192
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent advances in computational epigenetics

&
Pages 1-12 | Published online: 28 Dec 2017

References

  • Bentley DR. Decoding the human genome sequence. Hum Mol Genet. 2000;16:2353–2358.
  • Lander ES, Linton LM, Birren B, et al; International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.
  • Fusco G, Minelli A. Phenotypic plasticity in development and evolution: facts and concepts. Philos Trans R Soc Lond B Biol Sci. 2010;365(1540):547–556.
  • Petronis A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature. 2010;465(7299):721–727.
  • Barrett T, Troup DB, Wilhite SE, et al. NCBI GEO: archive for functional genomics data sets—10 years on. Nucleic Acids Res. 2011;39(Database issue):D1005–D1010.
  • ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.
  • Herrero J, Muffato M, Beal K, et al. Ensembl comparative genomics resources. Database (Oxford). 2016;2016:bav096.
  • MacArthur J, Bowler E, Cerezo M, et al. The new NHGRI-EBI catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45(Database issue):D896–D901.
  • NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2017;45(Database issue):D12–D17.
  • Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152(6):1237–1251.
  • Seki Y, Williams L, Vuguin PM, Charron MJ. Minireview: epigenetic programming of diabetes and obesity: animal models. Endocrinology. 2012;153(3):1031–1038.
  • Suvà ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science. 2013;339(6127):1567–1570.
  • Hu Z, Tee WW. Enhancers and chromatin structures: regulatory hubs in gene expression and diseases. BioSci Rep. 2017;37(2):BSR20160183.
  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–783.
  • Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture. Mol Aspects Med. 2013;34(4):753–764.
  • Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153:38–55.
  • Basso M, Sleiman S, Ratan RR. Looking above but not beyond the genome for therapeutics in neurology and psychiatry: epigenetic proteins and RNAs find new focus. Neurotherapeutics. 2013;10(4):551–555.
  • Alelú-Paz R, Ashour N, González-Corpas A, Ropero S. DNA methylation, histone modifications, and signal transduction pathways: a close relationship in malignant gliomas pathophysiology. J Signal Transduct. 2012;2012:956–958.
  • Le Roy G, Dimaggio PA, Chan EY, et al. A quantitative atlas of histone modification signatures from human cancer cells. Epigenetics Chromatin. 2013;6(1):20.
  • Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16(9):519–532.
  • Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304.
  • Ioudinkova ES, Barat A, Pichugin A, et al. Distinct distribution of ectopically expressed histone variants H2A.Bbd and macroH2A in open and closed chromatin domains. PLoS One. 2012;7(10):1101–1113.
  • Falls JG, Pulford DJ, Wylie AA, Jirtle RL. Genomic imprinting: implications for human disease. Am J Pathol. 1999;154:635–647.
  • Bjornsson HT, Brown LJ, Fallin MD, et al. Epigenetic specificity of loss of imprinting of the IGF2 gene in Wilms tumors. J Natl Cancer Inst. 2007;99(16):1270–1273.
  • Feinberg AP, Irizarry RA. Evolution in health and medicine Sackler colloquium: stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci U S A. 2010;107 Suppl 1:1757–1764.
  • Burggren W. Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives. Biology (Basel). 2016;5(2):24–46.
  • Van Dijk SJ, Tellam RL, Morrison JL, Muhlhausler BS, Molloy PL. Recent developments on the role of epigenetics in obesity and metabolic disease. Clin Epigenetics. 2015;7:66.
  • Archer T, Oscar-Berman M, Blum K, Gold MS. Epigenetic modulation of mood disorders. J Genet Syndr Gene Ther. 2013;4(120):1000120.
  • Roth TL, Sweatt JD. Annual research review: epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. J Child Psychol Psychiatry. 2010;52(4):398–408.
  • Bakulski KM, Halladay A, Hu VW, Mill J, Fallin MD. Epigenetic research in neuropsychiatric disorders: the “Tissue Issue”. Curr Behav Neurosci Rep. 2016;3(3):264–274.
  • Cao Y, Lu L, Liu M, et al. Impact of epigenetics in the management of cardiovascular disease: a review. Eur Rev Med Pharmacol Sci. 2014; 18(20):3097–3104.
  • Berezin A. Epigenetics in heart failure phenotypes. BBA Clin. 2016;6:31–37.
  • Feinberg AP, Koldobskiy MA, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 2016;17(5):284–299.
  • Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–367.
  • Teschendorff AE, West J, Beck S. Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum Mol Genet. 2013;22(R1):R7–R15.
  • Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol. 2015;16(10):593–610.
  • Swaminathan V, Reddy BA, Ruthrotha Selvi B, Sukanya MS, Kundu TK. Small molecule modulators in epigenetics: implications in gene expression and therapeutics. Subcell Biochem. 2007;41:397–428.
  • Balaur I, Saqi M, Barat A, et al. EpiGeNet: a graph database of interdependencies between genetic and epigenetic events in colorectal cancer. J Comput Biol. 2016;23:1–12.
  • Romanoski CE, Glass CK, Stunnenberg HG, Wilson L, Almouzni G. Epigenomics: roadmap for regulation. Nature. 2015;518(7539):314–316.
  • Halsberger A, Varger F, Karlic H. A model for epigenetic mechanisms in cancer development. Med Hypotheses. 2006;67(6):1448–1454.
  • Liu Y, Siegmund KD, Laird PW, Berman BP. Bis-SNP: combined DNA methylation and SNP calling for Bisulfite-seq data. Genome Biol. 2012;13(7):R61.
  • Anink-Groenen LC, Maarlerveld TR, Verschure PJ, Bruggeman FJ. Mechanistic stochastic model of histone modification pattern formation. Epigenetics Chromatin. 2014;7(1):30.
  • Capra JA, Kostka D. Modeling DNA methylation dynamics with approaches from Phylogenetics. Bioinformatics. 2014;30(17):i408–i414.
  • Erdel F, Greene EC. Generalized nucleation and looping model for epigenetic memory of histone modifications. Proc Natl Acad Sci U S A. 2016;113(29):E4180–E4189.
  • Raghavan K, Ruskin HJ, Perrin D, Goasmat F, Burns J. Computational micromodel for epigenetic mechanisms. PLoS One. 2010;5(11):e14031.
  • Sneppen K, Dodd IB. A simple histone code opens many paths to epigenetics. PLoS Comput Biol. 2012;8(8):e1002643.
  • Ruskin HJ, Perrin D. Computational methods in epigenetic research. In: Wells RD, Bond JS, Klinman J, Siler Masters BS, Bell E, editors. Molecular Life Sciences: An Encyclopedic Reference. New York: Springer; 2014;1–8.
  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–395.
  • Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta. 2014;1839(12):1362–1372.
  • Ushijima T, Sasako M. Focus on gastric cancer. Cancer Cell. 2004;5(2):121–125.
  • Perrin D, Ruskin HJ, Niwa T. Cell type-dependent, infection-induced, aberrant DNA methylation in gastric cancer. J Theor Biol. 2010;264(2):570–577.
  • Harrison LG. The Shaping of Life. The Generation of Biological Pattern. Cambridge: Cambridge University Press; 2011.
  • Raghavan K, Ruskin HJ. Modelling DNA methylation dynamics. In: Tatarinova T, editor. DNA Methylation – From Genomics to Technology. InTech; 2012.
  • McGovern AP, Powell BE, Chevassut TJT. A dynamic multi-compartmental model of DNA methylation with demonstrative predictive value in hematological malignancies. J Theor Biol. 2012;310:14–20.
  • Karmaus W, Ziyab AH, Everson T, Holloway JW. Epigenetic models and mechanisms in the origins of asthma. Curr Opin Allergy Clin Immunol. 2013;13(1):63–69.
  • Bush WS, Moore JH. Genome-wide association studies. PLoS Comput Biol. 2012;8(12):e1002822.
  • Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12(8):529–541.
  • Flanagan JM. Epigenome-wide association studies (EWAS): past, present, and future. Methods Mol Biol. 2015;1238:51–63.
  • Roznovat IA, Ruskin HJ. Theoretical cross-comparative analysis on dynamics of small intestine and colon crypts during cancer initiation. IET Syst Biol. 2015;9(6):259–267.
  • Ku WL, Girvan M, Yuan GC, Sorrentino F, Ott E. Modeling the dynamics of bivalent histone modifications. PLoS One. 2013;8(11): e77944.
  • Rohlf T, Steiner L, Przybilla J, Prohaska S, Binder H, Galle J. Modeling the dynamic epigenome: from histone modifications towards self-organizing chromatin. Epigenomics. 2012;4(2):205–219.
  • Bronner C, Chataigneau T, Schini-Kerth VB, Landry Y. The “Epigenetic Code Machinery”, ECREM: a promising drugable target of the epigenetic cell memory. Curr Med Chem. 2007;14(25):2629–2641.
  • Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics. 2014;9(1):3–12.
  • Hansen KD, Timp W, Bravo HC, et al. Increased methylation variation in epigenetic domains across cancer types. Nat Genet. 2011;43(8):768–775.
  • Dinalankara W, Bravo HC. Gene expression signatures based on variability can robustly predict tumor progression and prognosis. Cancer Inform. 2015;14:71–81.
  • Kanz C, Aldebert P, Althorpe N, et al. The EMBL nucleotide sequence database. Nucleic Acids Res. 2005;33(Database issue):D29–D33.
  • Liu L, Li Y, Li S, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364.
  • Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–351.
  • Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Comput Biol. 2017;13(5):e1005457.
  • Bock C, Lengauer T. Computational epigenetics. Bioinformatics. 2008;24(1):1–10.
  • Lim SJ, Tan TW, Tong JC. Computational epigenetics: the new scientific paradigm. Bioinformation. 2010;4(7):331–337.
  • Epigenie. Epigenetic databases, tools and resources. Available from: http://epigenie.com/epigenetic-tools-and-databases/. Accessed June 20, 2017.
  • Fingerman IM, Zhang X, Ratzat W, Husain N, Cohen RF, Schuler DG. NCBI epigenomics: whats new for 2013. Nucleic Acids Res. 2013;41:D221–D225.
  • Medvedeva YA, Lennartsson A, Ehsani R, et al. EpiFactors: a comprehensive database of human epigenetic factors and complexes. Database (Oxford). 2015;2015:bav067.
  • Barat A, Ruskin HJ. A manually curated novel management system for genetic and epigenetic molecular determinants of colon cancer. Open Colorectal Cancer J. 2010;3:36–46.
  • He X, Chang S, Zhang J, et al. MethyCancer: the database of human DNA methylation and cancer. Nucleic Acids Res. 2008;36(Database issue):D836–D841.
  • Forbes SA, Beare D, Gunasekaran P, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43(Database issue):D805–D811.
  • Ongenaert M, Van Neste L, De Meyer T, Menschaert G, Bekaert S, Van Criekinge W. PubMeth: a cancer methylation database combining text mining and expert annotation. Nucleic Acids Res. 2008;36(Database issue):D842–D846.
  • Fang YC, Lai PT, Dai HJ, Hsu WL. MethInfoText 2.0: gene methylation and cancer relation extraction from biomedical literature. BMC Bioinformatics. 2011;12:471.
  • Grunau C, Renault E, Rosenthal A, Roizes G. MethDB—a public database for DNA methylation data. Nucleic Acids Res. 2001;29(1):270–274.
  • Zou D, Sun S, Li R, Liu J, Zhang J, Zhang Z. MethBank: a database integrating next-generation sequencing single-base resolution DNA methylation programming data. Nucleic Acids Res. 2015;43(Database issue):D54–D58.
  • Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18(11):1427–1431.
  • Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2015;43(Database issue):D298–D299.
  • Mariño-Ramírez L, Levine KM, Morales M, et al. The Histone Database: an integrated resource for histones and histone fold-containing proteins. Database (Oxford). 2011;2011:bar048.
  • Khare SP, Habib F, Sharma R, Gadewal N, Gupta S, Galande S. HIstome—a relational knowledgebase of human histone proteins and histone modifying enzymes. Nucleic Acids Res. 2012;40(Database issue):D337–D342.
  • Gendler K, Paulsen T, Napoli C. CHROMDB: the chromatin database. Nucleic Acids Res. 2008;36(Database issue):D298–D302.
  • Shipra A, Chetan K, Rao MR. CREMOFAC—a database of chromatin remodelling factors. Bioinformatics. 2006;22(23):2940–2944.
  • Wang Q, Huang J, Sun H, et al. CR Cistrome: a ChIP-Seq database for chromatin regulators and histone modification linkages in human and mouse. Nucleic Acids Res. 2014;42(Database issue):D450–D458.
  • GigaOM. Twitter open-sources the home of its social graph. Available from: http://gigaom.com/2010/04/12/twitter-open-sources-the-home-of-its-social-graph. Accessed February 8, 2017.
  • AllegroGraph. AllegroGraph RDFStore Web 30s database. Available from: http://franz.com/agraph/allegrograph. Accessed February 4, 2017.
  • Neo4j. Neo4j world’s leading graph database. Available from: http://neo4j.com. Accessed January 20, 2017.
  • Johnson D, Connor AJ, McKeever S, et al. Semantically linking in silico cancer models. Cancer Inform. 2014;13 Suppl 1:133–143.
  • Henkel R, Wolkenhauer O, Waltemath D. Combining computational models, semantic annotations and simulation experiments in a graph database. Database(Oxford). 2015;2015:bau130.
  • Chelliah V, Juty N, Ajmera I, et al. BioModels: ten-year anniversary. Nucleic Acids Res. 2015;43(D1):D542–D548.
  • Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein JM. Distributed Graphlab: a framework for machine learning and data mining in the cloud. Proc VLDB Endowment. 2012;5(8):716–727.
  • Corbellini A, Mateos C, Godoy D, Zunino A, Schiaffino S. An architecture and platform for developing distributed recommendation algorithms on large-scale social networks. J Inf Sci. 2015;41(5):686–704.
  • Michels KB, Binder AM, Dedeurwaerder S, et al. Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods. 2013;10(10):949–955.
  • Birney E, Smith GD, Greally JM. Epigenome-wide association studies and the interpretation of disease-omics. PLoS Genet. 2016;12(6):e1006105.
  • Scacheri PC, Crawford GE, Davis S. Statistics for ChIP-chip and DNase hypersensitivity experiments on NimbleGen arrays. Methods Enzymol. 2006;411:270–282.
  • Krueger F, Kreck B, Franke A, Andrews SR. DNA methylome analysis using short bisulfite sequencing data. Nat Methods. 2012;9(2):145–151.
  • Pedersen BS, Eyring K, De S, Yang IV, Schwartz DA. Fast and accurate alignment of long bisulfite-seq reads. Bioinformatics. 2014:1–2.
  • Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–1572.
  • Sun D, Xi Y, Rodriguez B, et al. MOABS: model based analysis of bisulfite sequencing data. Genome Biol. 2014;15:R38.
  • Dolzhenko E, Smith AD. Using beta-binomial regression for high-precision differential methylation analysis in multifactor whole-genome bisulfite sequencing experiments. BMC Bioinformatics. 2014;15:215.
  • Lea AJ, Tung J, Zhou X. A flexible, efficient binomial mixed model for identifying differential dna methylation in bisulfite sequencing data. PLoS Genet. 2015;11(11):e1005650.
  • Gao S, Zou D, Mao L, et al. BS-SNPer: SNP calling in bisulfite-seq data. Bioinformatics. 2015;31(24):4006–4008.
  • Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods. 2017;14(4):407–410.
  • Rand AC, Jain M, Eizenga JM, et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods. 2017;14(4):411–413.
  • Houseman EA, Christensen BC, Yeh RF, et al. Model-based clustering of DNA methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions. BMC Bioinformatics. 2008;9:365.
  • Wang B, Mezlini AM, Demir F, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014;11(3):333–337.
  • Sánchez A, Fernández-Real J, Vegas E, et al. Multivariate methods for the integration and visualization of omics data. In: Freitas AT, Navarro A, editors. Bioinformatics for Personalized Medicine. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 2012: 6620.
  • Zhang L, Lin X. Multivariate statistical methods in bioinformatics research. In: Jiang R, Zhang X, Zhang M, editors. Basics of Bioinformatics. Berlin, Heidelberg: Springer; 2013:63–231.
  • Teschendorff AE, Zheng SC. Cell-type deconvolution in epigenome-wide association studies: a review and recommendations. Epigenomics. 2017;9(5):757–768.
  • Zheng SC, Beck S, Jaffe AE, et al. Correcting for cell-type heterogeneity in epigenome-wide association studies: revisiting previous analyses. Nat Methods. 2017;14(3):216–217.
  • Jones MJ, Islam SA, Edgar RD, Kobor MS. Adjusting for cell type composition in DNA methylation data using a regression-based approach. Methods Mol Biol. 2017;1589:99–106.
  • König IR, Auerbach J, Gola D, et al. Machine Learning and data mining in complex genomic data – a review on the lessons learned in Genetic Analysis Workshop 19. BMC Genet. 2016;17 Suppl 2:1.
  • Dutkowski J, Kramer M, Surma MA, et al. A gene ontology inferred from molecular networks. Nat Biotechnol. 2013;31(1):38–45.
  • Raja K, Patrick M, Gao Y, Madu D, Yang Y, Tsoil LC. A review of recent advancement in integrating omics data with literature mining towards biomedical discoveries. Int J Genomics. 2017;2017:6213474.
  • Leslie R, O’Donnell CJ, Johnson AD. GRASP: analysis of genotype–phenotype results from 1390 genome-wide association studies and corresponding open access database. Bioinformatics. 2014;30(12):i185–i194.
  • Banerji CRS, Miranda-Saavedra D, Severini S, et al. Cellular network entropy as the energy potential in Waddington’s differentiation landscape. Sci Rep. 2013;3:3039.
  • Teschendorff AE, Banerji CRS, Severini S, Kuehn R, Sollich P. Increased signaling entropy in cancer requires the scale-free property of protein interaction networks. Sci Rep. 2015;5:9646.
  • Eason K, Sandanandam A. Molecular or metabolic reprogramming: what triggers tumor subtypes? Cancer Res. 2016;76(18):5195–5200.
  • Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7(1):21–33.
  • Teschendorff AE, Jones A, Fiegl H, et al. Epigenetic variability in cells of normal cytology is associated with the risk of future morphological transformation. Genome Med. 2012;4(3):24.
  • Timp W, Feinberg AP. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer. 2013;13(7):497–510.
  • Plass C, Pfister SM, Lindroth AM, Bogatyrova O, Claus R, Lichter P. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat Rev Genet. 2013;14:765–780.
  • Barat A, Ruskin HJ. Comparative correlation structure of colon cancer locus specific methylation: characterization of patient profiles and potential markers across 3 array-based datasets. J Cancer. 2015;6(8):795–811.
  • Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–1356.
  • Forough F, Iman R, D’agnillo M, Porter L, Rueda L, Ngom A. An integrative approach for identifying network biomarkers of breast cancer subtypes using genome, interactome and transcriptome data. J Comput Biol. 2017;24(8):756–766.
  • Lanigan F, Brien GL, Fan Y, et al. Delineating transcriptional networks of prognostic gene signatures refines treatment recommendations for lymph node-negative breast cancer patients. FEBS J. 2015;282(18):3455–3473.
  • Barat A, Ruskin HJ, Byrne AT, Prehn JH. Integrating colon cancer microarray data: associating locus-specific methylation groups to gene expression-based classifications. Microarrays (Basel). 2015;4(4):630–646.
  • Sadanandam A, Lyssiotis CA, Homicsko K, et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med. 2013;19:619–625.
  • Marisa L, de Reyniès A, Duval A, et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 2013;10:e1001453.
  • Isella C, Terrasi A, Bellomo SE, et al. Stromal contribution to the colorectal cancer transcriptome. Nat Genet. 2015;47(4):312–319.
  • Munchel S, Hoang Y, Zhao Y, et al. Targeted or whole genome sequencing of formalin fixed tissue samples: potential applications in cancer genomics. Oncotarget. 2015;6(28):25943–25961.
  • Moran B, Das S, Smeets D, et al. Assessment of concordance between fresh-frozen and formalin-fixed paraffin embedded tumor DNA methylation using a targeted sequencing approach. Oncotarget. 2017;8(29):48126–48137.
  • Lim AM, Wong NC, Pidsley R, et al. Genome-scale methylation assessment did not identify prognostic biomarkers in oral tongue carcinomas. Clin Epigenetics. 2016;8:74.
  • Florath I, Butterbach K, Müller H, Bewerunge-Hudler M, Brenner H. Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet. 2014;23(5):1186–1201.
  • Yuan T, Jiao Y, de Jong S, Ophoff RA, Beck S, Teschendorff AE. An integrative multi-scale analysis of the dynamic DNA methylation landscape in aging. PLoS Genet. 2015;11(2):e1004996.
  • Salam MT. Asthma epigenetics. Adv Exp Med Biol. 2014;795:183–199.
  • Nugent NR, Goldberg A, Uddin M. Topical review: the emerging field of epigenetics: informing models of pediatric trauma and physical health. J Pediatr Psychol. 2016;41(1):55–64.
  • Roth TL. Epigenetic mechanisms in the development of behavior: advances, challenges, and future promises of a new field. Dev Psychopathol. 2013;25(4 Pt 2):1279–1291.
  • Champagne FA. Epigenetics of mammalian parenting. In: Narvaez D, Valentino K, Fuentes A, McKenna JJ, Gray P, editors. Ancestral Landscapes in Human Evolution: Culture, Childrearing and Social Wellbeing. Oxford School; 2014.
  • Raymond JG, Steele JD, Seriès P. Modeling trait anxiety: from computational processes to personality. Front Psychiatry. 2017;8:1.
  • Mukherjee K, Twyman RM, Vilcinskas A. Insects as models to study the epigenetic basis of disease. Prog Biophys Mol Biol. 2015;118(1–2):69–78.