1,091
Views
0
CrossRef citations to date
0
Altmetric
High Throughput Data Generation

Accelerating materials discovery: combinatorial synthesis, high-throughput characterization, and computational advances

, ORCID Icon &
Article: 2292486 | Received 20 May 2023, Accepted 04 Dec 2023, Published online: 06 Mar 2024

References

  • Moskowitz SL. The advanced materials revolution: technology and economic growth in the age of globalization. Hoboken (NJ): John Wiley & Sons; 2008.
  • Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1(1):1–41. doi: 10.1063/1.4812323
  • Potyrailo RA, Amis EJ. High-throughput analysis: a tool for combinatorial materials science. New York: Kluwer Academic/Plenum Publishers; 2003.
  • Tabor DP, Roch LM, Saikin SK, et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat Rev Mater. 2018;3:5–20. doi: 10.1038/s41578-018-0005-z
  • Maier WF, Stöwe K, Sieg S. Combinatorial and high-throughput materials science. Angew Chem Int Ed. 2007;46(32):6016–6067. doi: 10.1002/anie.200603675
  • Terakura K, Takeuchi I. Focus on materials genome and informatics. Sci Technol Adv Mater. 2017;18(1):1–2. doi: 10.1080/14686996.2016.1246226
  • Wang Y, Zhang W, Chen L, et al. Quantitative description on structure–property relationships of Li-ion battery materials for high-throughput computations. Sci Technol Adv Mater. 2017;18(1):134–146. doi: 10.1080/14686996.2016.1277503
  • Grasset F, Pic L. Focus on overview of innovative materials for energy. Sci Technol Adv Mater. 2017;18(1):704. doi: 10.1080/14686996.2017.1379729
  • Lam Pham T, Kino H, Terakura K, et al. Machine learning reveals orbital interaction in materials. Sci Technol Adv Mater. 2017;18(1):756–765. doi: 10.1080/14686996.2017.1378060
  • Ludwig A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. Npj Comput Mater. 2019;5(1):70. doi: 10.1038/s41524-019-0205-0
  • Chen Y, Chen C, Zheng C, et al. Database of ab initio L-edge X-ray absorption near edge structure. Sci Data. 2021;8(1):153. doi: 10.1038/s41597-021-00936-5
  • Horton MK, Dwaraknath S, Persson KA. Promises and perils of computational materials databases. Nat Comput Sci. 2021;1(1):3–5. doi: 10.1038/s43588-020-00016-5
  • Gregoire JM, Zhou L, Haber JA. Combinatorial synthesis for AI-driven materials discovery. Nat Synth. 2023;2(6):493–504. doi: 10.1038/s44160-023-00251-4
  • Ogale SB. Thin films and heterostructures for oxide electronics. New York: Springer; 2005.
  • Cabo MJ, NP M, Song JI. Synthesis of non-phosphorylated epoxidised corn oil as a novel green flame retardant thermoset resin. Sci Rep. 2021;11(1):24140. doi: 10.1038/s41598-021-03274-z
  • Li P, Materials research Society. Fall Meeting. Mineralization in natural and synthetic biomaterials: symposium held November 29-December 1 1999, Boston, MA. 2000.
  • Fasolka MJ, Materials Research Society. Fall Meeting. Combinatorial methods and informatics in materials science : symposium held November 28-December 1, 2005, Boston, MA, Warrendale, PA: Materials Research Society; 2006.
  • Park JC, Heo GS, Lee JH, et al. Synthesis of TaZnO thin films using combinatorial magnetron sputtering and its electrical, structural and optical properties. J Nanosci Nanotechnol. 2012;12(7):5303–5306. doi: 10.1166/jnn.2012.6303
  • McGinn PJ. Thin-film processing routes for combinatorial materials investigations—a review. ACS Comb Sci. 2019;21(7):501–515. doi: 10.1021/acscombsci.9b00032
  • Potyrailo RA, Materials Research Society. Fall Meeting. Combinatorial and artificial intelligence methods in materials science II : symposium held December 1–4 2003, Boston, MA, Warrendale, PA: Materials Research Society; 2004.
  • Al Hasan NM, Hou H, Sarkar S, et al. Combinatorial synthesis and high-throughput characterization of microstructure and phase transformation in ni–ti–cu–V quaternary thin-film library. Eng. 2020;6(6):637–643. doi: 10.1016/j.eng.2020.05.003
  • Green ML, Takeuchi I, Hattrick-Simpers JR. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J Appl Phys. 2013;113(23):231101. doi: 10.1063/1.4803530
  • Potyrailo RA, Amis EJ. Battery materials for ultrafast charging and discharging. Nature. 2009;458(7235):190–193. doi: 10.1038/nature07853
  • Yu L, Zunger A. Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys Rev Lett. 2012;108(6):68701. doi: 10.1103/PhysRevLett.108.068701
  • Yang K, Setyawan W, Wang S, et al. A search model for topological insulators with high-throughput robustness descriptors. Nat Mater. 2012;11(7):614–619. doi: 10.1038/nmat3332
  • Hack J, Maeda N, Meier DM. Review on CO2 capture using Amine-functionalized materials. ACS Omega. 2022;7(44):39520–39530. doi: 10.1021/acsomega.2c03385
  • Armiento R, Kozinsky B, Fornari M, et al. Screening for high-performance piezoelectrics using high-throughput density functional theory. Phys Rev B. 2011;84(1):14103. doi: 10.1103/PhysRevB.84.014103
  • Chen H, Hautier G, Ceder CG. Synthesis, computed stability, and crystal structure of a new family of inorganic compounds: carbonophosphates. J Am Chem Soc. 2012;134(48):19619–19627. doi: 10.1021/ja3040834
  • Alapati SV, Johnson JK, Sholl DS. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. J Phys Chem B. 2006;110(17):8769–8776. doi: 10.1021/jp060482m
  • Lu J, Fang ZZ, Choi YJ, et al. Potential of binary lithium magnesium nitride for hydrogen storage applications. J Phys Chem C. 2007;111(32):12129–12134. doi: 10.1021/jp0733724
  • Yang J, Sudik A, Wolverton C, et al. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem Soc Rev. 2010;39(2):656–675. doi: 10.1039/B802882F
  • Jain A, Hautier G, Moore C, et al. A computational investigation of Li9M3(P2O7)3(PO4)2 (M = V, Mo) as cathodes for li ion batteries. J Electrochem Soc. 2012;159(5):A622. doi: 10.1149/2.080205jes
  • Mathew K, Montoya JH, Faghaninia A, et al. Atomate: a high-level interface to generate, execute, and analyze computational materials science workflows. Comput Mater Sci. 2017;139:140–152. doi: 10.1016/j.commatsci.2017.07.030
  • Jain A, Hautier G, Moore CJ, et al. A high-throughput infrastructure for density functional theory calculations. Comput Mater Sci. 2011;50(8):2295–2310. doi: 10.1016/j.commatsci.2011.02.023
  • Jain A, Shin Y, Persson KA. Computational predictions of energy materials using density functional theory. Nat Rev Mater. 2016;1(1):1–13. doi: 10.1038/natrevmats.2015.4
  • Castelli IE, Olsen T, Datta S, et al. Computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ Sci. 2012;5(2):5814–5819. doi: 10.1039/C1EE02717D
  • Kim JC, Moore CJ, Kang B, et al. Synthesis and electrochemical properties of monoclinic LiMnBO[sub 3] as a li intercalation material. J Electrochem Soc. 2011;158(3):A309. doi: 10.1149/1.3536532
  • Hou T, Fong KD, Wang J, et al. Correction: the solvation structure, transport properties and reduction behavior of carbonate-based electrolytes of lithium-ion batteries. Chem Sci. 2022;13(27):8205. doi: 10.1039/D2SC90129C
  • Rutt A, Shen J-X, Horton M, et al. Expanding the material search space for multivalent cathodes. ACS Appl Mater Interfaces. 2022;14(39):44367–44376. doi: 10.1021/acsami.2c11733
  • Siron M, Andriuc O, Persson KA. Data-driven investigation of tellurium-containing semiconductors for CO2 reduction: trends in adsorption and scaling relations. J Phys Chem C. 2022;126(31):13224–13236. doi: 10.1021/acs.jpcc.2c04810
  • Ionut A, Ludwig A, Savan A, et al. Scanning droplet cell microscopy on a wide range Hafnium – Niobium thin film combinatorial library. Electrochim Acta. 2013;110:539–549. doi: 10.1016/j.electacta.2013.03.065
  • Alexandrakis V, Wallisch W, Hamann S, et al. Combinatorial development of Fe–Co–Nb thin film magnetic nanocomposites. ACS Comb Sci. 2015;17(11):698–703. doi: 10.1021/acscombsci.5b00116
  • Fackler SW, Alexandrakis V, König D, et al. Combinatorial study of Fe-Co-V hard magnetic thin films. Sci Technol Adv Mater. 2017;18(1):231–238. doi: 10.1080/14686996.2017.1287520
  • Kawashima K, Okamoto Y, Annayev O, et al. Combinatorial screening of halide perovskite thin films and solar cells by mask-defined IR laser molecular beam epitaxy. Sci Technol Adv Mater. 2017;18(1):307–315. doi: 10.1080/14686996.2017.1314172
  • Mardare AI, Savan A, Ludwig A, et al. A combinatorial passivation study of Ta–Ti alloys. Corros Sci. 2009;51(7):1519–1527. doi: 10.1016/j.corsci.2008.12.003
  • Curtarolo S, Hart GLW, Nardelli MB, et al. The high-throughput highway to computational materials design. Nat Mater. 2013;12(3):191–201. doi: 10.1038/nmat3568
  • Mao SS, Burrows PE. Combinatorial screening of thin film materials: an overview. J Mater. 2015;1(2):85–91. doi: 10.1016/j.jmat.2015.04.002
  • Potyrailo R, Rajan K, Stoewe K, et al. Combinatorial and high-throughput screening of materials libraries: review of state of the art. ACS Comb Sci. 2011;13(6):579–633. doi: 10.1021/co200007w
  • Zrinski I, Minenkov A, Cancellieri C, et al. Mixed anodic oxides for forming-free memristors revealed by combinatorial screening of hafnium-tantalum system. Appl Mater Today. 2022;26:101270. doi: 10.1016/j.apmt.2021.101270
  • Siket CM, Tillner N, Mardare AI, et al. Direct writing of anodic oxides for plastic electronics. Npj Flex Electron. 2018;2(1):23. doi: 10.1038/s41528-018-0036-y
  • Mardare AI, Kaltenbrunner M, Sariciftci NS. Ultra-thin anodic alumina capacitor films for plastic electronics. Phys Status Solidi Appl Mater Sci. 2012;209(5):813–818. doi: 10.1002/pssa.201100785
  • Ong SP, Richards WD, Jain A, et al. Python materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci. 2013;68:314–319. doi: 10.1016/j.commatsci.2012.10.028
  • Shahzad K, Mardare CC, Mardare AI, et al. Growth of mixed anodic films on combinatorial Al-Gd alloys and their superimposed potential-pH diagrams. J Electroanal Chem. 2022;911:116227. doi: 10.1016/j.jelechem.2022.116227
  • Xiang XD, Sun X, Briceño G, et al. A combinatorial approach to materials discovery. Science. 1995;268(5218):1738–1740. ited: in: PMID: 17834993. doi: 10.1126/science.268.5218.1738
  • Koinuma H, Takeuchi I. Combinatorial solid-state chemistry of inorganic materials. Nat Mater. 2004;3(7):429–438. doi: 10.1038/nmat1157
  • Dover RB, Schneemeyer LF, Fleming RM. Discovery of a useful thin-film dielectric using a composition-spread approach. Nature. 1998;392(6672):162–164. doi: 10.1038/32381
  • Zhang Y, Schultz AM, Li L, et al. Combinatorial substrate epitaxy: a high-throughput method for determining phase and orientation relationships and its application to BiFeO3/TiO2 heterostructures. Acta Mater. 2012;60(19):6486–6493. doi: 10.1016/j.actamat.2012.07.060
  • Hyeon T. Chemical synthesis of magnetic nanoparticles. Chem Commun. 2003;8:927–934. doi: 10.1039/b207789b
  • Saldan I, Semenyuk Y, Marchuk I, et al. Chemical synthesis and application of palladium nanoparticles. J Mater Sci. 2015;50(6):2337–2354. doi: 10.1007/s10853-014-8802-2
  • Talapin DV, Chevchanko EV. Introduction: nanoparticle chemistry. Chem Rev. 2016;116(18):10343–10345. doi: 10.1021/acs.chemrev.6b00566
  • Ghorbani HR. A review of methods for synthesis of Al nanoparticles. Orient J Chem. 2014;30(4):1941–1949. doi: 10.13005/ojc/300456
  • Hu X, Takai O, Saito N. Simple synthesis of platinum nanoparticles by plasma sputtering in water. Jpn J Appl Phys. 2013;52(1S):01AN05. doi: 10.7567/JJAP.52.01AN05
  • Orozco-Montes V, Caillard A, Brault P, et al. Synthesis of platinum nanoparticles by plasma sputtering onto glycerol: effect of argon pressure on their physicochemical properties. J Phys Chem C. 2021;125(5):3169–3179. doi: 10.1021/acs.jpcc.0c09746
  • Liang J, Liu Q, Li T, et al. Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chem. 2021;23(8):2834–2867. doi: 10.1039/D0GC03994B
  • Giri PK, Bhattacharyya S, Singh DK, et al. Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. J Appl Phys. 2007;102(9):93515. doi: 10.1063/1.2804012
  • Li L, Pu S, Liu Y, et al. High-purity disperse α-Al2O3 nanoparticles synthesized by high-energy ball milling. Adv Powder Technol. 2018;29(9):2194–2203. doi: 10.1016/j.apt.2018.06.003
  • Abid N, Khan AM, Shujait S, et al. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv Colloid Interface Sci. 2022;300:102597. doi: 10.1016/j.cis.2021.102597
  • Ristoscu C, Mihailescu IN. Thin films and nanoparticles by pulsed laser deposition: wetting, adherence, and nanostructuring. Pulsed laser ablation. New York: Jenny Stanford Publishing; 2018. p. 245–276.
  • Serbezov V. Pulsed laser deposition: the road to hybrid nanocomposites coatings and novel pulsed laser adaptive technique. Recent Pat Nanotechnol. 2013;7(1):26–40. doi: 10.2174/187221013804484863
  • Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci. 2010;156(1–2):1–13. doi: 10.1016/j.cis.2010.02.001
  • Siegwart DJ, Whitehead KA, Nuhn L, et al. Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proc Natl Acad Sci. 2011;108(32):12996–13001. doi: 10.1073/pnas.1106379108
  • König D, Richter K, Siegel A, et al. High-throughput fabrication of Au–Cu nanoparticle libraries by combinatorial sputtering in ionic liquids. Adv Funct Mater. 2014;24(14):2049–2056. doi: 10.1002/adfm.201303140
  • Richter K, Campbell PS, Baecker T, et al. Ionic liquids for the synthesis of metal nanoparticles. Phys Status Solidi. 2013;250(6):1152–1164. doi: 10.1002/pssb.201248547
  • Fan Y, Yen C-W, Lin H-C, et al. Automated high-throughput preparation and characterization of oligonucleotide-loaded lipid nanoparticles. Int J Pharm. 2021;599:120392. doi: 10.1016/j.ijpharm.2021.120392
  • Damoiseaux R, George S, Li M, et al. No time to lose—high throughput screening to assess nanomaterial safety. Nanoscale. 2011;3(4):1345–1360. doi: 10.1039/c0nr00618a
  • Ramishetti S, Hazan-Halevy I, Palakuri R, et al. A combinatorial library of lipid nanoparticles for RNA delivery to leukocytes. Adv Mater. 2020;32(12):1906128. doi: 10.1002/adma.201906128
  • Shi Y, Yang B, Rack PD, et al. High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Alx(CoCrFeNi)100-x combinatorial high-entropy alloys. Mater Des. 2020;195:109018. doi: 10.1016/j.matdes.2020.109018
  • Stock N. High-throughput investigations employing solvothermal syntheses. Microporous Mesoporous Mater. 2010;129(3):287–295. doi: 10.1016/j.micromeso.2009.06.007
  • Bodenstein-Dresler LCW, Kama A, Frisch J, et al. Prospect of making XPS a high-throughput analytical method illustrated for a CuxNi1−xOy combinatorial material library. RSC Adv. 2022;12(13):7996–8002. doi: 10.1039/D1RA09208A
  • Stremy M, Horvath D, Vana D, et al. RBS channeling MATLAB application for automated measurement control and evaluation for 6MV tandetron accelerator. Appl Sci. 2021;11(9):11. doi: 10.3390/app11093817
  • Möller S, Höschen D, Kurth S, et al. A new high-throughput focused MeV ion-beam analysis setup. Instruments. 2021;5(1):10. doi: 10.3390/instruments5010010
  • Möller S, Ding R, Xie H, et al. 13C tracer deposition in EAST D and He plasmas investigated by high-throughput deuteron nuclear reaction analysis mapping. Nucl Mater Energy. 2020;25:100805. doi: 10.1016/j.nme.2020.100805
  • Światowska-Mrowiecka J, de Diesbach S, Maurice V, et al. Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRA. J Phys Chem C. 2008;112(29):11050–11058. doi: 10.1021/jp800147f
  • Barfoot KM. Ion beam analysis. Phys Bull. 1984;35(12):511. doi: 10.1088/0031-9112/35/12/022
  • Wendelbo R, Akporiaye DE, Karlsson A, et al. Combinatorial hydrothermal synthesis and characterisation of perovskites. J Eur Ceram Soc. 2006;26(6):849–859. doi: 10.1016/j.jeurceramsoc.2004.12.031
  • Kusne AG, Gao T, Mehta A, et al. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Sci Rep. 2014;4(1):6367. doi: 10.1038/srep06367
  • Long CJ, Hattrick-Simpers J, Murakami M, et al. Rapid structural mapping of ternary metallic alloy systems using the combinatorial approach and cluster analysis. Rev Sci Instrum. 2007;78(7):72217. doi: 10.1063/1.2755487
  • EAG Laboratories. The global leader in materials testing services [Internet]. [cited 2023 Mar 14]. Available from: https://www.eag.com/
  • Zarnetta R, Kneip S, Somsen C, et al. High-throughput characterization of mechanical properties of Ti–Ni–Cu shape memory thin films at elevated temperature. Mater Sci Eng A. 2011;528(21):6552–6557. doi: 10.1016/j.msea.2011.05.006
  • Naujoks D, Eggeler YM, Hallensleben P, et al. Identification of a ternary μ-phase in the Co–Ti–W system – an advanced correlative thin-film and bulk combinatorial materials investigation. Acta Mater. 2017;138:100–110. doi: 10.1016/j.actamat.2017.07.037
  • Curtarolo S, Setyawan W, Wang S, et al. AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci. 2012;58:227–235. doi: 10.1016/j.commatsci.2012.02.002
  • Shinde PA, Lokhande AC, Chodankar NR, et al. Temperature dependent surface morphological modifications of hexagonal WO3 thin films for high performance supercapacitor application. Electrochim Acta. 2017;224:397–404. doi: 10.1016/j.electacta.2016.12.066
  • Bunn JK, Fang RL, Albing MR. A high-throughput investigation of Fe–Cr–Al as a novel high-temperature coating for nuclear cladding materials. Nanotechnology. 2015;26(27):274003. doi: 10.1088/0957-4484/26/27/274003
  • Hattrick-Simpers JR, Jun C, Murakami M, et al. High-throughput screening of magnetic properties of quenched metallic-alloy thin-film composition spreads. Appl Surf Sci. 2007;254(3):734–737. doi: 10.1016/j.apsusc.2007.07.104
  • Takeuchi I, Famodu OO, Read JC, et al. Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads. Nat Mater. 2003;2(3):180–184. doi: 10.1038/nmat829
  • Decker P, Naujoks D, Langenkämper D, et al. High-throughput structural and functional characterization of the thin film materials system Ni–Co–Al. ACS Comb Sci. [Internet] 2017;19:618–624. doi: 10.1021/acscombsci.6b00176
  • Xia R, Brabec CJ, Yip H-L, et al. High-throughput optical screening for efficient semitransparent organic solar cells. Joule. 2019;3(9):2241–2254. doi: 10.1016/j.joule.2019.06.016
  • Kashiwagi T, Sue K, Takebayashi Y, et al. High-throughput synthesis of silver nanoplates and optimization of optical properties by machine learning. Chem Eng Sci. 2022;262:118009. doi: 10.1016/j.ces.2022.118009
  • Shen C, Wang C, Huang M, et al. A generic high-throughput microstructure classification and quantification method for regular SEM images of complex steel microstructures combining EBSD labeling and deep learning. J Mater Sci Technol. 2021;93:191–204. doi: 10.1016/j.jmst.2021.04.009
  • Yablon D, Chakraborty I, Passino H, et al. Deep learning to establish structure property relationships of impact copolymers from AFM phase images. MRS Commun. 2021;11(6):962–968. doi: 10.1557/s43579-021-00103-2
  • Sormana J-L, Meredith JC. High-throughput discovery of structure−mechanical property relationships for segmented poly(urethane−urea)s. Macromolecules. 2004;37(6):2186–2195. doi: 10.1021/ma035385v
  • Li Y, Hu X, Liu H, et al. High-throughput assessment of local mechanical properties of a selective-laser-melted non-weldable Ni-based superalloy by spherical nanoindentation. Mater Sci Eng A. 2022;844:143207. doi: 10.1016/j.msea.2022.143207
  • Tong Y, Zhang H, Huang H, et al. Strengthening mechanism of CoCrNiMox high entropy alloys by high-throughput nanoindentation mapping technique. Intermetallics. 2021;135:107209. doi: 10.1016/j.intermet.2021.107209
  • Gregoire JM, Van Campen DG, Miller CE, et al. A. High-throughput synchrotron X-ray diffraction for combinatorial phase mapping. J Synchrotron Radiat. 2014;21(6):1262–1268. doi: 10.1107/S1600577514016488
  • Tanaka M, Katsuya Y, Yamamoto A. A new large radius imaging plate camera for high-resolution and high-throughput synchrotron x-ray powder diffraction by multiexposure method. Rev Sci Instrum. 2008;79(7):75106. doi: 10.1063/1.2956972
  • Caskey CM, Richards RM, Ginley DS, et al. Thin film synthesis and properties of copper nitride, a metastable semiconductor. Mater Horizons. 2014;1(4):424–430. doi: 10.1039/C4MH00049H
  • Graham BJ, Hildebrand DGC, Kuan AT, et al. High-throughput transmission electron microscopy with automated serial sectioning. bioRxiv. 2019;657346. doi:10.1101/657346
  • Sáfrán G. “One-sample concept” micro-combinatory for high throughput TEM of binary films. Ultramicroscopy. 2018;187:50–55. doi: 10.1016/j.ultramic.2018.01.001
  • Young R, Carleson PD, Da X, et al. High-yield and high-throughput TEM sample preparation using focused ion beam automation. Istfa’98 Proc 24th Int Symp Test Fail Anal. ASM International. 1998;332.
  • Ornelas IM, Unwin PR, Bentley CL. High-throughput correlative electrochemistry–microscopy at a transmission electron microscopy grid electrode. Anal Chem. 2019;91(23):14854–14859. doi: 10.1021/acs.analchem.9b04028
  • Li YJ, Savan A, Kostka A, et al. Accelerated atomic-scale exploration of phase evolution in compositionally complex materials. Mater Horizons. 2018;5(1):86–92. doi: 10.1039/C7MH00486A
  • Mugnaioli E, Gorelik T, Kolb U. “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy. 2009;109(6):758–765. doi: 10.1016/j.ultramic.2009.01.011
  • Li YJ, Kostka A, Savan A, et al. Atomic-scale investigation of fast oxidation kinetics of nanocrystalline CrMnFeCoNi thin films. J Alloys Compd. 2018;766:1080–1085. doi: 10.1016/j.jallcom.2018.07.048
  • Tolle KM, Tansley DSW, Hey AJ. The fourth paradigm: data-intensive scientific discovery. 2011;99(8):1334–1337.
  • Bell G, Hey T, Szalay A. Beyond the data deluge. Science. 2009;323(5919):1297–1298. doi: 10.1126/science.1170411
  • Kitchin R. Big data, new epistemologies and paradigm shifts. Big Data Soc. 2014;1(1):1–12. doi: 10.1177/2053951714528481
  • Kuhn TS. The structure of scientific revolutions. Chicago: University of Chicago Press; 1962.
  • Agrawal A, Choudhary A. Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science. APL Mater. 2016;4(5):053208–10. doi: 10.1063/1.4946894
  • Jain A, Persson KA, Ceder G. Research update: the materials genome initiative: data sharing and the impact of collaborative ab initio databases. APL Mater. 2016;4(5):53102. doi: 10.1063/1.4944683
  • Szalay A. Extreme data-intensive scientific computing. Comput Sci Eng. 2011;13(6):34–41. doi: 10.1109/MCSE.2011.74
  • Faris J, Kolker E, Szalay A, et al. Communication and data-intensive science in the beginning of the 21st century. Omi A J Integr Biol. 2011;15(4):213–215. doi: 10.1089/omi.2011.0008
  • Szabo C, Sheng QZ, Kroeger T, et al. Science in the cloud: allocation and execution of data-intensive scientific workflows. J Grid Comput. 2014;12(2):245–264. doi: 10.1007/s10723-013-9282-3
  • Burns R, Vogelstein JT, Szalay AS. From cosmos to connectomes: the evolution of data-intensive science. Neuron. 2014;83(6):1249–1252. doi: 10.1016/j.neuron.2014.08.045
  • Nukarapu D, Tang B, Wang L, et al. Data replication in data intensive scientific applications with performance guarantee. IEEE Trans Parallel Distrib Syst. 2010;22(8):1299–1306. doi: 10.1109/TPDS.2010.207
  • Oliveira SF, Fürlinger K, Kranzlmüller D Trends in computation, communication and storage and the consequences for data-intensive science. 2012 IEEE 14th Int Conf High Perform Comput Commun 2012 IEEE 9th International Conference on Embed Softw Syst. Liverpool (UK): IEEE; 2012. p. 572–579.
  • Tian Y, Yuan R, Xue D, et al. Role of uncertainty estimation in accelerating materials development via active learning. J Appl Phys. 2020;128(1):14103. doi: 10.1063/5.0012405
  • Shen C, Wang C, Wei X, et al. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel. Acta Mater. 2019;179:201–214. doi: 10.1016/j.actamat.2019.08.033
  • Lee JG. Computational materials science: an introduction. Boca Raton: CRC press; 2016.
  • Raabe D. Computational materials science: the simulation of materials microstructures and properties. Germany: Wiley-Vch; 1998.
  • LeSar R. Introduction to computational materials science: fundamentals to applications. New York: Cambridge University Press; 2013.
  • Schrödinger E. An undulatory theory of the mechanics of atoms and molecules. Phys Rev. 1926;28(6):1049–1070. doi: 10.1103/PhysRev.28.1049
  • Dirac PAM, Fowler RH. Quantum mechanics of many-electron systems. Proc R Soc London Ser A, Contain Pap a Math Phys Character. 1997;123:714–733.
  • Hartree DR. The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Proc Camb Philol Soc. 1928;24:89. doi: 10.1017/S0305004100011919
  • Thomas LH. The calculation of atomic fields. Math Proc Cambridge philos Soc. Cambridge: Cambridge University Press; 1927.
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140(4A):A1133–A1138. doi: 10.1103/PhysRev.140.A1133
  • Schleder GR, Padilha ACM, Acosta CM, et al. From DFT to machine learning: recent approaches to materials science – a review. J Phys Mater. 2019;2(3):032001. doi: 10.1088/2515-7639/ab084b
  • Persson KA, Waldwick B, Lazic P, et al. Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states. Phys Rev B – Condens Matter Mater Phys. 2012;85:1–12. doi: 10.1103/PhysRevB.85.235438
  • Cohen AJ, Mori-Sánchez P, Yang W. Challenges for density functional theory. Chem Rev. 2012;112(1):289–320. doi: 10.1021/cr200107z
  • Doe RE, Persson KA, Meng YS, et al. First-principles investigation of the Li−Fe−F phase diagram and equilibrium and nonequilibrium conversion reactions of Iron fluorides with lithium. Chem Mater. 2008;20(16):5274–5283. doi: 10.1021/cm801105p
  • Ping S, Davidson W, Jain A, et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci. 2013;68:314–319. doi: 10.1016/j.commatsci.2012.10.028
  • Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154104. doi: 10.1063/1.3382344
  • Cai T, Han H, Yu Y, et al. Study on the ground state of NiO: the LSDA (GGA)+ U method. Phys B Condens Matter. 2009;404(1):89–94. doi: 10.1016/j.physb.2008.10.009
  • Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47(1):558–561. doi: 10.1103/PhysRevB.47.558
  • Goedecker S, Teter M, Hutter J. Separable dual-space Gaussian pseudopotentials. Phys Rev B. 1996;54(3):1703–1710. doi: 10.1103/PhysRevB.54.1703
  • Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21(39):395502. doi: 10.1088/0953-8984/21/39/395502
  • Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter. 2002;14(11):2717. doi: 10.1088/0953-8984/14/11/301
  • Iftimie R, Minary P, Tuckerman ME. Ab initio molecular dynamics: concepts, recent developments, and future trends. Proc Natl Acad Sci. 2005;102(19):6654–6659. doi: 10.1073/pnas.0500193102
  • Skylaris C-K, Haynes PD, Mostofi AA, et al. Introducing ONETEP: linear-scaling density functional simulations on parallel computers. J Chem Phys. 2005;122(8):84119. doi: 10.1063/1.1839852
  • Schwarz K, Blaha P. Solid state calculations using WIEN2k. Comput Mater Sci. 2003;28(2):259–273. doi: 10.1016/S0927-0256(03)00112-5
  • Gulans A, Kontur S, Meisenbichler C, et al. Exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory. J Phys Condens Matter. 2014;26(36):363202. PMID: 25135665. doi: 10.1088/0953-8984/26/36/363202
  • Andrade X, Strubbe D, De Giovannini U, et al. Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems. Phys Chem Chem Phys. 2015;17(47):31371–31396. doi: 10.1039/C5CP00351B
  • Mortensen JJ, Hansen LB, Jacobsen KW. Real-space grid implementation of the projector augmented wave method. Phys Rev B. 2005;71(3):35109. doi: 10.1103/PhysRevB.71.035109
  • Neese F. The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci. 2012;2(1):73–78. doi: 10.1002/wcms.81
  • Ahlrichs R, Bär M, Häser M, et al. Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett. 1989;162(3):165–169. doi: 10.1016/0009-2614(89)85118-8
  • Werner H-J, Knowles PJ, Knizia G, et al. Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip Rev Comput Mol Sci. 2012;2(2):242–253. doi: 10.1002/wcms.82
  • García A, Papior N, Akhtar A, et al. Siesta: recent developments and applications. J Chem Phys. 2020;152(20):204108. doi: 10.1063/5.0005077
  • Blum V, Gehrke R, Hanke F. Ab initio molecular simulations with numeric atom-centered orbitals. Comput Phys Commun. 2009;180(11):2175–2196. doi: 10.1016/j.cpc.2009.06.022
  • Setyawan W, Curtarolo S. High-throughput electronic band structure calculations: challenges and tools. Comput Mater Sci. 2010;49(2):299–312. doi: 10.1016/j.commatsci.2010.05.010
  • Aflow - Automatic FLOW for materials discovery [Internet]. Available from: http://aflowlib.org/
  • Gražulis S, Chateigner D, Downs RT, et al. Crystallography open database – an open-access collection of crystal structures. J Appl Crystallogr. 2009;42(4):726–729. Cited: in: PMID: 22477773. doi: 10.1107/S0021889809016690
  • Shishkin M, Sato H. Self-consistent parametrization of DFT + U framework using linear response approach: application to evaluation of redox potentials of battery cathodes. Phys Rev B. 2016;93(8). doi: 10.1103/PhysRevB.93.085135
  • AFLOWπ [Internet]. Available from: http://aflowlib.org/src/aflowpi/index.html
  • Materials Project [Internet]. Available from: https://materialsproject.org/
  • Automated interactive infrastructure and database for computational science — AiiDA documentation [Internet]. Available from: http://aiida.net/
  • Pizzi G, Cepellotti A, Sabatini R, et al. AiiDA: automated interactive infrastructure and database for computational science. Comput Mater Sci. 2016;111:218–230. doi: 10.1016/j.commatsci.2015.09.013
  • Crystallography Open Database [Internet]. Available from: http://crystallography.net/cod/
  • Mathew K, Singh AK, Gabriel JJ, et al. Mpinterfaces: A materials project based python tool for high-throughput computational screening of interfacial systems. Comput Mater Sci. 2016;122:183–190. doi: 10.1016/j.commatsci.2016.05.020
  • OQMD [Internet]. Available from: https://oqmd.org/
  • Jain A, Ong SP, Chen W, et al. FireWorks: a dynamic workflow system designed for high-throughput applications. Concurr Comput Pract Exp. 2015;27(17):5037–5059. doi: 10.1002/cpe.3505
  • ICSD [Internet]. Available from: https://icsd.fiz-karlsruhe.de/
  • Lambert H, Fekete A, Kermode JR, et al. Imeall: a computational framework for the calculation of the atomistic properties of grain boundaries. Comput Phys Commun. 2018;232:256–263. doi: 10.1016/j.cpc.2018.04.029
  • Haastrup S, Strange M, Pandey M, et al. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 2018;5(4):042002. doi: 10.1088/2053-1583/aacfc1
  • Pylada documentation [Internet]. Available from: http://pylada.github.io/pylada/
  • Ashton M, Paul J, Sinnott SB, et al. Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys Rev Lett. 2017;118(10):106101. doi: 10.1103/PhysRevLett.118.106101
  • Hjorth Larsen A, Mortensen J J, Blomqvist J, et al. The atomic simulation environment—a python library for working with atoms. J Phys Condens Matter. 2017;29(27):273002. Cited: in: PMID: 28323250. doi: 10.1088/1361-648X/aa680e
  • Atomic Simulation Environment [Internet]. Available from: https://wiki.fysik.dtu.dk/ase/
  • NOMAD [Internet]. Available from: https://nomad-lab.eu/nomad-lab/
  • Mathew K, Montoya JH, Faghaninia A, et al. Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows. Comput Mater Sci. 2017;139:140–152. doi: 10.1016/j.commatsci.2017.07.030
  • Atomate (materials science workflows) — atomate 1.0.3 documentation [Internet]. Available from: https://atomate.org/
  • Talirz L, Kumbhar S, Passaro E, et al. Materials Cloud, a platform for open computational science. Sci Data. [Internet] 2020;7:299. doi: 10.1038/s41597-020-00637-5
  • Choudhary K, Cheon G, Reed E, et al. Elastic properties of bulk and low-dimensional materials using van der Waals density functional. Phys Rev B. 2018;98(1):14107. doi: 10.1103/PhysRevB.98.014107
  • Choudhary K, Cheon G, Reed E, et al. Computational materials chemistry [Internet]. Available from: https://cmr.fysik.dtu.dk/
  • Agapito LA, Curtarolo S, Nardelli MB. Reformulation of DFT + U as a pseudohybrid hubbard density functional for accelerated materials discovery. Phys Rev X. 2015;5(1). doi: 10.1103/PhysRevX.5.011006
  • Jain A, Hautier G, Ong SP, et al. Formation enthalpies by mixing GGA and GGA + U calculations. Phys Rev B - Condens Matter Mater Phys. 2011;84:1–10. doi: 10.1103/PhysRevB.84.045115
  • Calderon CE, Plata JJ, Toher C, et al. The AFLOW standard for high-throughput materials science calculations. Comput Mater Sci. 2015;108:233–238. doi: 10.1016/j.commatsci.2015.07.019
  • Zhou Z-H. Machine learning. Singapore Pte Ltd; 2021.
  • El Naqa I, Murphy MJ. What is machine learning? Berlin: Springer; 2015.
  • What is machine learning course| its importance and types-FORE [Internet]. Available from: https://www.fsm.ac.in/blog/an-introduction-to-machine-learning-its-importance-types-and-applications/
  • Phoenics: phoenics: bayesian optimization for efficient experiment planning [Internet]. Available from: https://github.com/aspuru-guzik-group/phoenics
  • Häse F, Roch LM, Kreisbeck C, et al. Phoenics: a Bayesian optimizer for chemistry. ACS Cent Sci. 2018;4(9):1134–1145. doi: 10.1021/acscentsci.8b00307
  • Schütt KT, Kessel P, Gastegger M, et al. SchNetPack: A deep learning toolbox for atomistic systems. J Chem Theory Comput. 2019;15(1):448–455. Cited: in: PMID: 30481453. doi: 10.1021/acs.jctc.8b00908
  • Atomistic-machine-learning/schnetpack: SchNetPack - deep neural networks for atomistic systems.
  • Bartók AP, Payne MC, Kondor R, et al. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett. 2010;104(13):136403. doi: 10.1103/PhysRevLett.104.136403
  • TensorFlow [Internet]. Available from: https://www.tensorflow.org/
  • Smith JS, Isayev O, Roitberg AE. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci. 2017;8(4):3192–3203. doi: 10.1039/C6SC05720A
  • ASE_ANI: ANI-1 neural net potential with python interface (ASE) [Internet]. Available from: https://github.com/isayev/ASE_ANI
  • amp [Internet]. Available from: https://bitbucket.org/andrewpeterson/amp/src/master/
  • Scikit-learn: machine learning in python — scikit-learn 1.2.2 documentation [Internet]. Available from: https://scikit-learn.org/stable/
  • Weka 3 - data mining with open source machine learning software in java [Internet]. Available from: https://www.cs.waikato.ac.nz/ml/weka/
  • SISSO: a data-driven method combining symbolic regression and compressed sensing for accurate & interpretable models. [Internet]. Available from: https://github.com/rouyang2017/SISSO
  • AFLOW ML [Internet]. Available from: http://aflowlib.org/aflow-ml/
  • Matminer (materials data mining) — matminer 0.8.0 documentation [Internet]. Available from: https://hackingmaterials.lbl.gov/matminer/
  • PROPhet [Internet]. Available from: https://biklooost.github.io/PROPhet/
  • Wolverton/Magpie — bitbucket. [Internet] Available from: https://bitbucket.org/wolverton/magpie/src/master/
  • Wang H, Zhang L, Han J, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Comput Phys Commun. 2018;228:178–184. doi: 10.1016/j.cpc.2018.03.016
  • Deepmodeling/deepmd-kit: a deep learning package for many-body potential energy representation and molecular dynamics [Internet]. [cited 2023 Mar 19]. Available from: https://github.com/deepmodeling/deepmd-kit
  • Combo: COMmon Bayesian optimization [Internet]. Available from: https://github.com/tsudalab/combo
  • Geilhufe RM, Olsthoorn B, Balatsky AV. Shifting computational boundaries for complex organic materials. Nat Phys. 2021;17(2):152–154. doi: 10.1038/s41567-020-01135-6
  • Alpaydin E. Machine learning. Cambridge (USA): Mit Press; 2021.
  • Awad M, Khanna R. Machine learning BT - efficient learning machines: theories, concepts, and applications for engineers and system designers. Berkeley, CA: Apress; 2015.
  • Machine learning a probabilistic perspective by Kevin P. Murphy – Bridget market [Internet]. Available from: https://bridgetmarket.us/product/machine-learning-a-probabilistic-perspective-by-kevin-p-murphy/?gclid=Cj0KCQjwwtWgBhDhARIsAEMcxeDbvFRioGBCRTKU5no7ClDW8En05BHyw9v_I_wCKLOTE6wXewVvvaAaAjndEALw_wcB
  • Pilania G, Wang C, Jiang X, et al. Accelerating materials property predictions using machine learning. Sci Rep. 2013;3(1):2810. doi: 10.1038/srep02810
  • Mannodi-Kanakkithodi A, Pilania G, Huan TD, et al. Machine learning strategy for accelerated design of polymer dielectrics. Sci Rep. 2016;6(1):20952. doi: 10.1038/srep20952
  • Wang A-T, Murdock RJ, Kauwe SK, et al. Machine learning for materials scientists: an Introductory guide toward best practices. Chem Mater. 2020;32(12):4954–4965. doi: 10.1021/acs.chemmater.0c01907
  • Kohavi R, Quinlan R. Decision-tree discovery handbook of data mining and knowledge discovery. Oxford: Oxford University Press; 2002.
  • Xue D, Balachandran PV, Hogden J, et al. Accelerated search for materials with targeted properties by adaptive design. Nat Commun. 2016;7: doi: 10.1038/ncomms11241
  • Mitchell TM. Machine learning. New York: McGraw-Hill Science; 1997.
  • Hill J, Mulholland G, Persson K, et al. Materials science with large-scale data and informatics: unlocking new opportunities. MRS Bull. 2016;41(5):399–409. doi: 10.1557/mrs.2016.93
  • Agrawal A, Choudhary A. Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science. APL Mater. 2016;4(5):053208. doi: 10.1063/1.4946894
  • Ward L, Wolverton C. Atomistic calculations and materials informatics: a review. Curr Opin Solid State Mater Sci. 2017;21(3):167–176. doi: 10.1016/j.cossms.2016.07.002
  • Agrawal A, Choudhary A. Deep materials informatics: applications of deep learning in materials science. MRS Commun. 2019;9(3):779–792. doi: 10.1557/mrc.2019.73
  • Hey T. The fourth paradigm, data-intensive scientific discovery, microsoft research. Berlin (Heidelberg): Springer-Verlag; 2009.
  • Hey T, Tansley S, Tolle KM. Jim Gray on eScience: a transformed scientific method. In: The fourth paradigm; 2009.
  • Hey T, Trefethen A. The fourth paradigm 10 years on. Inform Spektrum. 2020;42(6):441–447. doi: 10.1007/s00287-019-01215-9
  • Dimiduk DM, Holm EA, Niezgoda SR. Perspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineering. Integr Mater Manuf Innov. 2018;7:157–172. Internet. doi: 10.1007/s40192-018-0117-8
  • Isayev O, Tropsha A, Curtarolo S. Materials informatics: methods, tools, and applications. New York (USA): John Wiley & Sons; 2019.
  • Ramprasad R, Batra R, Pilania G, et al. Machine learning in materials informatics: recent applications and prospects. Npj Comput Mater. 2017;3(1):54. doi: 10.1038/s41524-017-0056-5
  • Takahashi K, Tanaka Y. Materials informatics: a journey towards material design and synthesis. Dalton Trans. 2016;45:10497–10499. Internet. doi: 10.1039/C6DT01501H
  • Frydrych K, Karimi K, Pecelerowicz M, et al. Materials informatics for mechanical deformation: a review of applications and challenges. Materials. 2021;14(19):5764.
  • Alberi K, Nardelli MB, Zakutayev A, et al. The 2019 materials by design roadmap. J Phys D Appl Phys. 2019;52(1):013001. doi: 10.1088/1361-6463/aad926
  • Allam O, Cho BW, Kim KC, et al. Application of DFT-based machine learning for developing molecular electrode materials in li-ion batteries. RSC Adv. 2018;8(69):39414–39420. doi: 10.1039/C8RA07112H
  • Cai J, Chu X, Xu K, et al. Machine learning-driven new material discovery. Nanoscale Adv. 2020;2(8):3115–3130. doi: 10.1039/D0NA00388C
  • Hafner J, Wolverton C, Ceder G, et al. Toward computational materials design: The impact of density functional theory on materials research. MRS Bull. 2006;31(9):659–668. doi: 10.1557/mrs2006.174
  • Butler KT, Frost JM, Skelton JM, et al. Computational materials design of crystalline solids. Chem Soc Rev. 2016;45(22):6138–6146. doi: 10.1039/C5CS00841G
  • Hammer B, Nørskov JK. Theoretical surface science and catalysis—calculations and concepts. Adv Catal. 2000;45:71–129.
  • Perdew JP, Chevary JA, Vosko SH, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B. 1992;46(11):6671–6687. doi: 10.1103/PhysRevB.46.6671
  • Kohn W, Becke AD, Parr RG. Density functional theory of electronic structure. J Phys Chem. 1996;100(31):12974–12980. doi: 10.1021/jp960669l
  • Mazurek AH, Ł S, Pisklak DM. Periodic DFT calculations—review of applications in the pharmaceutical sciences. Pharmaceutics. 2020;12(5):415. doi: 10.3390/pharmaceutics12050415
  • Paul A, Birol T. Applications of DFT + DMFT in materials science. Ann Rev Mater Res. 2019;49(1):31–52. doi: 10.1146/annurev-matsci-070218-121825
  • Smith SW. Digital Signal Processing. San Diego (CA): California Technical Publishing; 1997.
  • Tolba SA, Gameel KM, Ali BA, et al. The DFT+U: Approaches, accuracy, and applications. In: Density functional calculations: recent progresses of theory and application; 2018. p. 30–35.
  • Lederer Y, Toher C, Vecchio KS, et al. The search for high entropy alloys: a high-throughput ab-initio approach. Acta Mater. 2018;159:364–383. doi: 10.1016/j.actamat.2018.07.042
  • Tomczak JM. Thermoelectricity in correlated narrow-gap semiconductors. J Phys Condens Matter. 2018;30(18):183001. doi: 10.1088/1361-648X/aab284
  • Lin L. Materials databases infrastructure constructed by first principles calculations: a review. Mater Perform Charact. 2015;4. doi: 10.1520/MPC20150014
  • Montoya JH, Persson KA. A high-throughput framework for determining adsorption energies on solid surfaces. Npj Comput Mater. 2017;3(1):1–3. doi: 10.1038/s41524-017-0017-z
  • Armitage NP, Mele EJ, Vishwanath A. Weyl and Dirac semimetals in three-dimensional solids. Rev Mod Phys. 2018;90(1):15001. doi: 10.1103/RevModPhys.90.015001
  • Ando Y, Fu L. Topological crystalline insulators and topological superconductors: from concepts to materials. Annu Rev Condens Matter Phys. 2015;6(1):361–381. doi: 10.1146/annurev-conmatphys-031214-014501
  • Cano J, Bradlyn B, Wang Z, et al. Building blocks of topological quantum chemistry: elementary band representations. Phys Rev B. 2018;97(3):35139. doi: 10.1103/PhysRevB.97.035139
  • Bradlyn B, Elcoro L, Vergniory MG, et al. Band connectivity for topological quantum chemistry: band structures as a graph theory problem. Phys Rev B. 2018;97(3):35138. doi: 10.1103/PhysRevB.97.035138
  • Zhang C, Gao M, Yeh J, et al. High-entropy alloys: fundamentals and applications. Switzerland: Springer; 2016.
  • Kuisma M, Ojanen J, Enkovaara J, et al. Kohn-Sham potential with discontinuity for band gap materials. Phys Rev B. 2010;82(11):115106. doi: 10.1103/PhysRevB.82.115106
  • Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys. 2010;82(4):3045–3067. doi: 10.1103/RevModPhys.82.3045
  • Yang K. High-throughput design of functional materials using materials genome approach. Chinese Phys B. 2018;27(12):128103. doi: 10.1088/1674-1056/27/12/128103
  • Schmidt J, Marques MRG, Botti S, et al. Recent advances and applications of machine learning in solid-state materials science. Npj Comput Mater. 2019;5(1):83. doi: 10.1038/s41524-019-0221-0
  • Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1(1):11002. doi: 10.1063/1.4812323
  • Blaiszik B, Chard K, Pruyne J, et al. The materials data facility: data services to advance materials science research. JOM. Internet 2016;68:2045–2052. doi: 10.1007/s11837-016-2001-3
  • Wen C, Zhang Y, Wang C, et al. Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 2019;170:109–117. doi: 10.1016/j.actamat.2019.03.010
  • Curtarolo S, Morgan D, Persson K, et al. Predicting crystal structures with data mining of quantum calculations. Phys Rev Lett. 2003;91(13):1–4. doi: 10.1103/PhysRevLett.91.135503
  • Fischer CC, Tibbetts KJ, Morgan D, et al. Predicting crystal structure by merging data mining with quantum mechanics. Nat Mater. 2006;5(8):641–646. Cited: in: PMID: 16845417. doi: 10.1038/nmat1691
  • Coey JM. Magnetism and magnetic materials. Cambridge (UK): Cambridge University Press; 2010.
  • Andreoni W, Yip S. Handbook of materials modeling: applications: current and emerging materials. Switzerland: Springer Nature; 2020.
  • Lee J, Seko A, Shitara K, et al. Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques. Phys Rev B. 2016;93(11):115104. doi: 10.1103/PhysRevB.93.115104
  • Yamawaki M, Ohnishi M, Ju S, et al. Multifunctional structural design of graphene thermoelectrics by Bayesian optimization. Sci Adv. 2023;4(6):eaar4192. doi: 10.1126/sciadv.aar4192
  • Faber FA, Lindmaa A, von Lilienfeld OA, et al. Machine learning energies of 2 million elpasolite (ABCD6) crystals. Phys Rev Lett. 2016;117(13):135502. doi: 10.1103/PhysRevLett.117.135502
  • V BP, Young J, Lookman T, et al. Learning from data to design functional materials without inversion symmetry. Nat Commun. 2017;8(1):14282. doi: 10.1038/ncomms14282
  • Jain A, Bligaard T. Atomic-position independent descriptor for machine learning of material properties. Phys Rev B. 2018;98(21):214112. doi: 10.1103/PhysRevB.98.214112
  • Davies DW, Butler KT, Walsh A. Data-driven discovery of photoactive quaternary oxides using first-principles machine learning. Chem Mater. 2019;31(18):7221–7230. doi: 10.1021/acs.chemmater.9b01519
  • Saad Y, Gao D, Ngo T, et al. Data mining for materials: computational experiments with AB compounds. Phys Rev B. 2012;85(10):104104. doi: 10.1103/PhysRevB.85.104104
  • Houhou R, Bocklitz T. Trends in artificial intelligence, machine learning, and chemometrics applied to chemical data. Anal Sci Adv. 2021;2(3–4):128–141. doi: 10.1002/ansa.202000162
  • Martin TB, Audus DJ. Emerging trends in machine learning: a polymer perspective. ACS Polym Au. 2023;3(3):239–258. doi: 10.1021/acspolymersau.2c00053
  • Zhao J-C. Combinatorial approaches as effective tools in the study of phase diagrams and composition–structure–property relationships. Prog Mater Sci. 2006;51(5):557–631. doi: 10.1016/j.pmatsci.2005.10.001
  • Introduction — pymatgen 2023.3.23 documentation [Internet]. Available from: https://pymatgen.org/
  • Hassel AW, Lohrengel MM. The scanning droplet cell and its application to structured nanometer oxide films on aluminium. Electrochim Acta. 1997;42(20–22):3327–3333. doi: 10.1016/S0013-4686(97)00184-9
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;64:4–17. doi: 10.1016/j.addr.2012.09.019
  • Kirklin S, Saal JE, Hegde VI, et al. High-throughput computational search for strengthening precipitates in alloys. Acta Mater. Internet 2016;102:125–135. doi: 10.1016/j.actamat.2015.09.016
  • Studt F, Sharafutdinov I, Abild-Pedersen F, et al. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem. 2014;6(4):320–324. doi: 10.1038/nchem.1873
  • Suram SK, Xue Y, Bai J, et al. Automated phase mapping with AgileFD and its application to light absorber discovery in the V–Mn–Nb oxide system. ACS Comb Sci. 2017;19(1):37–46. doi: 10.1021/acscombsci.6b00153
  • Huber L, Hadian R, Grabowski B, et al. A machine learning approach to model solute grain boundary segregation. Npj Comput Mater. 2018;4(1):64. doi: 10.1038/s41524-018-0122-7
  • Aykol M, Dwaraknath SS, Sun W, et al. Thermodynamic limit for synthesis of metastable inorganic materials. Sci Adv. 2018;4:1–8. doi: 10.1126/sciadv.aaq0148
  • Zhao J-C. A combinatorial approach for efficient mapping of phase diagrams and properties. J Mater Res. 2001;16(6):1565–1578. doi: 10.1557/JMR.2001.0218
  • Takahashi R, Kubota H, Murakami M, et al. Design of combinatorial shadow masks for complete ternary-phase diagramming of solid state materials. J Comb Chem. 2004;6(1):50–53. doi: 10.1021/cc030038i
  • Hasegawa Y, Iwata J-I, Tsuji M, et al. First-principles calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer. Proc 2011 Int Conf High Perform Comput Networking, Storage Anal. 2011. p. 1–11.
  • Jinnouchi R, Karsai F, Kresse G. Making free-energy calculations routine: combining first principles with machine learning. Phys Rev B. 2020;101(6):60201. doi: 10.1103/PhysRevB.101.060201
  • Duan C, Janet JP, Liu F, et al. Learning from failure: predicting electronic structure calculation outcomes with machine learning models. J Chem Theory Comput. 2019;15(4):2331–2345. doi: 10.1021/acs.jctc.9b00057
  • McAndrew CC, Victory JJ. Accuracy of approximations in MOSFET charge models. IEEE Trans Electron Devices. 2002;49(1):72–81. doi: 10.1109/16.974752
  • Van Gunsteren WF, Berendsen HJC. Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. Angew Chemie Int Ed English. 1990;29(9):992–1023. doi: 10.1002/anie.199009921
  • Argaman N, Makov G. Density functional theory: an introduction. Am J Phys. 2000;68(1):69–79. doi: 10.1119/1.19375
  • Tarascon J-M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359–367 [Internet]. doi: 10.1038/35104644
  • Thackeray MM, Kang S-H, Johnson CS, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem. 2007;17(30):3112–3125. Internet. doi: 10.1039/b702425h
  • Li H, Huang X, Chen L, et al. A high capacity nano ­ Si composite anode material for lithium rechargeable batteries. Electrochem Solid-State Lett. 1999;2(11):547. Internet. doi: 10.1149/1.1390899
  • Xiao R, Li H, Chen L. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Sci Rep. 2015;5(1):14227. Internet. doi: 10.1038/srep14227
  • Hautier G, Jain A, Chen H, et al. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J Mater Chem. 2011;21(43):17147–17153. Internet. doi: 10.1039/c1jm12216a
  • Knauth P. Inorganic solid li ion conductors: an overview. Solid State Ion. 2009;180(14–16):911–916. Internet. doi: 10.1016/j.ssi.2009.03.022
  • Wang X, Xiao R, Li H, et al. Quantitative structure-property relationship study of cathode volume changes in lithium ion batteries using ab-initio and partial least squares analysis. J Mater [Internet]. 2017;3(3):178–183. doi: 10.1016/j.jmat.2017.02.002
  • MacLeod BP, Parlane FGL, Morrissey TD, et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci Adv. 2020;6(20):eaaz8867. doi: 10.1126/sciadv.aaz8867