramafic rocks of the Abitibi greenstone belt, Ontario. Can Mineral. 27:579–591.
  • Seyfried WE, Foustoukos DI, Fu Q. 2007. Redox evolution and mass transfer during serpentinization: an experimental and theoretical study at 200(C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges. Geochim Cosmochim Acta. 71:3872–3886. doi:10.1016/j.gca.2007.05.015.
  • Stevens RE. 1944. Composition of some chromites of the western hemisphere. Am Mineral. 29:1–34.
  • Stowe CW. 1968. The geology of the country south and west of Selukwe, Rhodesia. Geol Surv Bull. 59:209.
  • Stowe CW. 1987. Chromite deposits of the Shurugwi greenstone belt, Zimbabwe. In: Stowe CW, editor. Evolution of chromium ore fields. New York: Van Nostrand-Reinhold; p. 71–88.
  • Stowe CW. 1994. Compositions and tectonic settings of chromite deposits through time. Econ Geol. 89:528–546. doi:10.2113/gsecongeo.89.3.528.
  • Suita MTDF, Streider AJ. 1996. Cr-spinels from Brazilian mafic-ultramafic complexes: metamorphic modifications. Int Geol Rev. 38:245–267. doi:10.1080/00206819709465333.
  • Taylor HP, Forester JR, W R. 1979. An oxygen and hydrogen isotope study of the Skaergaard Intrusion and its country rocks: a description of a 55 m.y. old fossil hydrothermal system. J Petrol. 20:355–419.
  • Thalhammer OAR, Prochaska W, Mühlhans HW. 1990. Solid inclusions in chrome-spinels and platinum group element concentrations from the Hochgrössen and Kraubath Ultramafic Massifs (Austria). Contrib Mineral Petrol. 105:66–80.
  • Thayer TP. 1966. Serpentinization considered as a constant-volume metasomatic process. Am Mineral. 51:685–710.
  • Ulmer GC. 1974. Alteration of chromite during serpentinization in the Pennsylvania-Maryland District. Am Mineral. 59:1236–1241.
  • U.S. Mineral Commodity Summaries. 2020. Asbestos, U.S. Geological Survey, Mineral Commodity Summaries; p. 26–27.
  • Vance JA, Dungan MA. 1977. Formation of peridotites by deserpentinization in the Darrington and Sultan areas, Cascade Mountains, Washington. Geol Soc Am Bull. 88:1497–1508. doi:10.1130/0016-7606(1977)88<1497:FOPBDI>2.0.CO;2.
  • Whitney DL, Evans BW. 2010. Abbreviations for names of rock-forming minerals. Am Mineral. 95:185–187.
  • Wilson AH. 1982. The geology of the Great ‘Dyke’, Zimbabwe: the ultramafic rocks. J Petrol. 42:109–124.
  • Wilson JF. 1968a. The geology of the country around Mashaba, geological survey of Rhodesia. Bulletin. 62:239.
  • Wilson JF. 1968b. The Mashaba Igneous Complex and its subsequent deformation. Trans Proc Geol Soc S Afr. 71:175–188. Annexure.
  • Wilson JF. 1979. A preliminary reappraisal of the Rhodesian basement complex. In: Anhaeusser CR, Foster RP, Stratten T, editor. A symposium on mineral deposits and the transportation of metals. Geological Society of South Africa Special Publication; Vol. 5, p. 1–24.
  • Wilson JF. 1990. A craton and its cracks: some of the behaviour of the Zimbabwe block from the Late Archaean to the Mesozoic in response to horizontal movements, and the significance of some of its Mafic Dyke fracture patterns. J Afr Earth Sci (Middle East). 10:483–501. doi:10.1016/0899-5362(90)90101-J.
  • Wilson JF, Jones DL, Kramers JD. 1987. Mafic Dyke swarms in Zimbabwe. In: Halls FC, Fahrig WF, editor. Mafic Dyke Swarms. Geological Association of Canada Special Paper; p. 433–444.
  • Wilson JF, Nesbitt RW, Fanning CM. 1995. Coward MP, Ries AC, editor. Zircon geochronology of Archaean felsic sequences in the Zimbabwe craton: a revision of greenstone stratigraphy and a model for crustal growth. London: Geological Society; Special Publications; Vol. 95, p. 109–126. doi:10.1144/GSL.SP.1995.095.01.07.
  • Worst BG. 1958. The differentiation and structure of the Great Dyke of Southern Rhodesia. Trans Geol Soc S Afr LIX. 283–358.
  • Worst BG. 1960. The great dyke of Southern Rhodesia. Southern Rhod. Geol. Surv. Bull. 47.
  • Wylie AN, Candela PA, Burke TM. 1987. Compositional zoning in unusual Zn-rich chromite from the Sykesville district of Maryland and its bearing on the origin of “ferritchromite”. Am Mineral. 72:413–422.
  • Yu H, Zhang HF, Zou HB, Yang YH. 2019. Minor and trace element variations in chromite from the Songshugou dunites, North Qinling Orogen: evidence for amphibolite-facies metamorphism. Lithos. 328-329:146–158. doi:10.1016/j.lithos.2019.01.009.
  • Zaccarini F, Proenza JA, Ortega-Gutierrez F, Garuti G. 2005. Platinum group minerals in ophiolitic chromitites from Tehuitzingo (Acatlan Complex, Southern Mexico): implications for post magmatic modification. Mineral Petrol. 84:147–168.
  • Zhou M-F, Kerrich RW. 1992. Morphology and composition of chromite in komatiites from the Belingwe greenstone belt, Zimbabwe. Can Mineral. 30:303–317.
  • Zhou M-F, Robinson PT. 1997. Origin and tectonic environment of podiform chromite deposits Econ Geol. 92:259–262.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.