575
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Normalized coefficients of prediction accuracy for comparative forecast verification and modeling

ORCID Icon & ORCID Icon
Article: 2317172 | Received 08 Feb 2023, Accepted 01 Feb 2024, Published online: 06 Mar 2024

References

  • Abe, CF, Dias, JB, Notton, G, Faggianelli, GA. 2020. Experimental application of methods to compute solar irradiance and cell temperature of photovoltaic modules. Sensors 20(9):2490.
  • Afshar K, Bigdeli N. 2011. Data analysis and short term load forecasting in Iran electricity market using singular spectral analysis (SSA). Energy 36(5):2620–2627.
  • Armstrong JS, Collopy F. (1992). Error measures for generalizing about forecasting methods: Empirical comparisons. Int J Forecast. 8(1):69–80.
  • Audrino F, Sigrist F, Ballinari D. 2020. The impact of sentiment and attention measures on stock market volatility. Int J Forecast. 36(2):334–357.
  • Burrows SM, Dasgupta A, Reehl S, Bramer L, Ma P-L, Rasch PJ, Qian Y. 2018. Characterizing the relative importance assigned to physical variables by climate scientists when assessing atmospheric climate model fidelity. Adv Atmos Sci 35(9):1101–1113.
  • Campbell JY, Thompson SB. 2008. Predicting excess stock returns out of sample: Can anything beat the historical average? Rev Financ Stud. 21(4):1509–1531.
  • Cantelmo G, Kucharski R, Antoniou C. 2020. Low-dimensional model for bike-sharing demand forecasting that explicitly accounts for weather data. Transp Res Record: J Transp Res Board 2674(8):132–144.
  • Chen, D, Rojas, M, Samset, BH, Cobb, K, Diongue-Niang, A, Edwards, P, Emori, S, Faria, SH, Hawkins, E, Hope, P, et al. 2021. Framing, context, and methods. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, et al. editors. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK); New York (NY): Cambridge University Press. p. 147–286.
  • Climatic Research Unit of the University of East Anglia. 2022. High-resolution gridded datasets (and derived products). CRU CY v4.06 Country Averages: PRE; [accessed 2022 Sep 12]. https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/crucy.2205251923.v4.06/countries/pre/.
  • Daetwyler HD, Villanueva B, Woolliams JA. 2008. Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS ONE 3(10):e3395.
  • Daum SO, Hecht H. 2009. Distance estimation in vista space. Atten Percept Psychophys. 71(5):1127–1137.
  • Dequé M. 2012. Deterministic forecasts of continuous variables. In Jolliffe IT, Stephenson DB, editors, Forecast verification. A pracitioner’s guide in atmospheric science. Hoboken (NJ): Wiley. p. 77–94.
  • Ehret U, Zehe E. 2011. Series distance–an intuitive metric to quantify hydrograph similarity in terms of occurrence, amplitude and timing of hydrological events. Hydrol Earth Syst Sci. 15(3):877–896.
  • Engbert R, Nuthmann A, Richter EM, Kliegl R. 2005. SWIFT: a dynamical model of saccade generation during reading. Psychol Rev. 112(4):777–813.
  • Fricker TE, Ferro CAT, Stephenson DB. 2013. Three recommendations for evaluating climate predictions. Meteorol Appl. 20(2):246–255.
  • Gneiting T. 2011. Making and evaluating point forecasts. J Amer Stat Assoc. 106(494):746–762.
  • Goelzer H, Nowicki S, Edwards T, Beckley M, Abe-Ouchi A, Aschwanden A, Calov R, Gagliardini O, Gillet-Chaulet F, Golledge NR, et al. 2018. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. Cryosphere. 12(4):1433–1460.
  • Goldberg K, Roeder T, Gupta D, Perkins C. 2001. Eigentaste: A constant time collaborative filtering algorithm. Inf Retr. 4(2):133–151.
  • Golyandina N, Korobeynikov A, Zhigljavsky A. 2018. Singular spectrum analysis with R. Berlin: Springer.
  • Golyandina N, Nekrutkin V, Zhigljavsky AA. 2001. Analysis of time series structure: SSA and related techniques. Boca Raton, FL: Chapman and Hall/CRC.
  • Gupta HV, Kling H. 2011. On typical range, sensitivity, and normalization of mean squared error and Nash-Sutcliffe efficiency type metrics. Water Resour Res. 47(10):W10601.
  • Gupta HV, Kling H, Yilmaz KK, Martinez GF. 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J Hydrol 377(1–2):80–91.
  • Gustafson WI, Yu S. 2012. Generalized approach for using unbiased symmetric metrics with negative values: Normalized mean bias factor and normalized mean absolute error factor. Atmos Sci Lett. 13(4):262–267.
  • Hammi O, Miftah A. 2015. Complexity-aware-normalised mean squared error ‘CAN’ metric for dimension estimation of memory polynomial-based power amplifiers behavioural models. IET Commun. 9(18):2227–2233.
  • Harris I, Osborn TJ, Jones P, Lister D. 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7(1):109.
  • Hyndman RJ, Athanasopoulos G. 2021. Forecasting: principles and practice. OTexts, 3rd ed.
  • Hyndman RJ, Koehler AB. 2006. Another look at measures of forecast accuracy. Int J Forecast 22(4):679–688.
  • Istas J. 2005. Mathematical modeling for the life sciences. Berlin: Springer.
  • Jacobs DA, Ferris DP. 2015. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors. J NeuroEng Rehabil. 12(1):1–12.
  • Khain AP, Beheng KD, Heymsfield A, Korolev A, Krichak SO, Levin Z, Pinsky M, Phillips V, Prabhakaran T, Teller A, et al. 2015. Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev Geophys. 53(2):247–322.
  • Krause P, Boyle DP, Bäse F. 2005. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 5:89–97.
  • Legates DR, McCabe GJ. 1999. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res. 35(1):233–241.
  • Li J. 2017. Assessing the accuracy of predictive models for numerical data: Not r nor r2, why not? then what? PLoS ONE 12(8):e0183250.
  • Magnusson L, Ackerley D, Bouteloup Y, Chen J-H, Doyle J, Earnshaw P, Kwon YC, Köhler M, Lang STK, Lim Y-J, et al. 2022. Skill of medium-range forecast models using the same initial conditions. Bull Amer Meteorol Soc. 103(9):E2050–E2068.
  • Makridakis S, Hibon M. 2000. The M3-competition: results, conclusions and implications. Int J Forecast 16(4):451–476.
  • Maraun D, Widmann M. 2018. Cross-validation of bias-corrected climate simulations is misleading. Hydrol Earth Syst Sci. 22(9):4867–4873.
  • Mauritsen T, Roeckner E. 2020. Tuning the MPI-ESM1.2 global climate model to improve the match with instrumental record warming by lowering its climate sensitivity. J Adv Model Earth Syst. 12(5):e2019MS002037.
  • Mauritsen T, Stevens B, Roeckner E, Crueger T, Esch M, Giorgetta M, Haak H, Jungclaus J, Klocke D, Matei D, et al. 2012. Tuning the climate of a global model. J Adv Model Earth Syst. 4(3):M00A01.
  • Müller-Plath G, Ott DVM, Pollmann S. 2010. Deficits in subprocesses of visual feature search after frontal, parietal, and temporal brain lesions—a modeling approach. J Cogn Neurosci. 22(7):1399–1424.
  • Müller-Plath G, Pollmann S. 2003. Determining subprocesses of visual feature search with reaction time models. Psychol Res. 67(2):80–105.
  • Murphy AH. 1988. Skill scores based on the mean square error and their relationships to the correlation coefficient. Monthly Weather Rev. 116(12):2417–2424.
  • Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models part I - A discussion of principles. J Hydrol. 10(3):282–290.
  • Norman JF, Adkins OC, Pedersen LE. 2016. The visual perception of distance ratios in physical space. Vis Res. 123:1–7.
  • Nossent J, Bauwens W. 2012. Application of a normalized Nash-Sutcliffe efficiency to improve the accuracy of the Sobol’ sensitivity analysis of a hydrological model. In: EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts. p. 237.
  • Otto SA. 2019. How to normalize the RMSE [blog post]; [accessed 2023 Oct 23]. https://www.marinedatascience.co/blog/2019/01/07/normalizing-the-rmse/.
  • Pokhrel P, Gupta HV. 2010. On the use of spatial regularization strategies to improve calibration of distributed watershed models. Water Resour Res. 46(1):W01505.
  • Potts JM. 2012. Basic concepts. In: Jolliffe IT, Stephenson DB, editors. Forecast verification. A pracitioner’s guide in atmospheric science. Hoboken, NJ: Wiley, p.11–30.
  • Previsic, M, Karthikeyan, A, Lyzenga, D. 2021. In-ocean validation of a deterministic sea wave prediction (DSWP) system leveraging X-band radar to enable optimal control in wave energy conversion systems. Appl Ocean Res. 114:102784.
  • R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Rahman MH, Salma U, Hossain MM, Khan MTF. 2016. Revenue forecasting using Holt-Winters exponential smoothing. Res Rev J Stat. 5(3):19–25.
  • Stephen KD, Kazemi A. 2014. Improved normalization of time-lapse seismic data using normalized root mean square repeatability data to improve automatic production and seismic history matching in the Nelson field. Geophys Prospect. 62(5):1009–1027.
  • Taylor KE. 2001. Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos. 106(D7):7183–7192.
  • Van Zandt T, Townsend JT. 2012. Mathematical psychology. In: Cooper H, Camic PM, Long DL, Panter AT, Rindskopf D, Sher KJ, editors. APA handbook of research methods in psychology, Vol 2: research designs: quantitative, qualitative, neuropsychological, and biological. American Psychological Association.
  • Von Storch H, Zwiers FW. 2002. Statistical analysis in climate research. Cambridge: Cambridge University Press.
  • Voudouri A, Avgoustoglou E, Carmona I, Levi Y, Bucchignani E, Kaufmann P, Bettems J-M. 2021. Objective calibration of numerical weather prediction model: application on fine resolution COSMO model over Switzerland. Atmosphere 12(10):1358.
  • Waldmann P. 2019. On the use of the Pearson correlation coefficient for model evaluation in genome-wide prediction. Front Genet. 10:899.
  • Wilks D. 2019. Statistical methods in the atmospheric sciences, 4th ed. Amsterdam: Elsevier.
  • Willmott CJ. 1981. On the validation of models. Phys Geogr. 2(2):184–194.
  • Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O’Donnell J, Rowe CM. 1985. Statistics for the evaluation and comparison of models. J Geophys Res. 90(C5):8995–9005.
  • World Meteorological Organization. 2019. Manual on the Global Data-processing and Forecasting System (WMO-No. 485): Annex IV to the WMO Technical Regulations. World Meteorological Organization. updated in 2022.
  • World Meteorological Organization. 2023. WMO Lead Centre for Deterministic NWP Verification (LC-DNV). Lead Centre guidelines. Score definitions and requirements; [accessed 2023 Oct 23]. https://confluence.ecmwf.int/display/WLD/Score+definitions+and+requirements.
  • Zambresky L. 1989. A verification study of the global WAM model December 1987 - November 1988. Techreport 63, GKSS Forschungszentrum, Federal Republic of Germany.