693
Views
80
CrossRef citations to date
0
Altmetric
Reviews

Current investigational drugs for major depression

, PhD & , PhD
Pages 767-788 | Published online: 09 May 2009

Bibliography

  • Wong ML, Licinio J. Research and treatment approaches to depression. Nat Rev Neurosci 2001;2:343-51
  • Wong ML, Licinio J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 2004;3:136-51
  • Artigas F, Romero L, de Montigny C, et al. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 1996;19:378-83
  • Greist JH, Mundt JC, Kobak K. Factors contributing to failed trials of new agents: can technology prevent some problems? J Clin Psychiatry 2002;63:8-13
  • Kessler RC, Berglund P, Demler O, et al. National Comorbidity Survey Replication. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003;289:3095-105
  • Kessler RC, Mcgonagle KA, Zhao S, et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey. Arch Gen Psychiatry 1994;51:8-19
  • Vijayakumar L. Suicide and mental disorders in Asia. Int Rev Psychiatry 2005;17:109-14
  • Millan MJ. The role of monoamines in the actions of established and ‘novel’ antidepressant agents: a critical review. Eur J Pharmacol 2004;500:371-84
  • Sadock BJ, Sadock VA. Classification of mental disorders. In:. Kaplan & Sadock (Eds), Comprehensive textbook of Psychiatry. Lippincott Williams & Wilkins, Philadelphia, USA 2000. p. 1125-45
  • Holtzheimer PE 3rd, Nemeroff CB. Advances in the treatment of depression. NeuroRx 2006;3:42-56
  • Fava M, Davidson KG. Definition and epidemiology of treatment-resistant depression. Psychiatr Clin North Am 1996;19:179-200
  • Furukawa TA, Yoshimura R, Harai H, et al. How many well vs. unwell days can you expect over 10 years, once you become depressed? Acta Psychiatr Scand 2009;119:290-7
  • Nierenberg AA. Do some antidepressants work faster than others? J Clin Psychiatry 2001;15:22-5
  • Schatzberg AF. Pharmacological principles of antidepressant efficacy. Hum Psychopharmacol 2002;17:S17-22
  • Youdim MB, Weinstock M. Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase A and B that do not cause significant tyramine potentiation. Neurotoxicology 2004;25:243-50
  • Kulkarni SK, Parale MP. Despair behavior: a tool in experimental psychopharmacology. A review. Method Find Exp Clin Pharmacol 1986;8:741-44
  • Borsini F, Meli A. Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology (Berl) 1988;94:147-60
  • Borsini F. Role of the serotonergic system in the forced swimming test. Neurosci Biobehav Rev 1995;19:377-95
  • Redrobe JP, Bourin M, Colombel MC, et al. Psychopharmacological profile of the selective serotonin reuptake inhibitor, paroxetine: implication of noradrenergic and serotonergic mechanisms. J Psychopharmacol 1998;12:348-55
  • Redrobe JP, Bourin M. Partial role of 5-HT2 and 5-HT3 receptors in the activity of antidepressants in the mouse forced swimming test. Eur J Pharmacol 1997;325:129-35
  • Cryan JF, Valentino RJ, Lucki I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 2005;29:547-69
  • Flugy A, Gagliano M, Cannizzaro C, et al. Antidepressant and anxiolytic effects of alprazolam versus the conventional antidepressant desipramine and the anxiolytic diazepam in the forced swim test in rats. Eur J Pharmacol 1992;214:233-38
  • Hemby SE, Lucki I, Gatto G, et al. Potential antidepressant effects of novel tropane compounds, selective for serotonin or dopamine transporters. J Pharmacol Exp Ther 1997;282:727-33
  • Porsolt RD, Anton G, Blavet N, et al. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 1978;47:379-91
  • Tadano T, Abe Y, Morikawa Y, et al. Relationship between learning behaviour and genetic factor on immobility shown during forced swimming test. Nihon Shinkei Seishin Yakurigaku Zasshi 1997;3:129-35
  • Bai F, Li X, Clay M, et al. Intra- and interstrain differences in models of behavioral despair. Pharmacol Biochem Behav 2001;70:187-92
  • Lucki I, Dalvi A, Mayorga AJ. Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology 2001;155:315-22
  • David DJ, Renard CE, Jolliet P, et al. Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology 2003;166:373-82
  • Steru L, Chermat R, Thierry B, et al. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 1985;85:367-70
  • Renard CE, Dailly E, David DJ, et al. Monoamine metabolism changes following the mouse forced swimming test but not the tail suspension test. Fundam Clin Pharmacol 2003;17:449-55
  • Deussing JM. Animal models of depression drug discovery today. Disease Models 2006;3:375-83
  • Creese I, Chen A. Selective D-1 dopamine receptor increase following chronic treatment with SCH 23390. Eur J Pharmacol 1985;109:127-28
  • Klimek V, Schenck JE, Han H, et al. Dopaminergic abnormalities in amygdaloid nuclei in major depression: a postmortem study. Biol Psychiatry 2002;52:740-48
  • Nemeroff CB. Fostering foster care outcomes: quality of intervention matters in overcoming early adversity. Arch Gen Psychiatry 2008;65:623-24
  • Lambert G, Johansson M, Agren H, et al. Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders. Arch Gen Psychiatry 2000;57:787-93
  • Jokinen J, Nordstrom AL, Nordstrom P. The relationship between CSF HVA/5-HIAA ratio and suicide intent in suicide attempters. Arch Suicide Res 2007;11:187-92
  • Winter C, von Rumohr A, Mundt A, et al. Lesions of dopaminergic neurons in the substantia nigra pars compacta and in the ventral tegmental area enhance depressive-like behavior in rats. Behav Brain Res 2007;184:133-41
  • Leentjens AF, Verhey FR, Vreeling FW. Successful treatment of depression in a Parkinson disease patient with bupropion. Ned Tijdschr Geneeskd 2000;144:2157-59
  • Dhir A, Kulkarni SK. Involvement of nitric oxide (NO) signaling pathway in the antidepressant action of bupropion, a dopamine reuptake inhibitor. Eur J Pharmacol 2007c;568:177-85
  • Grandas F, López-Manzanares L. Bupropion-induced parkinsonism. Mov Disord 2007;22:1830-31
  • Cooper BR, Wang CM, Cox RF, et al. Evidence that the acute behavioral and electrophysiological effects of bupropion (Wellbutrin) are mediated by a noradrenergic mechanism. Neuropsychopharmacology 1994;11:133-41
  • Kinney JL. Nomifensine maleate: a new second-generation antidepressant. Clin Pharm 1985;4:625-36
  • Lemke MR, Brecht HM, Koester J, et al. Effects of the dopamine agonist pramipexole on depression, anhedonia and motor functioning in Parkinson's disease. J Neurol Sci 2006;248:266-70
  • Dikeos DG, Papadimitriou GN, Avramopoulos D, et al. Association between the dopamine D3 receptor gene locus (DRD3) and unipolar affective disorder. Psychiatr Genet 1999;9:189-95
  • Dhir A, Kulkarni SK. Involvement of dopamine (DA)/serotonin (5-HT)/sigma (sigma) receptor modulation in mediating the antidepressant action of ropinirole hydrochloride, a D2/D3 dopamine receptor agonist. Brain Res Bull 2007;74:58-65
  • Chen J, Paredes W, Van Praag HM, et al. Presynaptic dopamine release is enhanced by 5-HT3 receptor activation in medial prefrontal cortex of freely moving rats. Synapse 1992;10:264-66
  • Parsons LH, Justice JB. Perfusate serotonin increases extracellular dopamine in the nucleus accumbens of the rat as measured by in vivo microdialysis. Brain Res 1993;606:195-99
  • Lejeune F, Millan MJ. Induction of burst firing in ventral tegmental area dopaminergic neurons by activation of serotonin (5-HT)1A receptors: WAY 100,635-reversible actions of the highly selective ligands, flesinoxan and S 15535. Synapse 1998;30:172-80
  • Pae CU, Marks DM, Han C, et al. A case of transient hallucination with ropinirole augmentation antidepressant in a patient with treatment-resistant depression: is there differential effect of ropinirole dose on developing psychotic symptom? Prog Neuropsychopharmacol Biol Psychiatry 2008;32:1087-88
  • Brocco M, Dekeyne A, Papp M, et al. Antidepressant-like properties of the anti-Parkinson agent, piribedil, in rodents: mediation by dopamine D2 receptors. Behav Pharmacol 2006;17:559-72
  • Joca SR, Skalisz LL, Beijamini V, et al. The antidepressive-like effect of oxcarbazepine: possible role of dopaminergic neurotransmission. Eur Neuropsychopharmacol 2000;10:223-28
  • Chen Z, Skolnick P. Triple uptake inhibitors: therapeutic potential in depression and beyond. Expert Opin Investig Drugs 2007;16:1365-77
  • Skolnick P, Basile AS. Triple reuptake inhibitors ‘broad spectrum’ antidepressants. CNS Neurol Disord Drug Targets 2007;6:141-49
  • Breuer ME, Chan JS, Oosting RS, et al. The triple monoaminergic reuptake inhibitor DOV 216,303 has antidepressant effects in the rat olfactory bulbectomy model and lacks sexual side effects. Eur Neuropsychopharmacol 2008;18:908-16
  • Skolnick P, Krieter P, Tizzano J, et al. Preclinical and clinical pharmacology of DOV 216,303, a ‘triple’ reuptake inhibitor. CNS Drug Rev 2006;12:123-34
  • Available from: http://clinicaltrials.gov/ct2/show/NCT00467428
  • Beer B, Stark J, Krieter P, et al. DOV 216,303, a ‘triple’ reuptake inhibitor: safety, tolerability, and pharmacokinetic profile. J Clin Pharmacol 2004;44:1360-67
  • Skolnick P, Popik P, Janowsky A. Antidepressant-like actions of DOV 21,947: a ‘triple’ reuptake inhibitor. Eur J Pharmacol 2003;461:99-104
  • Popik P, Krawczyk M, Golembiowska K, et al. Pharmacological profile of the ‘triple’ monoamine neurotransmitter uptake inhibitor, DOV 102,677. Cell Mol Neurobiol 2006;26:857-73
  • Thatte U. NS-2330 (Neurosearch). Curr Opin Investig Drugs 2001;2:1592-94
  • Hauser RA, Salin L, Juhel N, et al. Randomized trial of the triple monoamine reuptake inhibitor NS 2330 (tesofensine) in early Parkinson's disease. Mov Disord 2007;22:359-65
  • Available from: http://www.sepracor.com/products/sep225289.html
  • Liang Y, Shaw AM, Boules M, et al. Antidepressant-like pharmacological profile of a novel triple reuptake inhibitor, (1S,2S)-3-(methylamino)-2-(naphthalen-2-yl)-1-phenylpropan-1-ol (PRC200-SS). J Pharmacol Exp Ther 2008;327:573-83
  • Aluisio L, Lord B, Barbier AJ, et al. In-vitro and in-vivo characterization of JNJ-7925476, a novel triple monoamine uptake inhibitor. Eur J Pharmacol 2008;587:141-46
  • Dhir A, Kulkarni SK. Involvement of L-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of venlafaxine in mice. Prog Neuropsychopharmacol Biol Psychiatry 2007;31:921-25
  • Dhir A, Kulkarni SK. Antidepressant-like effect of 17beta-estradiol: involvement of dopaminergic, serotonergic, and (or) sigma-1 receptor systems. Can J Physiol Pharmacol 2008;86:726-35
  • Kulkarni SK, Dhir A. Possible involvement of L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signaling pathway in the antidepressant activity of berberine chloride. Eur J Pharmacol 2007;569:77-83
  • Kulkarni SK, Dhir A. On the mechanism of antidepressant-like action of berberine chloride. Eur J Pharmacol 2008;589:163-72
  • Kaster MP, Rosa AO, Santos AR, et al. Involvement of nitric oxide-cGMP pathway in the antidepressant-like effects of adenosine in the forced swimming test. Int J Neuropsychopharmacol 2005;8:601-06
  • Almeida RC, Felisbino CS, López MG, et al. Evidence for the involvement of L-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of memantine in mice. Behav Brain Res 2006;168:318-22
  • Rosa AO, Lin J, Calixto JB, et al. Involvement of NMDA receptors and L-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice. Behav Brain Res 2003;144:87-93
  • Jesse CR, Bortolatto CF, Savegnago L, et al. Involvement of l-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of tramadol in the rat forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:1838-43
  • Heiberg IL, Wegener G, Rosenberg R. Reduction of cGMP and nitric oxide has antidepressant-like effects in the forced swimming test in rats. Behav Brain Res 2002;134:479-84
  • da Silva GD, Matteussi AS, dos Santos AR, et al. Evidence for dual effects of nitric oxide in the forced swimming test and in the tail suspension test in mice. Neuroreport 2000;11:3699-702
  • Martin WR, Eades CG, Thompson JA, et al. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 1976;197:517-32
  • Vaupel DB. Naltrexone fails to antagonize the sigma effects of PCP and SKF 10,047 in the dog. Eur J Pharmacol 1983;92:269-74
  • Largent BL, Gundlach AL, Snyder SH. Pharmacological and autoradiographic discrimination of sigma and phencyclidine receptor binding sites in brain with (+)-[3H]SKF 10,047, (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine and [3H]-1-[1-(2-thienyl)cyclohexyl]piperidine. J Pharmacol Exp Ther 1986;238:739-48
  • Gundlach AL, Largent BL, Snyder SH. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. J Neurosci 1986;6:1757-70
  • Narita N, Hashimoto K, Tomitaka S, et al. Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain. Eur J Pharmacol 1996;307:117-9
  • Su TP. Evidence for sigma opioid receptor: binding of [3H] SKF-10047 to etorphine-inaccessible sites in guinea-pig brain. J Pharmacol Exp Ther 1982;223:284-90
  • Ishikawa M, Ishiwata K, Ishii K, et al. High occupancy of α1 receptors in human brain after single oral administration of fluvoxamine: a positron emission study using [11C] SA4503. Biol Psychiatry 2007;62:878-83
  • Hayashi T, Su TP. An update on the development of drugs for neuropsychiatric disorders: focusing on the sigma 1 receptor ligand. Expert Opin Ther Targets 2008;12:45-58
  • Dhir A, Kulkarni SK. Involvement of sigma-1 receptor modulation in the antidepressant action of venlafaxine. Neurosci Lett 2007;420:204-48
  • Dhir A, Kulkarni SK. Possible involvement of sigma-1 receptors in the anti-immobility action of bupropion, a dopamine reuptake inhibitor. Fundam Clin Pharmacol 2008;22:387-94
  • Dhir A, Kulkarni SK. Involvement of sigma (sigma1) receptors in modulating the anti-depressant effect of neurosteroids (dehydroepiandrosterone or pregnenolone) in mouse tail-suspension test. J Psychopharmacol 2008;22:691-96
  • Aydar E, Palmer CP, Klyachko VA, et al. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 2002;34:399-410
  • Guo W, Todd K, Bourin M, et al. Additive effects of glyburide and antidepressants in the forced swimming test: evidence for the involvement of potassium channel blockade. Pharmacol Biochem Behav 1996;54:725-30
  • Kaster MP, Ferreira PK, Santos AR, et al. Effects of potassium channel inhibitors in the forced swimming test: possible involvement of L-arginine-nitric oxide-soluble guanylate cyclase pathway. Behav Brain Res 2005;165:204-09
  • Monnet FP, Debonnel G, Junien JL, et al. N-methyl-D-aspartate-induced neuronal activation is selectively modulated by sigma receptors. Eur J Pharmacol 1990;179:441-45
  • Martina M, Turcotte ME, Halman S, et al. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol 2007;578:143-57
  • Hayashi T, Su TP. Regulating ankyrin dynamics: roles of sigma-1 receptors. Proc Natl Acad Sci USA 2001;98:491-96
  • Matsuno K, Kobayashi T, Tanaka MK, et al. Sigma 1 receptor subtype is involved in the relief of behavioral despair in the mouse forced swimming test. Eur J Pharmacol 1996;312:267-71
  • Urani A, Romieu P, Roman FJ, et al. Enhanced antidepressant efficacy of sigma1 receptor agonists in rats after chronic intracerebroventricular infusion of beta-amyloid-(1-40) protein. Eur J Pharmacol 2004;486:151-61
  • Reddy DS, Kulkarni SK. Development of neurosteroid-based novel psychotropic drugs. Prog Med Chem 2000;37:135-75
  • Corpechot C, Synguelakis M, Talha S, et al. Pregnenolone and its sulfate ester in the rat brain. Brain Res 1983;270:119-25
  • Baulieu EE, Robel P. Neurosteroids: a new brain function? J Steroid Biochem Mol Biol 1990;37:395-403
  • Dubrovsky B. Neurosteroids, neuroactive steroids, and symptoms of affective disorders. Pharmacol Biochem Behav 2006;84:644-55
  • Pinna G, Costa E, Guidotti A. Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology (Berl) 2006;186:362-72
  • Khisti RT, Chopde CT, Jain SP. Antidepressant-like effect of the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one in mice forced swim test. Pharmacol Biochem Behav 2000;67:137-43
  • Wohlfarth KM, Bianchi MT, Macdonald RL. Enhanced neurosteroid potentiation of ternary GABAA receptors containing the δ subunit. J Neurosci 2002;22:1541-49
  • Wei W, Zhang N, Peng Z, et al. Perisynaptic localization of δ subunit-containing GABAA receptors and their activation by GABA spillover in the mouse dentate gyrus. J Neurosci 2003;23:10650-61
  • Stell BM, Brickley SG, Tang CY, et al. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci USA 2003;100:14439-44
  • Winsky-Sommerer R, Vyazovskiy VV, Homanics GE, et al. The EEG effects of THIP (Gaboxadol) on sleep and waking are mediated by the GABA(A)delta-subunit-containing receptors. Eur J Neurosci 2007;25:1893-99
  • Robichaud M, Debonnel G. Allopregnanolone and ganaxolone increase the firing activity of dorsal raphe nucleus serotonergic neurons in female rats. Int J Neuropsychopharmacol 2006;9:191-200
  • Maguire J, Mody I. GABAAR plasticity during pregnancy: relevance to postpartum depression. Neuron 2008;2:207-13
  • George MS, Guidotti A, Rubinow D, et al. CSF neuroactive steroids in affective disorders: pregnenolone, progesterone and DBI. Biol Psychiatry 1994;35:775-80
  • Malkesman O, Shayit M, Genud R, et al. Dehydroepiandrosterone in the nucleus accumbens is associated with early onset of depressive-behavior: a study in an animal model of childhood depression. Neuroscience 2007;149:573-81
  • Morita K, Her S. Progesterone pretreatment enhances serotonin-stimulated BDNF gene expression in rat c6 glioma cells through production of 5alpha-reduced neurosteroids. J Mol Neurosci 2008;34:193-200
  • Reddy DS, Kaur G, Kulkarni SK. Sigma (sigma1) receptor mediated anti-depressant-like effects of neurosteroids in the Porsolt forced swim test. Neuroreport 1998;9:3069-73
  • Reddy DS, Kulkarni SK. Role of GABA-A and mitochondrial diazepam binding inhibitor receptors in the anti-stress activity of neurosteroids in mice. Psychopharmacology Berl 1996;128:280-92
  • Bermack JE, Debonnel G. The role of sigma receptors in depression. J Pharmacol Sci 2005;97:317-36
  • Peyron C, Petit JM, Rampon C, et al. Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 1998;82:443-68
  • Ashkenazy T, Einat H, Kronfeld-Schor N. We are in the dark here: induction of depression- and anxiety-like behaviours in the diurnal fat sand rat, by short daylight or melatonin injections. Int J Neuropsychopharmacol 2008;17:1-11
  • Pandi-Perumal SR, Srinivasan V, Cardinali DP, et al. Could agomelatine be the ideal antidepressant? Expert Rev Neurother 2006;6:1595-608
  • Pandi-Perumal SR, Trakht I, Srinivasan V, et al. The effect of melatonergic and non-melatonergic antidepressants on sleep: weighing the alternatives. World J Biol Psychiatry 2008;4:1-13
  • Pandi-Perumal SR, Trakht I, Srinivasan V, et al. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol 2008;85:335-53
  • Ergun Y, Orhan FO, Karaaslan MF. Combination therapy of imipramine and melatonin: additive antidepressant effect in mouse forced swimming test. Eur J Pharmacol 2008;591:159-63
  • Mantovani M, Pértile R, Calixto JB, et al. Melatonin exerts an antidepressant-like effect in the tail suspension test in mice: evidence for involvement of N-methyl-D-aspartate receptors and the L-arginine-nitric oxide pathway. Neurosci Lett 2003;343:1-4
  • Raghavendra V, Kaur G, Kulkarni SK. Anti-depressant action of melatonin in chronic forced swimming-induced behavioral despair in mice, role of peripheral benzodiazepine receptor modulation. Eur Neuropsychopharmacol 2000;10:473-81
  • Arendt J, Rajaratnam SM. Melatonin and its agonists: an update. Br J Psychiatry 2008;193:267-69
  • San L, Arranz B. Agomelatine: a novel mechanism of antidepressant action involving the melatonergic and the serotonergic system. Eur Psychiatry 2008;23:396-402
  • Stahl SM. Novel mechanism of antidepressant action: norepinephrine and dopamine disinhibition (NDDI) plus melatonergic agonism. Int J Neuropsychopharmacol 2007;10:575-78
  • Millan MJ, Gobert A, Lejeune F, et al. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. Neurotherapeutics 2009;6:53-77
  • Olie JP, Kasper S. Efficacy of agomelatine, a MT1/MT2 receptor agonist with 5-HT2C antagonistic properties, in major depressive disorder. Int J Neuropsychopharmacol 2007;10:661-73
  • Dolder CR, Nelson M, Snider M. Agomelatine treatment of major depressive disorder. Ann Pharmacother 2008;42:1822-31
  • Palucha A, Pilc A. The involvement of glutamate in the pathophysiology of depression. Drug News Perspect 2005;18:262-68
  • Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 1997;37:205-37
  • Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 1990;185:1-10
  • Maj J, Rogoz Z, Skuza G, et al. Effects of MK-801 and antidepressant drugs in the forced swimming test in rats. Eur Neuropsychopharmacol 1992;2:37-41
  • Eckeli AL, Dach F, Rodrigues AL. Acute treatments with GMP produce antidepressant-like effects in mice. Neuroreport 2000;11:1839-43
  • Panconi E, Roux J, Altenbaumer M, et al. MK-801 and enantiomers: potential antidepressants or false positives in classical screening models? Pharmacol Biochem Behav 1993;46:15-20
  • Ossowska G, Klenk-Majewska B, Szymczyk G. The effect of NMDA antagonists on footshock-induced fighting behavior in chronically stressed rats. J Physiol Pharmacol 1997;48:127-35
  • Papp M, Moryl E, Willner P. Pharmacological validation of the chronic mild stress model of depression. Eur J Pharmacol 1996;296:129-36
  • Pilc A, Kłodzinska A, Branski P, et al. Multiple MPEP administrations evoke anxiolytic- and antidepressant-like effects in rats. Neuropharmacology 2002;43:181-87
  • Danysz W, Parson CG, Bersnick I, et al. Glutamate in CNS disorders. Drug News Perspect 1996;8:261-77
  • Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist-a review of preclinical data. Neuropharmacology 1999;38:735-67
  • Zarate CA Jr, Singh JB, Quiroz JA, et al. A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am J Psychiatry 2006;163:153-55
  • Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000;47:351-54
  • Liebrenz M, Borgeat A, Leisinger R, et al. Intravenous ketamine therapy in a patient with a treatment-resistant major depression. Swiss Med Wkly 2007;137:234-36
  • Garcia LS, Comim CM, Valvassori SS, et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:140-44
  • Popik P, Kos T, Sowa-Kucma M, et al. Lack of persistent effects of ketamine in rodent models of depression. Psychopharmacology (Berl) 2008;198:421-30
  • Fakhoury TA, Miller JM, Hammer AE, et al. Effects of lamotrigine on mood in older adults with epilepsy and co-morbid depressive symptoms: an open-label, multicentre, prospective study. Drugs Aging 2008;25:955-62
  • Kugaya A, Sanacora G. Beyond monoamines: glutamatergic function in mood disorders. Beyond monoamines: glutamatergic function in mood disorders. CNS Spectr 2005;10:808-19
  • Brocardo Pde S, Budni J, Lobato KR, et al. Antidepressant-like effect of folic acid: involvement of NMDA receptors and L-arginine-nitric oxide-cyclic guanosine monophosphate pathway. Eur J Pharmacol 2008;598:37-42
  • Skolnick, 1999. Antidepressants for the new millennium. Eur J Pharmacol 1999;375:31-40
  • Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995;15:7539-47
  • Brandoli C, Sanna A, De Bernardi MA, et al. Brain-derived neurotrophic factor and basic fibroblast growth factor downregulate NMDA receptor function in cerebellar granule cells. J Neurosci 1998;18:7953-61
  • Bleakman D, Alt A, Witkin JM. AMPA receptors in the therapeutic management of depression. CNS Neurol Disord Drug Targets 2007;6:117-26
  • Li X, Witkin JM, Need AB, et al. Enhancement of antidepressant potency by a potentiator of AMPA receptors. Cell Mol Neurobiol 2003;23:419-30
  • Bai F, Bergeron M, Nelson DL. Chronic AMPA receptor potentiator (LY451646) treatment increases cell proliferation in adult rat hippocampus. Neuropharmacology 2003;44:1013-21
  • Maeng S, Zarate CA Jr, Du J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 2008;63:349-52
  • Pilc A, Chaki S, Nowak G, et al. Mood disorders: regulation by metabotropic glutamate receptors. Biochem Pharmacol 2008;75:997-1006
  • Witkin JM, Marek GJ, Johnson BG, et al. Metabotropic glutamate receptors in the control of mood disorders. CNS Neurol Disord Drug Targets 2007;6:87-100
  • Attucci S, Carla V, Mannaioni G, et al. Activation of type 5 metabotropic glutamate receptors enhances NMDA responses in mice cortical wedges. Br J Pharmacol 2001;132:799-806
  • Chaki S, Yoshikawa R, Hirota S, et al. MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist with antidepressant-like activity. Neuropharmacology 2004;46:457-67
  • Yoshimizu T, Chaki S. Increased cell proliferation in the adult mouse hippocampus following chronic administration of group II metabotropic glutamate receptor antagonist, MGS0039. Biochem Biophys Res Commun 2004;315:493-96
  • Pałucha A, Tatarczynska E, Branski P, et al. Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects after central administration in rats. Neuropharmacology 2004;46:151-59
  • Hoyer D, Martin G. 5-HT receptor classification and nomenclature: towards a harmonization with the human genome. Neuropharmacology 1997;36:419-28
  • Yun HM, Kim S, Kim HJ, et al. The novel cellular mechanism of human 5-HT6 receptor through an interaction with Fyn. J Biol Chem 2007;282:5496-505
  • Wesołowska A, Nikiforuk A. Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression. Neuropharmacology 2007;52:1274-83
  • Wesołowska A, Nikiforuk A, Stachowicz K. Anxiolytic-like and antidepressant-like effects produced by the selective 5-HT6 receptor antagonist SB-258585 after intrahippocampal administration to rats. Behav Pharmacol 2007;18:439-46
  • Mitchell ES, Neumaier JF. 5-HT6 receptors: a novel target for cognitive enhancement. Pharmacol Ther 2005;108:320-33
  • Svenningsson P, Tzavara ET, Qi H, et al. Biochemical and behavioral evidence for antidepressant-like effects of 5-HT6 receptor stimulation. J Neurosci 2007;27:4201-09
  • Wesolowska A, Nikiforuk A, Stachowicz K, et al. Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology 2006;51:578-86
  • Wesolowska A, Tatarczynska E, Nikiforuk A, et al. Enhancement of the anti-immobility action of antidepressants by a selective 5-HT7 receptor antagonist in the forced swimming test in mice. Eur J Pharmacol 2007;555:43-7
  • Hedlund PB, Huitron-Resendiz S, Henriksen SJ, et al. 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Biol Psychiatry 2005;58:831-37
  • Bonaventure P, Kelly L, Aluisio L, et al. Selective blockade of 5-hydroxytryptamine (5-HT)7 receptors enhances 5-HT transmission, antidepressant-like behavior, and rapid eye movement sleep suppression induced by citalopram in rodents. J Pharmacol Exp Ther 2007;321:690-98
  • Mnie-Filali O, Lambas-senas L, Zimmer L, Haddjeri N. 5-HT7 Receptor Antagonists as a New Class of Antidepressants. Drug News Perspectives 2007;20:613-8
  • Hedlund PB, Sutcliffe JG. The 5-HT7 receptor influences stereotypic behavior in a model of obsessive-compulsive disorder. Neurosci Lett 2007;414:247-51
  • Consoli D, Leggio GM, Mazzola C, et al. Behavioral effects of the beta3 adrenoceptor agonist SR58611A: is it the putative prototype of a new class of antidepressant/anxiolytic drugs? Eur J Pharmacol 2007;573:139-47
  • Overstreet DH, Stemmelin J, Griebel G. Confirmation of antidepressant potential of the selective beta3 adrenoceptor agonist amibegron in an animal model of depression. Pharmacol Biochem Behav 2008;89:623-26
  • Stemmelin J, Cohen C, Terranova JP, et al. Stimulation of the beta3-Adrenoceptor as a novel treatment strategy for anxiety and depressive disorders. Neuropsychopharmacology 2008;33:574-87
  • Griebel G, Stemmelin J, Gal CS, et al. Non-peptide vasopressin V1b receptor antagonists as potential drugs for the treatment of stress-related disorders. Curr Pharm Des 2005;11:1549-59
  • Griebel G, Simiand J, Serradeil-Le Gal C, et al. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci USA 2002;99:6370-75
  • Stemmelin J, Lukovic L, Salome N, et al. Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR149415. Neuropsychopharmacology 2005;30:35-42
  • Breuer ME, van Gaalen MM, Wernet W, et al. SSR149415, a non-peptide vasopressin V(1b) receptor antagonist, has long-lasting antidepressant effects in the olfactory bulbectomy-induced hyperactivity depression model. Naunyn Schmiedebergs Arch Pharmacol 2009;379:101-6
  • Overstreet DH, Griebel G. Antidepressant-like effects of the vasopressin V1b receptor antagonist SSR149415 in the Flinders Sensitive Line rat. Pharmacol Biochem Behav 2005;82(1):223-7
  • Serradeil-Le Gal C, Wagnon J 3rd, Tonnerre B, et al. An overview of SSR149415, a selective nonpeptide vasopressin V(1b) receptor antagonist for the treatment of stress-related disorders. CNS Drug Rev 2005;11:53-68
  • Gardier A. Mechanism of action of antidepressant drugs: importance of genetically modified mice in the pharmacological in vivo approach. Therapie 2005;60:469-76
  • Salomé N, Stemmelin J, Cohen C, et al. Selective blockade of NK2 or NK3 receptors produces anxiolytic- and antidepressant-like effects in gerbils. Pharmacol Biochem Behav 2006;83:533-39
  • Griebel G, Perrault G, Soubrié P. Effects of SR48968, a selective non-peptide NK2 receptor antagonist on emotional processes in rodents. Psychopharmacology (Berl) 2001;158:241-51
  • Steinberg R, Alonso R, Griebel G, et al. Selective blockade of neurokinin-2 receptors produces antidepressant-like effects associated with reduced corticotropin-releasing factor function. J Pharmacol Exp Ther 2001;299:449-58
  • Micale V, Tamburella A, Leggio GM, et al. Behavioral effects of saredutant, a tachykinin NK2 receptor antagonist, in experimental models of mood disorders under basal and stress-related conditions. Pharmacol Biochem Behav 2008;90:463-69
  • Nestler EJ, Barrot M, DiLeone RJ, et al. Neurobiology of depression. Neuron 2002;34:13-25
  • Holsboer F, Ising M. Central CRH system in depression and anxiety — Evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol;583(7):350-57
  • Kumamaru E, Numakawa T, Adachi N, et al. Glucocorticoid prevents brain-derived neurotrophic factor-mediated maturation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase. Mol Endocrinol 2008;22:546-58
  • Ago Y, Arikawa S, Yata M, et al. Antidepressant-like effects of the glucocorticoid receptor antagonist RU-43044 are associated with changes in prefrontal dopamine in mouse models of depression. Neuropharmacology 2008;55:1355-63
  • Buckley T, Duggal V, Schatzberg AF. The acute and post-discontinuation effects of a glucocorticoid receptor (GR) antagonist probe on sleep and the HPA axis in chronic insomnia: a pilot study. J Clin Sleep Med 2008;4:235-41
  • Todorovic C, Sherrin T, Pitts M, et al. Suppression of the MEK/ERK signaling pathway reverses depression-like behaviors of CRF(2)-deficient mice. Neuropsychopharmacology 2009 (In Press)
  • Ducottet C, Griebel G, Belzung C. Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:625-31
  • Hodgson RA, Higgins GA, Guthrie DH, et al. Comparison of the V1b antagonist, SSR149415, and the CRF1 antagonist, CP-154,526, in rodent models of anxiety and depression. Pharmacol Biochem Behav 2007;86:431-40
  • Chaki S, Nakazato A, Kennis L, et al. Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278995/CRA0450. Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278995/CRA0450. Eur J Pharmacol 2004;485:145-58
  • Heinrichs SC, De Souza EB, Schulteis G, et al. Brain penetrance, receptor occupancy and antistress in vivo efficacy of a small molecule corticotropin releasing factor type I receptor selective antagonist. Neuropsychopharmacology 2002;27:194-202
  • Li YW, Fitzgerald L, Wong H, et al. The pharmacology of DMP696 and DMP904, non-peptidergic CRF1 receptor antagonists. CNS Drug Rev 2005;11:21-52
  • Zobel AW, Nickel T, Künzel HE, et al. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res 2000;34:171-81
  • Surget A, Saxe M, Leman S, et al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 2008;64:293-301
  • Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl) 2008;201:435-42
  • Bhutani MK, Bishnoi M, Kulkarni SK. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav 2009;92:39-43
  • Wang R, Xu Y, Wu HL, et al. The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors. Eur J Pharmacol 2008;578:43-50
  • Xu Y, Ku BS, Yao HY, et al. Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav 2005;82:200-06
  • Wang R, Li YB, Li YH, et al. Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res 2008;1210:84-91
  • Nöldner M, Schötz K. Rutin is essential for the antidepressant activity of Hypericum perforatum extracts in the forced swimming test. Planta Med 2002;68:577-80
  • Machado DG, Bettio LE, Cunha MP, et al. Antidepressant-like effect of rutin isolated from the ethanolic extract from Schinus molle L. in mice: evidence for the involvement of the serotonergic and noradrenergic systems. Eur J Pharmacol 2008;587:163-68

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.