129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Zr on precipitation kinetics of Fe-Cr-Al alloys

, , ORCID Icon, , &
Article: 2328409 | Received 20 Dec 2023, Accepted 04 Mar 2024, Published online: 12 Mar 2024

References

  • Kim C, Kim H, Heo W, et al. High-temperature steam oxidation behavior of alumina-forming duplex FeNiCrAl and ferritic FeCrAl alloys at 800°C to 1050°C. Corros Sci. 2021;190:109658. doi:10.1016/j.corsci.2021.109658
  • Sun ZQ, Edmondson PD, Yamamoto Y. Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys. Acta Mater. 2018;144:716–727. doi:10.1016/j.actamat.2017.11.027
  • Niu B, Wang ZH, Wang Q, et al. Dual-phase synergetic precipitation in Nb/Ta/Zr co-modified Fe-Cr-Al-Mo alloy. Intermetallics. 2020;124:106848. doi:10.1016/j.intermet.2020.106848
  • Zinkle SJ, Was GS. Materials challenges in nuclear energy. Acta Mater. 2013;61:735–758. doi:10.1016/j.actamat.2012.11.004
  • Yuan Q, Chai LJ, Yang T, et al. Laser-clad FeCrAl/TiC composite coating on ferrite/martensitic steel: significant grain refinement and wear resistance enhancement induced by adding TiC. Surf Coat Tech. 2023;456:129272. doi:10.1016/j.surfcoat.2023.129272
  • Li P, Li QQ, Jin T, et al. Effect of Re on low-cycle fatigue behaviors of Ni-based single-crystal superalloys at 900°C. Mater Sci Eng A. 2014;603:84–92. doi:10.1016/j.msea.2014.02.073
  • Du JH, Lu XD, Deng Q, et al. High-temperature structure stability and mechanical properties of novel 718 superalloy. Mater Sci Eng A. 2007;452:584–591.
  • Song G, Sun Z, Poplawsky JD, et al. Primary and secondary precipitates in a hierarchical-precipitate-strengthened ferritic alloy. J Alloys Compd. 2017;706:584–588. doi:10.1016/j.jallcom.2017.02.271
  • Song G, Sun Z, Poplawsky JD, et al. Microstructural evolution of single Ni2TiAl or hierarchical NiAl/Ni2TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications. Acta Mater. 2017;127:1–16. doi:10.1016/j.actamat.2017.01.011
  • Bahl S, Xiong LH, Allard LF, et al. Aging behavior and strengthening mechanisms of coarsening resistant metastable θ′ precipitates in an Al–Cu alloy. Mater Des. 2021;198:109378. doi:10.1016/j.matdes.2020.109378
  • Yamamoto Y, Pint BA, Terrani KA, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. J Nucl Mater. 2015;467:703–716. doi:10.1016/j.jnucmat.2015.10.019
  • Sun ZQ, Bei HB, Yamamoto Y. Microstructural control of FeCrAl alloys using Mo and Nb additions. Mater Charact. 2017;132:126–131. doi:10.1016/j.matchar.2017.08.008
  • Stein F, Palm M, Sauthoff G. Structure and stability of laves phases part II – structure type variations in binary and ternary systems. Intermetallics. 2005;13:1056–1074. doi:10.1016/j.intermet.2004.11.001
  • Stein F, Palm M, Sauthoff G. Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability. Intermetallics. 2004;12:713–720. doi:10.1016/j.intermet.2004.02.010
  • Sui S, Li Z, Zhong CL, et al. Laves phase tuning for enhancing high temperature mechanical property improvement in laser directed energy deposited Inconel 718. Composites Part B. 2021;215:108819. doi:10.1016/j.compositesb.2021.108819
  • Stein F, Leineweber A. Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. J Mater Sci. 2021;56:5321–5427. doi:10.1007/s10853-020-05509-2
  • Isik MI, Kostka A, Eggeler G. On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels. Acta Mater. 2014;81:230–240. doi:10.1016/j.actamat.2014.08.008
  • Morris DG, Muñoz-Morris MA. Room and high temperature deformation behaviour of a forged Fe-15Al-5Nb alloy with a reinforcing dispersion of equiaxed Laves phase particles. Mater Sci Eng A. 2012;552:134–144. doi:10.1016/j.msea.2012.05.022
  • Porter DA, Easterling K E. Phase transformations in metals and alloys. Van Nostrand Rcinhold Co; 1992. doi:10.1007/978-1-4899-3051-4_6
  • Morales EV, Alvarez NJG, Leiva JV, et al. Kinetic theory of the overlapping phase transformations: case of the dilatometric method. Acta Mater. 2004;52:1083–1088. doi:10.1016/j.actamat.2003.10.041
  • Morales EV, Vega-Leiva JA, Salinas HLL, et al. Analysis of precipitation mechanisms in tempering of low-alloy steels using the kinetic theory of the overlapping transformations. Phase Trans. 2011;84:179–191. doi:10.1080/01411594.2010.530031
  • Voorhees PW, Johnson WC. Elastically-Induced precipitate shape transitions in coherent solids. Solid State Phenom. 1992;23-24:87–103. doi:10.4028/www.scientific.net/SSP.23-24.87
  • Khachaturyan AG, Semenovskaya SV, Morris JW. Theoretical analysis of strain-induced shape changes in cubic precipitates during coarsening. Acta Metall. 1988;36:1563–1572. doi:10.1016/0001-6160(88)90224-6
  • Lifshitz IM, Slyozov VV. The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids. 1961;19:35–50. doi:10.1016/0022-3697(61)90054-3
  • Galindo-Nava EI, Rainforth WM, Rivera-Díaz-Del-Castillo PEJ. Predicting microstructure and strength of maraging steels: elemental optimisation. Acta Mater. 2016;117:270–285. doi:10.1016/j.actamat.2016.07.020
  • Murali D, Panigrahi BK, Valsakumar MC, et al. Diffusion of Y and Ti/Zr in bcc iron: a first principles study. J Nucl Mater. 2011;419:208–212. doi:10.1016/j.jnucmat.2011.05.018
  • Perrard F, Deschamps A, Maugis P. Modelling the precipitation of NbC on dislocations in α-Fe. Acta Mater. 2007;55:1255–1266. doi:10.1016/j.actamat.2006.10.003
  • Huang SY, Worthington DL, Asta M, et al. Calculation of impurity diffusivities in α-Fe using first-principles methods. Acta Mater. 2010;58:1982–1993. doi:10.1016/j.actamat.2009.11.041
  • Shaikh QA. Interdiffusion measurement of niobium and tantalum in iron base alloys. Mater Sci Technol. 1990;6:1177–1180. doi:10.1179/mst.1990.6.12.1177
  • Nitta H, Yamamoto T, Kanno R, et al. Diffusion of molybdenum in α-iron. Acta Mater. 2002;50:4117–4125. doi:10.1016/S1359-6454(02)00229-X