230
Views
2
CrossRef citations to date
0
Altmetric
Review

Nanomaterial-based biosensors for biological detections

, , , , , , , , & show all
Pages 19-29 | Published online: 03 Oct 2017

References

  • Mavrogiannis N, Crivellari F, Gagnon ZR. Label-free biomolecular detection at electrically displaced liquid interfaces using interfacial electrokinetic transduction (IET). Biosens Bioelectron. 2016;77:790–798.
  • Clark LC Jr, Wolf R, Granger D, Taylor Z. Continuous recording of blood oxygen tensions by polarography. J Appl Physiol. 1953;6(3):189–193.
  • Updike SJ, Hicks GP. The enzyme electrode. Nature. 1967;214(5092):986–988.
  • Wang J. Electrochemical Glucose Biosensors. Chem Rev. 2008;108(2):814–825.
  • Taylor R, Sylvain C, Todd O, et al. Small particle, big impacts: a review of the diverse applications of nanofluids. J Appl Phys. 2013;113(1):011301.
  • Fevero G, Fusco G, Mazzei F, Tasca F, Antiochia R. Electrochemical characterization of graphene and MWCNT screen-printed electrodes modified with AuNP for laccase biosensor development. Nanomaterials (Basel). 2015;5(4):1995–2006.
  • Adams NM, Jackson SR, Haselton FR, Wright DW. Design synthesis and characterization of nucleic-acid-functionalized gold surfaces for biomarker detection. Langmuir. 2012;28:1068–1082.
  • Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev. 2008;37(9):1896–1908.
  • Kuila T, Bose S, Khanra P, Misha AK, Kim NH, Lee JK. Recent advances in graphene-based biosensors. Biosens Bioelectron. 2011;26(12):4637–4648.
  • Akbari E, Buntat Z, Kiani MJ, Enzevaee A, Khaledian M. Analytical model of graphene-based biosensors for bacteria detection. Int J Environ Anal Chem. 2015;95(9):847–854.
  • Radhapyari K, Kotoky P, Das MR, Khan R. Graphene-polyaniline nanocomposite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formation and biological fluids. Talanta. 2013;111:47–53.
  • Singh C, Ali MA, Sumana G. Green synthesis of graphene based biomaterial using fenugreek seeds for lipid detection. ACS Sustain Chem Eng. 2016;4(3):871–880.
  • Lin Y, Taylor S, Li H, et al. Advances toward bioapplications of carbon nanotubes. J Mater Chem. 2004;14(4):527–541.
  • Kalbacova M, Kalbac M, Dunsch L, Kataura H, Hempel U. The study of the interaction of human mesenchymal stem cells and monocytes/macrophages with single-walled carbon nanotube films. Phys Stat Sol B. 2006;243(13):3415–3418.
  • Yang N, Chen X, Ren T, Zhang P, Yang D. Carbon nanotube based biosensors. Sens Actuators B. 2015;207:690–715.
  • Aki S, Endo T, Sueyoshi K, Hisamoto H. Plasticized poly(vinyl chloride)-based photonic crystal for ion sensing. Anal Chem. 2014;84(24):11986–11991.
  • Endo T, Ikeda R, Yanaqida Y, Hatsuzawa T. Stimuli-responsive hydrogen-silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor. Anal Chim Acta. 2008;611(2):205–211.
  • Ma Y, Di J, Yan X, Zhao M, Lu Z, Tu Y. Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application. Biosens Bioelectron. 2009;24(5):1480–1483.
  • Wei M, Zeng G, Lu Q. Determination of organophosphate pesticides using an acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres. Microchim Acta. 2014;181(1–2):121–127.
  • Wei M, Wang J. A novel acetylcholinesterase biosensor based on ionic liquid-AuNPs-porus carbon composite matrix for detection of organophosphate pesticides. Sens Actuators B. 2015;211:290–296.
  • Shu H, Wen W, Xiong H, Zhang X, Wang S. Novel electrochemical aptamer biosensor based on gold nanoparticles signal amplification for the detection of carcinoembryonic antigen. Electrochem Commun. 2013;37:15–19.
  • Won SH, Sim SJ. Signal enhancement of a micro-arrayed polydiacetylene (PDA) biosensor using gold nanoparticles. Analyst. 2012;137(5):1241–1246.
  • Liu S, Liu J, Wang L, Zhao F. Development of electrochemical DNA biosensor based on gold nanoparticle modified electrode by electroless deposition. Bioelectrochemistry. 2010;79(1):37–42.
  • Hao RZ, Song HB, Zuo GM, et al. DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for Bacillus anthracis detection. Biosens Bioelectron. 2011;26(8):3398–3404.
  • Edwards KA, Clancy HA, Baeumner AJ. Bacillus anthracis: toxicology epidemiology and current rapid-detection methods. Anal Bioanal Chem. 2006;384(1):73–84.
  • He Y, Zhang S, Zhang X, et al. Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor. Biosens Bioelectron. 2011;26(5):2018–2024.
  • Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem. 2009;81(4):1660–1668.
  • Azzouzi S, Rotariu L, Benito AM, Maser WK, Ali MB, Bala C. A novel amperometric biosensor based on gold nanoparticle anchored on reduced graphene oxide for sensitive detection of L-lactate tumor biomarker. Biosens Bioelectron. 2015;69:280–286.
  • Wang J, Shi A, Fang X, Han X, Zhang Y. An ultrasensitive supersandwich electrochemical DNA biosensor based on gold nanoparticles decorated reduced graphene oxide. Anal Biochem. 2015;469:71–75.
  • Devasenathipathy R, Mani V, Chen SM, et al. Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes. Enzyme Microb Technol. 2015;78:40–45.
  • Gupta VK, Atar N, Yola ML, et al. A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application. J Colloid Interface Sci. 2013;406:231–237.
  • Liu Y, Yu D, Zeng C, Miao Z, Dai L. Biocompatible graphene oxide based glucose biosensors. Langmuir. 2010;26(9):6158–6160.
  • Zhang Z, Luo L, Zhu L, Ding Y, Deng D, Wang Z. Aptamer-linked biosensor for thrombin based on AuNPs/thionine-graphene nanocomposite. Analyst. 2013;138(18):5365–5370.
  • Wang T, Zhu Y, Li G, et al. A novel hydrogen peroxide biosensor based on the BPT/AuNPs/graphene/HRP composite. Sci China Chem. 2011;54(10):1645–1650.
  • Li L, Du Z, Liu S, et al. A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta. 2010;82(5):1637–1641.
  • Xu Q, Cheng H, Lehr J, Patil AV, Davis JJ. Graphene oxide interfaces in serum based autoantibody quantification. Anal Chem. 2015;87(1):346–350.
  • Zainudin N, Hairul ARM, Yusoff MM, Tan LL, Chong KF. Impedimetric graphene-based biosensor for the detection of Escherichia coli DNA. Anal Methods. 2014;6(19):7935–7941.
  • Eguílaz M, Venegas CJ, Gutiérrez A, Rivas GA, Bollo S. Carbon nanotubes non-covalently functionalized with cytochrome c: a new bioanalytical platform for building bienzymatic biosensors. Microchem J. 2016;128:161–165.
  • Sun A, Zheng J, Sheng Q. A highly sensitive non-enzymatic glucose sensor based on nickel and multi-walled carbon nanotubes nanohybrid films fabricated by on-step co-electrodeposition in ionic liquids. Electrochim Acta. 2012;65:64–69.
  • Kwon KY, Yang SB, Kong BS, Kim J, Jung HT. High-performance biosensors based on enzyme precipitate coating in gold nanoparticle-conjugated single-walled carbon nanotube network films. Carbon. 2010;48(15):4504–4509.
  • Ensafi AA, Zandi-Atashbar N, Rezaei B, Chermahini ME, Moshiri P. Non-enzymatic glucose electrochemical sensor based on silver nanoparticle decorated organic functionalized multiwall carbon nanotubes. RSC Adv. 2016;6(65):60926–60932.
  • Yang K, Zhang CY. Simple detection of nucleic acids with a single-walled carbon-nanotube-based electrochemical biosensor. Biosens Bioelectron. 2011;28(1):257–262.
  • Shahrokhian S, Salimian R, Kalhor HR. A simple label-free electrochemical DNA biosensor based on carbon nanotube–DNA interaction. RSC Adv. 2016;6(19):15592–15598.
  • Qiu W, Xu H, Takalkar S, et al. Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosens Bioelectron. 2015;64:367–372.
  • Abdolahad M, Taghinejad M, Taghinejad H, Janmaleki M, Mohajerzadeh SA. Vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells. Lab Chip. 2012;12(6):1183–1190.
  • Thuy NT, Tam PD, Tuan MA, et al. Detection of pathogenic microorganisms using biosensor based on multi-walled carbon nanotubes dispersed in DNA solution. Curr Appl Phys. 2013;12(6):1553–1560.
  • García-Aljaro C, Cella LN, Shirale DJ, et al. Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms. Biosens Bioelectron. 2010;26(4):1437–1441.
  • John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett. 1987;58(23):2486–2489.
  • Yablonovitch E. Photonic band-gap crystals. J Phys Condens Matter. 1993;5:2443–2460.
  • Vlasov YA, O’Boyle M, Hamann HF, McNab SJ. Active control of slow light on a chip with photonic crystal waveguides. Nature. 2005;438(7064):65–69.
  • Xu X, Asher SA. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals. J Am Chem Soc. 2004;126(25):7940–7945.
  • Sharma P, Sharan P. An analysis and design of photonic crystal based biochip for detection of glycosuria. IEEE Sens J. 2015;15(10):5569–5575.
  • Sharma P, Sharan P. Design of photonic crystal-based biosensor for detection of glucose concentration in urine. IEEE Sens J. 2015;15(2):1035–1042.
  • Endo T, Ozawa S, Okuda N, Yanagida Y, Tanaka S, Hatsuzawa T. Reflectometric detection of influenza virus in human saliva using nanoimprint lithography-based flexible two-dimensional photonic crystal biosensor. Sens Actuators B. 2010;148:269–276.
  • Cheng XR, Hau BY, Endo T, Kerman K. Au nanoparticle-modified DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance. Biosens Bioelectron. 2014;53:513–518.
  • Cheng XR, Wallace GQ, Lagugne-Labarthet F, Kerman K. Au nanostructured surfaces for electrochemical and localized surface plasmon resonance-based monitoring of α-synuclein-small molecule interactions. ACS Appl Mater Interfaces. 2015;7:4081–4088.
  • Shen W, Li M, Xu L, et al. Highly effective protein detection for avidin-biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay. Biosens Bioelectron. 2011;26(5):2165–2170.
  • Zhang B, Tamez-Vela JM, Solis S, et al. Detection of myoglobin with an open-cavity-based label-free photonic crystal biosensor. J Biomed Eng. 2013;2013:808056.
  • Guo Y, Ye JY, Divin C, et al. Real-time biomolecular binding detection using a sensitive photonic crystal biosensor. Anal Chem. 2010;82(12):5211–5218.
  • Han JH, Kim HJ, Sudheendra L, Gee SJ, Hammock BD, Kennedy IM. Photonic crystal lab-on-a-chip for detecting staphylococcal enterotoxin B at low attomolar concentration. Anal Chem. 2013;85(6):3104–3109.