846
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Boosters of the metaverse: a review of augmented reality-based brain-computer interface

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2305962 | Received 09 Aug 2023, Accepted 10 Jan 2024, Published online: 31 Jan 2024

References

  • Mystakidis S. Metaverse. Encyclopedia. 2022;2(1):486–497. doi: 10.3390/encyclopedia2010031.
  • Lee S-H, Lee Y-E, Lee S-W. “Toward imagined speech based smart communication system: potential applications on metaverse conditions.” arXiv, Feb. 07, 2022. [cited 2022 Nov 2]. Available from: http://arxiv.org/abs/2112.08569.
  • Wang H, Ning H, Lin Y, et al. A survey on the metaverse: the state-of-the-Art, technologies, applications, and challenges. IEEE Internet Things J. 2023;10(16):14671–14688. doi: 10.1109/JIOT.2023.3278329.
  • Dionisio JDN, Iii WGB, Gilbert R. 3D virtual worlds and the metaverse: current status and future possibilities. ACM Comput. Surv. 2013;45(3):1–38. doi: 10.1145/2480741.2480751.
  • Yang Q, Zhao Y, Huang H, et al. Fusing blockchain and AI with metaverse: a survey. IEEE Open J Comput Soc. 2022;3:122–136. doi: 10.1109/OJCS.2022.3188249.
  • Bibri SE, Allam Z, Krogstie J. The metaverse as a virtual form of data-driven smart urbanism: platformization and its underlying processes, institutional dimensions, and disruptive impacts. Comput Urban Sci. 2022;2(1):24. doi: 10.1007/s43762-022-00051-0.
  • Tlili A, Huang R, Shehata B, et al. Is metaverse in education a blessing or a curse: a combined content and bibliometric analysis. Smart Learn. Environ. 2022;9(1):24. doi: 10.1186/s40561-022-00205-x.
  • van der Merwe DF. The metaverse as virtual heterotopia . Proceedings of the. 3rd World Conference on Research in Social Sciences, Oct 2021. doi: 10.33422/3rd.socialsciencesconf.2021.10.61.
  • Huang L, van G. Brain computer interface for epilepsy treatment. In: Fazel-Rezai, R, editor. Brain-computer interface systems - recent progress and future prospects. InTech; 2013. doi: 10.5772/55800.
  • Birbaumer N. Breaking the silence: brain?computer interfaces (BCI) for communication and motor control. Psychophysiology. 2006;43(6):517–532. doi: 10.1111/j.1469-8986.2006.00456.x.
  • Tang J, Liu Y, Hu D, et al. Towards BCI-actuated smart wheelchair system. Biomed Eng Online. 2018;17(1):111. doi: 10.1186/s12938-018-0545-x.
  • Chen X, Zhao B, Wang Y, et al. Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm. J Neural Eng. 2019;16(2):026012. doi: 10.1088/1741-2552/aaf594.
  • Chai X, Zhang Z, Guan K, et al. A hybrid BCI-controlled smart home system combining SSVEP and EMG for individuals with paralysis. Biomed Signal Process Control. 2020;56:101687. doi: 10.1016/j.bspc.2019.101687.
  • Lin JS, Wang M, Lia PY, et al. An SSVEP-based BCI system for SMS in a mobile phone. AMM. 2014;513-517:412–415. doi: 10.4028/www.scientific.net/AMM.513-517.412.
  • Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988;70(6):510–523. doi: 10.1016/0013-4694(88)90149-6.
  • Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain–computer interfaces for communication and control. Clin Neurophysiol. 2002;113(6):767–791.
  • Wolpaw JR, McFarland DJ, Vaughan TM. Brain-computer interface research at the wadsworth center. IEEE Trans Rehabil Eng. 2000;8(2):222–226. doi: 10.1109/86.847823.
  • Wolpaw JR, Birbaumer N, Heetderks WJ, et al. Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng. 2000;8(2):164–173. doi: 10.1109/TRE.2000.847807.
  • Gao X, Xu D, Cheng M, et al. A BCI-based environmental controller for the motion-disabled. IEEE Trans Neural Syst Rehabil Eng. 2003;11(2):137–140. doi: 10.1109/TNSRE.2003.814449.
  • Pfurtscheller G, Neuper C, Muller GR, et al. Graz-BCI: state of the art and clinical applications. IEEE Trans Neural Syst Rehabil Eng. 2003;11(2):1–4. doi: 10.1109/TNSRE.2003.814454.
  • Serby H, Yom-Tov E, Inbar GF. An improved P300-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng. 2005;13(1):89–98. doi: 10.1109/TNSRE.2004.841878.
  • Schalk G, McFarland DJ, Hinterberger T, et al. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng. 2004;51(6):1034–1043. doi: 10.1109/TBME.2004.827072.
  • Hochberg LR, Bacher D, Jarosiewicz B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372–375. doi: 10.1038/nature11076.
  • Yao D, Zhang Y, Liu T, et al. Bacomics: a comprehensive cross area originating in the studies of various brain–apparatus conversations. Cogn Neurodyn. 2020;14(4):425–442. doi: 10.1007/s11571-020-09577-7.
  • Takano K, Hata N, Kansaku K. Towards intelligent environments: an augmented reality–brain–machine interface operated with a see-through head-mount display. Front Neurosci. 2011;5:60. doi: 10.3389/fnins.2011.00060.
  • Zhang R, Xu Z, Zhang L, et al. The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP–BCI in augmented reality. J Neural Eng. 2022;19(3):036010. doi: 10.1088/1741-2552/ac6ae5.
  • Zhang R, Cao L, Xu Z, et al. Improving AR-SSVEP recognition accuracy under high ambient brightness through iterative learning. IEEE Trans Neural Syst Rehabil Eng. 2023;31:1796–1806. doi: 10.1109/TNSRE.2023.3260842.
  • Carmigniani J, Furht B. Augmented reality: an overview. In: Furht B, editor. Handbook of augmented reality. New York, NY: Springer New York; 2011. pp. 3–46. doi: 10.1007/978-1-4614-0064-6_1.
  • Lin J, Cheng D, Yao C, et al. Retinal projection head-mounted display. Front Optoelectron. 2017;10(1):1–8. doi: 10.1007/s12200-016-0662-8.
  • Jang C, Bang K, Moon S, et al. Retinal 3D: augmented reality near-eye display via Pupil-Tracked light field projection on retina. ACM Trans Graph. 2017;36(6):1–13. doi: 10.1145/3130800.3130889.
  • Peillard E, Itoh Y, Moreau G, et al. Can retinal projection displays improve spatial perception in augmented reality?. 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2020, pp. 80–89. doi: 10.1109/ISMAR50242.2020.00028.
  • Xia T, Lou Y, Hu J, et al. Simplified retinal 3D projection rendering method and system. Appl Opt. 2022;61(9):2382–2390. doi: 10.1364/AO.451482.
  • Belcher D, Billinghurst M, Hayes SE, et al. Using augmented reality for visualizing complex graphs in three dimensions . Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings, Tokyo, Japan, 2003, pp. 84–93. doi: 10.1109/ISMAR.2003.1240691.
  • Carmigniani J, Furht B, Anisetti M, et al. Augmented reality technologies, systems and applications. Multimed Tools Appl. 2011;51(1):341–377. doi: 10.1007/s11042-010-0660-6.
  • Lee B, Jo Y, Yoo D, et al. Recent progresses of near-eye display for AR and VR. presented at the Proc.SPIE, Jun. 2021, vol. 11785, p. 1178503. doi: 10.1117/12.2596128.
  • Siriwardhana Y, Porambage P, Liyanage M, et al. A survey on mobile augmented reality with 5G mobile edge computing: architectures, applications, and technical aspects. IEEE Commun Surv Tutorials. 2021;23(2):1160–1192. doi: 10.1109/COMST.2021.3061981.
  • Condino S, Montemurro N, Cattari N, et al. Evaluation of a wearable AR platform for guiding complex craniotomies in neurosurgery. Ann Biomed Eng. 2021;49(9):2590–2605. doi: 10.1007/s10439-021-02834-8.
  • Arpaia P, De Benedetto E, Duraccio L. Design, implementation, and metrological characterization of a wearable, integrated AR-BCI hands-free system for health 4.0 monitoring. Measurement. 2021;177:109280. doi: 10.1016/j.measurement.2021.109280.
  • Condino S, Fida B, Carbone M, et al. Wearable augmented reality platform for aiding complex 3D trajectory tracing. Sensors. 2020;20(6):1612. doi: 10.3390/s20061612.
  • Mladenov B, Damiani L, Giribone P, et al. A short review of the SDKs and wearable devices to be used for AR application for industrial working environment. Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I WCECS 2018; 2018. p. 6. .
  • Starner T, Mann S, Rhodes B, et al. Augmented reality through wearable computing. Presence: Teleoperators Virtual Environ. 1997;6(4):386–398. doi: 10.1162/pres.1997.6.4.386.
  • Cascio WF, Montealegre R. How technology is changing work and organizations. Annu Rev Organ Psychol Organ Behav. 2016;3(1):349–375. doi: 10.1146/annurev-orgpsych-041015-062352.
  • Billinghurst M, Clark A, Lee G. A survey of augmented reality. FNT Human–Compute Interact. 2015;8(2-3):73–272. doi: 10.1561/1100000049.
  • Nikitenko MS, Zhuravlev SS, Rudometov SV, et al. Walking support control system algorithms testing with brain-computer interface (BCI) and augmented reality (AR) technology integration. IOP Conf Ser: Earth Environ Sci 2018;206(1):012043. doi: 10.1088/1755-1315/206/1/012043.
  • Bohannon LS, Herbert AM, Pelz JB, et al. Eye contact and video-mediated communication: a review. Displays. 2013;34(2):177–185. doi: 10.1016/j.displa.2012.10.009.
  • Blum T, Stauder R, Euler E, et al. Superman-like X-ray vision: towards brain-computer interfaces for medical augmented reality. 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Atlanta, GA, USA, Nov. 2012, pp. 271–272. doi: 10.1109/ISMAR.2012.6402569.
  • Arquissandas P, Lamas D, Oliveira J. Augmented reality and sensory technology for treatment of anxiety disorders. 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), Coimbra, Portugal, Jun. 2019, pp. 1–4. doi: 10.23919/CISTI.2019.8760859.
  • Barresi G, Olivieri E, Caldwell DG, et al. Brain-controlled AR feedback design for user’s training in surgical HRI. 2015 IEEE International Conference on Systems, Man, and Cybernetics, Kowloon Tong, Hong Kong, Oct. 2015, pp. 1116–1121. doi: 10.1109/SMC.2015.200.
  • Zeng H, Wang Y, Wu C, et al. Closed-Loop hybrid gaze brain-Machine interface based robotic arm control with augmented reality feedback. Front Neurorobot. 2017;11:60. doi: 10.3389/fnbot.2017.00060.
  • Picton T. The P300 wave of the human event-related potential. J Clin Neurophysiol. 1992;9(4):456–479. doi: 10.1097/00004691-199210000-00002.
  • Pritchard WS. Psychophysiology of P300. Psychol Bull. 1981;89(3):506–540. doi: 10.1037/0033-2909.89.3.506.
  • Thomas E, Fruitet J, Clerc M. Investigating brief motor imagery for an ERD/ERS based BCI. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012. p 2929–2932. doi: 10.1109/EMBC.2012.6346577.
  • Xiao X, Xu M, Han J, et al. Enhancement for P300-speller classification using multi-window discriminative canonical pattern matching. J Neural Eng. 2021;18(4):046079. doi: 10.1088/1741-2552/ac028b.
  • Lenhardt A, Ritter H. An augmented-reality based brain-computer interface for robot control. In: Wong KW, Mendis BSU, and Bouzerdoum A, editors. Neural information processing. Models and applications. vol. 6444. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 58–65. doi: 10.1007/978-3-642-17534-3_8.
  • Chen X, Huang X, Wang Y, et al. Combination of augmented reality based brain- computer interface and computer vision for high-level control of a robotic arm. IEEE Trans Neural Syst Rehabil Eng. 2020;28(12):3140–3147. Dec doi: 10.1109/TNSRE.2020.3038209.
  • Kim S, Lee S, Kang H, et al. P300 brain–computer interface-based drone control in virtual and augmented reality. Sensors. 2021;21(17):5765. doi: 10.3390/s21175765.
  • Kosmyna N, Wu Q, Hu C-Y, et al. Assessing internal and external attention in AR using brain computer interfaces: a pilot study. 2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Athens, Greece, Jul. 2021, pp. 1–6. doi: 10.1109/BSN51625.2021.9507034.
  • Li P, Gao X, Li C, et al. Granger causal inference based on dual laplacian distribution and its application to MI-BCI classification. IEEE Trans Neural Netw. Learning Syst. 2023:1–15. doi: 10.1109/TNNLS.2023.3292179.
  • Chin ZY, Ang KK, Wang C, et al. Online performance evaluation of motor imagery BCI with augmented-reality virtual hand feedback. Annu Int Conf IEEE Eng Med Biol Soc. Aug. 2010;2010 . p. 3341–3344. doi: 10.1109/IEMBS.2010.5627911.
  • Choi J, Jo S. Application of hybrid brain-computer interface with augmented reality on quadcopter control. 2020 8th International Winter Conference on Brain-Computer Interface (BCI), Feb. 2020, pp. 1–5. doi: 10.1109/BCI48061.2020.9061659.
  • Al-Qaysi ZT, Ahmed MA, Hammash NM, et al. Systematic review of training environments with motor imagery brain–computer interface: coherent taxonomy, open issues and recommendation pathway solution. Health Technol. 2021;11(4):783–801. doi: 10.1007/s12553-021-00560-8.
  • Gao S, Wang Y, Gao X, et al. Visual and auditory brain–computer interfaces. IEEE Trans Biomed Eng. 2014;61(5):1436–1447. doi: 10.1109/TBME.2014.2300164.
  • Lin Z, Zhang C, Wu W, et al. Frequency recognition based on canonical correlation analysis for SSVEP-Based BCIs. IEEE Trans Biomed Eng. 2006;53(12 Pt 2):2610–2614. doi: 10.1109/TBME.2006.886577.
  • Müller-Putz GR, Pfurtscheller G. Control of an electrical prosthesis with an SSVEP-Based BCI. IEEE Trans Biomed Eng. 2008;55(1):361–364. doi: 10.1109/TBME.2007.897815.
  • Horii S, Nakauchi S, Kitazaki M. AR-SSVEP for brain-machine interface: e stimating user’s gaze in head-mounted display with USB camera . 2015 IEEE Virtual Reality (VR), Mar. 2015, pp. 193–194. doi: 10.1109/VR.2015.7223361.
  • Faller J, Allison BZ, Brunner C, Scherer R, Schmalstieg D, Pfurtscheller G, and Neuper C. A feasibility study on SSVEP-based interaction with motivating and immersive virtual and augmented reality. 2017; arXiv preprint arXiv:1701.03981.
  • Si-Mohammed H, Petit J, Jeunet C, et al. Towards BCI-Based interfaces for augmented reality: feasibility, design and evaluation. IEEE Trans Vis Comput Graph. 2020;26(3):1608–1621. doi: 10.1109/TVCG.2018.2873737.
  • Ke Y, Liu P, An X, et al. An online SSVEP-BCI system in an optical see-through augmented reality environment. J Neural Eng. 2020;17(1):016066. doi: 10.1088/1741-2552/ab4dc6.
  • Zhang S, Gao X, Chen X. Humanoid robot walking in maze controlled by SSVEP-BCI based on augmented reality stimulus. Front Hum Neurosci. 2022;16:908050. doi: 10.3389/fnhum.2022.908050.
  • Zhao X, Liu C, Xu Z, et al. SSVEP stimulus layout effect on accuracy of brain-computer interfaces in augmented reality glasses. IEEE Access. 2020;8:5990–5998. doi: 10.1109/ACCESS.2019.2963442.
  • Wang J, Suenaga H, Hoshi K, et al. Augmented reality navigation with automatic Marker-Free image registration using 3-D image overlay for dental surgery. IEEE Trans Biomed Eng. 2014;61(4):1295–1304. doi: 10.1109/TBME.2014.2301191.
  • Liu P, et al. An SSVEP-BCI in augmented reality. Int Conf IEEE Eng Med Biol Soc EMBC. 2019;:4. 41st Annu Oct. 2019. doi: 10.1109/embc.2019.8857859.
  • Angrisani L, Arpaia P, Esposito A, et al. A wearable brain–computer interface instrument for augmented reality-based inspection in industry 4.0. IEEE Trans Instrum Meas. 2020;69(4):1530–1539. doi: 10.1109/TIM.2019.2914712.
  • Kerous B, Liarokapis F. BrainChat - a collaborative augmented reality brain interface for message communication. 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), Nantes, France, Oct. 2017, pp. 279–283. doi: 10.1109/ISMAR-Adjunct.2017.91.
  • Park S, Cha H-S, Im C-H. Development of an online home appliance control system using augmented reality and an SSVEP-Based brain–computer interface. IEEE Access. 2019;7:163604–163614. doi: 10.1109/ACCESS.2019.2952613.
  • Tang Z, Sun S, Zhang S, et al. A brain-machine interface based on ERD/ERS for an upper-limb exoskeleton control. Sensors. 2016;16(12):2050. doi: 10.3390/s16122050.
  • Arpaia P, De Benedetto E, Donato N, et al. A wearable SSVEP BCI for AR-based, real-time monitoring applications. 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2021, pp. 1–6. doi: 10.1109/MeMeA52024.2021.9478593.
  • Ravi A, Lu J, Pearce S, et al. Asynchronous SSMVEP BCI and influence of dynamic background in augmented reality. 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nov. 2021, pp. 340–343. doi: 10.1109/M2VIP49856.2021.9665078.
  • Chen L, Chen P, Zhao S, et al. Adaptive asynchronous control system of robotic arm based on augmented reality-assisted brain–computer interface. J. Neural Eng. 2021;18(6):066005. Dec doi: 10.1088/1741-2552/ac3044.
  • Zhao X, Du Y, Zhang R. A CNN-based multi-target fast classification method for AR-SSVEP. Comput Biol Med. 2022;141:105042. doi: 10.1016/j.compbiomed.2021.105042.
  • Zhang S, Chen Y, Zhang L, et al. Study on robot grasping system of SSVEP-BCI based on augmented reality stimulus. Tsinghua Sci Technol. 2023;28(2):322–329. doi: 10.26599/TST.2021.9010085.
  • Si-Mohammed H, Haumont C, Sanchez A. Designing functional prototypes combining bci and ar for home automation. Virtual Real Mix Real. p. 3–21.
  • Andrews A. Integration of augmented reality and brain-computer interface technologies for health care applications: exploratory and prototyping study. JMIR Form Res. 2022;6(4):e18222. Apr doi: 10.2196/18222.
  • Andrews A. Mind power: thought-controlled augmented reality for basic science education. Med Sci Educ. 2022;32(6):1571–1573. doi: 10.1007/s40670-022-01659-x.
  • Si-Mohammed H, Argelaguet F, Casiez G, et al. Brain-computer interfaces and augmented reality: a state of the art. Graz Brain-Computer Interface Conference, 2017. Available from: https://api.semanticscholar.org/CorpusID:322089.