296
Views
0
CrossRef citations to date
0
Altmetric
Review

The anticancer properties of phytochemical extracts from Salvia plants

, &
Pages 25-44 | Published online: 30 Mar 2016

References

  • Stewart BW, Wild CP. World Cancer Report 2014. Lyon: World Health Organization Press; 2014.
  • Parker L. The impact of the environment on cancer genomics. In: Dellaire G, Berman JN, Arceci RJ, editors. Cancer Genomics. Chapter 26. Elsevier; 2014:449–465.
  • Heyninck K, Haegeman G, Goel A. Cancer chemoprevention by dietary polyphenols. In: Watso RR, Preedy VR, Zibadi S, editors. Polyphenols in Human Health and Disease. Chapter 90. London: Academic Press; 2014:1199–1216.
  • Mukhtar H. Chemoprevention: making it a success story for controlling human cancer. Cancer Lett. 2012;326:123–127.
  • Gupta P, Wright SE, Kim SH, Srivastava SK. Phenethyl isothiocyanate: A comprehensive review of anti-cancer mechanisms. Biochim Biophys Acta. 2014;1846:405–424.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311–335.
  • Bydoun M, Marcato P, Dellaire G. Breast cancer genomics. Cancer Genomics. 2014;13:213–232.
  • Eggermont AMM, Caldas C, Ringborg U, Medema R, Tabernero J, Wiestler O. Cancer core Europe: A consortium to address the cancer care-cancer research continuum challenge. Eur J Cancer. 2014;50:2745–2746.
  • Yuan X, Wu H, Xu H, et al. Notch signaling: An emerging therapeutic target for cancer treatment. Cancer Lett. 2015;369:20–27.
  • Masuda M, Sawa M, Yamada T. Therapeutic targets in the Wnt signaling pathway: Feasibility of targeting TNIK in colorectal cancer. Pharmacol Ther. 2015;156:1–9.
  • Xavier CP, Lima CF, Fernandes-Ferreira M, Pereira-Wilson C. Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: the role in MAPK/ERK pathway. Nutr Cancer. 2009;61:564–571.
  • Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13:140–156.
  • Erstad DJ, Cusack JC. Targeting the NF-kB pathway in cancer therapy. Surg Oncol Clin N Am. 2013;22:705–746.
  • Mabuchi S, Kuroda H, Takahashi R, Sasano T. The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol Oncol. 2015;137:173–179.
  • Houede N, Pourquier P. Targeting the genetic alterations of the PI3K-AKT-mTOR pathway: its potential use in the treatment of bladder cancers. Pharmacol Ther. 2015;145:1–18.
  • Walker JB, Sytsma KJ, Treutlein J, Wink M. Salvia (lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe mentheae. Am J Bot. 2004;91:1115–1125.
  • Orhan IE, Senol FS, Ozturk N, Akaydin G, Sener B. Profiling of in vitro neurobiological effects and phenolic acids of selected endemic Salvia species. Food Chem. 2012;132:1360–1367.
  • Spiridon EK. Sage: The genus Salvia (Medicinal and Aromatic Plants-Industrial Profiles). London: Harwood Academic Publishers: Stewart; 2000:318.
  • Hamidpour M, Hamidpour R, Hamidpour S, Shahlari M. Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. J Tradit Complement Med. 2014;4:82–88.
  • Lu SP, Ting ZP. Composition identification of Salvia extracts and testing of its inhibiting myocytes cell death caused by hypoxia/reoxygenation. Carbohydr Polym. 2011;86:621–624.
  • Li MH, Li QQ, Zhang C, et al. An ethnopharmacological investigation of medicinal Salvia plants (Lamiaceae) in China. Acta Pharmaceut Sin B. 2013;3:273–280.
  • Lu YR, Foo LY. Flavonoid and phenolic glycosides from Salvia officinalis. Phytochemistry. 2000;55:263–267.
  • Martins N, Barros L, Santos-Buelga C, Henriques M, Silva S, Ferreira IC. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem. 2015;170:378–385.
  • Russo A, Formisano C, Rigano D, et al. Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem Toxicol. 2013;55:42–47.
  • Wang X, Morris-Natschke SL, Lee KH. New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev. 2007;27:133–148.
  • Zhang Y, Jiang PX, Ye M, Kim SH, Jiang C, Lü JX. Tanshinones: sources, pharmacokinetics and anti-cancer activities. Int J Mol Sci. 2012;13:13621–13666.
  • Chen X, Guo J, Bao J, Lu J, Wang Y. The anticancer properties of Salvia miltiorrhiza Bunge (Danshen): a systematic review. Med Res Rev. 2014;34:768–794.
  • Zhang WW, Lu YL. Advances in studies on antitumor activities of compounds in Salvia miltiorrhiza. Zhongguo Zhong Yao Za Zhi. 2010;35:389–392.
  • Hu T, To KK, Wang L, et al. Reversal of P-glycoprotein (P-gp) mediated multidrug resistance in colon cancer cells by cryptotanshinone and dihydrotanshinone of Salvia miltiorrhiza. Phytomedicine. 2014;21:1264–1272.
  • Li MH, Li QQ, Liu YZ, et al. Pharmacophylogenetic study on plants of genus Salvia L. from China. Chin Herb Med. 2013;5:164–181.
  • Pan ZH, Li Y, Wu XD, et al. Norditerpenoids from Salvia castanea Diels f. pubescens. Fitoterapia. 2012;83:1072–1074.
  • Wu CY, Liao Y, Yang ZG, et al. Cytotoxic diterpenoids from Salvia yunnanensis. Phytochemistry. 2014;106:171–177.
  • Itani WS, El-Banna SH, Hassan SB, Larsson RL, Bazarbachi A, Gali-Muhtasib HU. Anticolon cancer components from Lebanese sage (Salvia libanotica) essential oil: mechanistic basis. Cancer Biol Ther. 2014;7:1765–1773.
  • Gali-Muhtasib HU, Affara NI. Chemopreventive effects of sage oil on skin papillomas in mice. Phytomedicine. 2000;7:129–136.
  • DŽamić A, Soković M, Ristić M, Grujić-Jovanović S, Vukojević J, Marin PD. Chemical composition and antifungal activity of Salvia sclarea (Lamiaceae) essential oil. Arch Biol Sci. 2008;60:233–237.
  • Li MH, Chen JM, Peng Y, Xiao PG. Distribution of phenolic acids in Chinese Salvia plants. World Sci Technol Mod Tradit Chin Med. 2008;10:46–52. Chinese.
  • Yang Y, Zou DR, Zhou ZT. Chemopreventive effect of salvianolic acid B on oral carcinogenesis. J Shanghai Jiaotong Univ (Medical Science). 2006;26:1122–1126. Chinese.
  • Liu X, Tang CZ, Wang L, Lin SX, Wan RQ, Chen J. Suppression of growth of human nasopharyngeal carcinoma cells by salvianolic acid B in vitro. J Guangzhou Univ Tradit Chinese Med. 2011;28:163–166, 218. Chinese.
  • Li MH, Chen JM, Peng Y, Wu QL, Xiao PG. Investigation of Danshen and related medicinal plants in China. J Ethnopharmacol. 2008;120:419–426.
  • Topcu G, Turkmen Z, Schilling JK, Kingston DGI, Pezzuto JM, Ulubelen A. Cytotoxic activity of some Anatolian Salvia extracts and isolated abietane diterpenoids. Pharm Biol. 2008;46:180–184.
  • Xu G, Yang J, Wang YY, et al. Diterpenoid constituents of the roots of Salvia digitaloides. J Agric Food Chem. 2000;58:12157–12161.
  • Choudhary MI, Hussain A, Adhikari A, et al. Anticancer and α-chymotrypsin inhibiting diterpenes and triterpenes from Salvia leriifolia. Phytochem Lett. 2013;6:139–143.
  • Esmaeili MA, Farimani MM. Inactivation of PI3K/Akt pathway and upregulation of PTEN gene are involved in daucosterol, isolated from Salvia sahendica, induced apoptosis in human breast adenocarcinoma cells. S Afr J Bot. 2014;93:37–47.
  • Tayarani-Najaran Z, Mousavi SH, Tajfard F, et al. Cytotoxic and apoptogenic properties of three isolated diterpenoids from Salvia chorassanica through bioassay-guided fractionation. Food Chem Toxicol. 2013;57:346–351.
  • Ulubelen A, Topçu G, Chai HB, Pezzuto JM. Cytotoxic activity of triterpenoids isolated from Salvia hypargeia. Pharm Biol. 1999;37:148–151.
  • Fu YJ, Shi T, Wang JA. Content determination of ferruginol in Salvia miltiorrhiza by HPLC and study on the influential factors. Chin Pharm. 2014;25:3690–3692. Chinese.
  • Yang LX. Studies on the Chemical Constituents and Bioactivities of Salvia Przewalskii Maxim [MD thesis]. Beijing: Union Medical College; 2011. Chinese.
  • Wang XH, Bastow KF, Sun CM, et al. Isolation, structure elucidation, total synthesis, and anti-breast cancer activity of neo-tanshinlactone from Salvia miltiorrhiza. J Med Chem. 2004;47:5816–5819.
  • Choi J, Jiang X, Jeong JB, Lee SH. Anticancer activity of protocatechualdehyde in human breast cancer cells. J Med Food. 2014;17: 842–848.
  • Tepe, B. Antioxidant potentials and rosmarinic acid levels of the methanolic extracts of Salvia virgata (Jacq), Salvia staminea (Montbret and Aucher ex Bentham) and Salvia verbenaca (L.) from Turkey. Bioresour Technol. 2008;99:1584–1588.
  • Chang JY, Chang CY, Kuo CC, Chen LT, Wein YS, Kuo YH. Salvinal, a novel microtubule inhibitor isolated from Salvia miltiorrhizae Bunge (Danshen), with antimitotic activity in multidrug-sensitive and -resistant human tumor cells. Mol Pharmacol. 2004;65:77–84.
  • Cai JX, Chen SY, Zhang WP, et al. Salvianolic acid a reverses paclitaxel resistance in human breast cancer MCF-7 cells via targeting the expression of transgelin 2 and attenuating PI3 K/Akt pathway. Phytomedicine. 2014;21:1725–1732.
  • Lu YR, Foo LY. Polyphenolics of Salvia. Phytochemistry. 2002;59:117–140.
  • Yan MY, Chien SY, Kuo SJ, Chen DR, Su CC. Tanshinone IIA inhibits BT-20 human breast cancer cell proliferation through increasing caspase 12, GADD153 and phospho-p38 protein expression. Int J Mol Med. 2012;29:855–863.
  • Li YL, Gong Y, Li LL, M. Abdolmaleky H, Zhou JR. Bioactive tanshinone I inhibits the growth of lung cancer in part via down regulation of Aurora A function. Mol Carcinog. 2013;52:535–543.
  • Rajabi Z, Ebrahimi M, Farajpour M, Mirza M, Ramshini H. Compositions and yield variation of essential oils among and within nine Salvia species from various areas of Iran. Ind Crops Prod. 2014;61:233–239.
  • Ban KA, Godellas CV. Epidemiology of breast cancer. Surg Oncol Clin N Am. 2014;23:409–422.
  • Cuzick J. Hormone replacement therapy and the risk of breast cancer. Eur J Cancer. 2008;44:2344–2349.
  • Moreira AC, Silva AM, Santos MS, Sardão VA. Phytoestrogens as alternative hormone replacement therapy in menopause: What is real, what is unknown. J Steroid Biochem Mol Biol. 2014;143:61–71.
  • Swann R, Perkins KA, Velentzis LS, et al. The DietCompLyf study: a prospective cohort study of breast cancer survival and phytoestrogen consumption. Maturitas. 2013;75:232–240.
  • Simmen RCM, Rahal OM, Montales MTE, et al. Soy foods: towards the development of novel therapeutics for breast cancer. In: Cho WCS, editor. Cancer Chemoprevention and Treatment by Diet Therapy. Chapter 5. Dordrecht: Springer; 2013:121–140.
  • Maggiolini M, Bonofiglio D, Marsico S, et al. Estrogen receptor α mediates the proliferative but not the cytotoxic dose-dependent effects of two major phytoestrogens on human breast cancer cells. Mol Pharmacol. 2001;60:595–602.
  • Vauzour D, Vafeiadou K, Rice-Evans C, Cadenas E, Spencer JP. Inhibition of cellular proliferation by the genistein metabolite 5,7,3’,4’-tetrahydroxyisoflavone is mediated by DNA damage and activation of the ATR signaling pathway. Arch Biochem Biophys. 2007;468: 159–166.
  • Cherdshewasart W, Panriansaen R, Picha P. Pretreatment with phytoestrogen-rich plant decreases breast tumor incidence and exhibits lower profile of mammary ERα and ERβ. Maturitas. 2007;58:174–181.
  • Hsieh CJ, Kuo PL, Hsu YC, et al. Arctigenin, a dietary phytoestrogen, induces apoptosis of estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation. Free Radic Biol Med. 2014;67:159–170.
  • Zhao PW, Niu JZ, Wang DW, Chen JX, Wang LQ. Phytoestrogenic effects of six active components in Chinese medicine. Chin Pharmaceut J. 2007;42:1852–1855. Chinese.
  • Yang W, Ju JH, Jeon MJ, Han X, Shin I. Danshen (Salvia miltiorrhiza) extract inhibits proliferation of breast cancer cells via modulation of Akt activity and p27 level. Phytother Res. 2010;24:198–204.
  • Li M, Lin J. The apoptotic pathways and their mechanisms. Int J Obstetr Gynaecol. 2014;41:103–107.
  • Su CC, Chien SY, Kuo SJ, Chen YL, Cheng CY, Chen DR. Tanshinone IIA inhibits human breast cancer MDA-MB-231 cells by decreasing LC3-II, Erb-B2 and NF-kappaBp65. Mol Med Rep. 2012;5:1019–1022.
  • Gong Y, Li YL, Abdolmaleky HM, Li LL, Zhou JR. Tanshinones inhibit the growth of breast cancer cells through epigenetic modification of aurora A expression and function. PLoS One. 2012;7:1–11.
  • Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Ann Rev Phytopathol. 2009;4:127–150.
  • Chen JJW, Peck K, Hong TM, et al. Global analysis of gene expression in invasion by a lung cancer model. Cancer Res. 2001;61: 5223–5230.
  • Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992;267: 10931–10934.
  • Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–684.
  • Zihlif1 M, Afifi F, Abu-Dahab R, et al. The antiangiogenic activities of ethanolic crude extracts of four Salvia species. BMC Complement Altern Med. 2013;13:358–367.
  • Gu M, Wang X, Su Z, Ouyang F. One-step separation and purification of 3,4-dihydroxyphenyllactic acid, salvianolic acid B and protocatechualdehyde from Salvia miltiorrhiza Bunge by high-speed counter-current chromatography. J Chromatogr A. 2007;1140:107–111.
  • Wu ZJ, Ouyang MG, Yang CR. Polyphenolic constituents of Salvia przewalskii. Acta Bot Yunnan. 1999;21:512–516.
  • Kamatou GPP, Van Zyl RL, Davids H, Van Heerden FR, Lourens ACU, Viljoen AM. Antimalarial and anticancer activities of selected South African Salvia species and isolated compounds from S. radula. S Afr J Bot. 2008;74:238–243.
  • Lee CY, Sher HF, Chen HW, et al. Anticancer effects of tanshinone I in human non-small cell lung cancer. Mol Cancer Ther. 2008;7:3527–3538.
  • Xie J, Liu JH, Liu H, et al. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line. Acta Pharmaceut Sin B. 2015;5:554–563.
  • Bi L, Chen JP, Yuan XJ, Jiang ZQ, Chen WP. Salvianolic acid A positively regulates PTEN protein level and inhibits growth of A549 lung cancer cells. Biomed Rep. 2013;1:213–217.
  • Gong Y, Li YL, Lu Y, et al. Bioactive tanshinones in Salvia miltiorrhiza inhibit the growth of prostate cancer cells in vitro and in mice. Int J Cancer. 2011;129:1042–1052.
  • Fiore G, Nencini C, Cavallo F, et al. In vitro antiproliferative effect of six Salvia species on human tumor cell lines. Phytother Res. 2006;20:701–703.
  • Won SH, Lee HJ, Jeong SJ, et al. Tanshinone IIA induces mitochondria dependent apoptosis in prostate cancer cells in association with an inhibition of phosphoinositide 3-kinase/AKT pathway. Biol Pharm Bull. 2010;33:1828–1834.
  • Atmaca H, Bozkurt E. Apoptotic and anti-angiogenic effects of Salvia triloba extract in prostate cancer cell lines. Tumor Biol. Epub 2015 Oct 12. DOI: 10.1007/s13277-015-4208-2.
  • Su CC, Chen GW, Lin JG. Growth inhibition and apoptosis induction by tanshinone I in human colon cancer Colo 205 cells. Int J Mol Med. 2008;22:613–618.
  • Su CC, Chen GW, Kang JC, Chan MH. Growth inhibition and apoptosis induction by tanshinone IIA in human colon adenocarcinoma cells. Planta Med. 2008;74:1357–1362.
  • Persidis A. Cancer multidrug resistance. Nat Biotechnol. 1999;17: 94–95.
  • Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219–234.
  • Sheng YP, Guo WJ. Mechanisms of resistance to 5-FU and how to overcome them. J Int Oncol. 2006;33:502–505.
  • Su CC. Tanshinone IIA potentiates the efficacy of 5-FU in Colo205 colon cancer cells in vivo through down-regulation of P-gp and LC3-II. Exp Ther Med. 2012;3:555–559.
  • Jeong JB, Lee SH. Protocatechualdehyde possesses anti-cancer activity through down-regulating cyclin D1 and HDAC2 in human colorectal cancer cells. Biochem Biophys Res Commun. 2013;430:381–386.
  • Lee JR, Lee MH, Eo HJ, et al. The contribution of activating transcription factor 3 to apoptosis of human colorectal cancer cells by protocatechualdehyde, a naturally occurring phenolic compound. Arch Biochem Biophys. 2014;64:203–210.
  • James CG, Woods A, Underhill TM, Beier F. The transcription factor ATF3 is upregulated during chondrocyte differentiation and represses cyclin D1 and A gene transcription. BMC Mol Biol. 2006;7:30–41.
  • Bosetti C, Turati F, La Vecchia C. Hepatocellular carcinoma epidemiology. Best Pract Res Clin Gastroenterol. 2014;28:753–770.
  • Lee WY, Chiu LC, Yeung JH. Cytotoxicity of major tanshinones isolated from Danshen (Salvia miltiorrhiza) on HepG2 cells in relation to glutathione perturbation. Food Chem Toxicol. 2008;46:328–338.
  • Macho A, Hirsch T, Marzo I, et al. Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J Immunol. 1997;158:4612–4619.
  • Liu J, Shen HM, Ong CN. Salvia miltiorrhiza inhibits cell growth and induces apoptosis in human hepatoma HepG2 cells. Cancer Lett. 2000;153:85–93.
  • Lee WYW, Cheung CCM, Liu KWK, et al. Cytotoxic effects of tanshinones from Salvia miltiorrhiza on doxorubicin-resistant human liver cancer cells. J Nat Prod. 2010;73:854–859.
  • Jeon YJ, Kim JS, Hwang GH, et al. Inhibition of cytochrome P450 2J2 by tanshinone IIA induces apoptotic cell death in hepatocellular carcinoma HepG2 cells. Eur J Pharmacol. 2015;764:480–488.
  • Liu F, Liu JX, Ren JG, Li JM, Li HH. Effect of Salvia cheinensis extraction on angiogenesis of tumor. Zhongguo Zhong Yao Za Zhi. 2012;37:1285–1288. Chinese.
  • Xiang MX, Su HW, Hu YJ, Hu Y, Yang TM, Shu GG. Chemical composition of total flavonoids from Salvia chinensia Benth and their pro-apoptotic effect on hepatocellular carcinoma cells: potential roles of suppressing cellular NF-κB signaling. Food Chem Toxicol. 2013;62:420–426.
  • Wu F, Wang ZB, Lu P, et al. Activated anti-tumor immunity in cancer patients after high intensity focused ultrasound ablation. Ultrasound Med Biol. 2004;30:1217–1222.
  • Zhao DX, Li ZJ, Zhang Y, et al. Enhanced antitumor immunity is elicited by adenovirus-mediated gene transfer of CCL21 and IL-15 in murine colon carcinomas. Cell Immunol. 2014;289:155–161.
  • Inatsuka C, Yang Y, Gad E, Rastetter L, Disis ML, Lu H. Gamma delta T cells are activated by polysaccharide K (PSK) and contribute to the anti-tumor effect of PSK. Cancer Immunol Immunother. 2013;62:1335–1345.
  • Zhang Y, Li S, Wang X, Zhang L, Cheung PCK. Advances in lentinan: Isolation, structure, chain conformation and bioactivities. Food Hydrocoll. 2011;25:196–206.
  • Fan LP, Ding SD, Ai LZ, Deng KQ. Antitumor and immunomodulatory activity of water-soluble polysaccharide from Inonotus obliquus. Carbohydr Polym 2012;90:870–874.
  • Park SD, Lai YS, Kim CH. Immunopotentiating and antitumor activities of the purified polysaccharides from Phellodendron chinese SCHNEID. Life Sci. 2004;75:2621–2632.
  • Liu L, Jia J, Zeng G, et al. Studies on immunoregulatory and anti-tumor activities of a polysaccharide from Salvia miltiorrhiza Bunge. Carbohydr Polym. 2013;92:479–483.
  • Shu GG, Zhao WH, Yue L, Su HW, Xiang MX. Antitumor immunostimulatory activity of polysaccharides from Salvia chinensis Benth. J Ethnopharmacol. 2015;168:237–247.
  • Kaushik G, Kwatra D, Subramaniam D, Jensen RA, Anant S, Mammen JM. Honokiol affects melanoma cell growth by targeting the AMP-activated protein kinase signaling pathway. Am J Surg. 2014;208:995–1002.
  • Cardile V, Russo A, Formisano C, et al. Essential oils of Salvia bracteata and Salvia rubifolia from Lebanon: Chemical composition, antimicrobial activity and inhibitory effect on human melanoma cells. J Ethnopharmacol. 2009;126:265–272.
  • Zhang LJ, Chen L, Lu Y, et al. Danshensu has anti-tumor activity in B16F10 melanoma by inhibiting angiogenesis and tumor cell invasion. Eur J Pharmacol. 2010;643:195–201.
  • Wang N, Yang J, Lu J, et al. A polysaccharide from Salvia miltiorrhiza Bunge improves immune function in gastric cancer rats. Carbohydr Polym. 2014;111:47–55.
  • Chen J, Shi DY, Liu SL, Zhong L. Tanshinone IIA induces growth inhibition and apoptosis in gastric cancer in vitro and in vivo. Oncol Rep. 2012;27:523–528.
  • Zhou L, Chan WK, Xu N, et al. Tanshinone IIA, an isolated compound from Salvia miltiorrhiza Bunge, induces apoptosis in HeLa cells through mitotic arrest. Life Sci. 2008;83:394–403.
  • Pan TL, Hung YC, Wang PW, et al. Functional proteomic and structural insights into molecular targets related to the growth inhibitory effect of tanshinone IIA on HeLa cells. Proteomics. 2010;10: 914–929.
  • Chen JZ. Signaling pathways in HPV-associated cancers and therapeutic implications. Rev Med Virol. 2015;25:24–53.
  • Doorbar J, Egawa N, Griffin H, Kranjec C, Murakami I. Human papillomavirus molecular biology and disease association. Rev Med Virol. 2015;25:2–23.
  • Munagala R, Aqil F, Jeyabalan J, Gupta RC. Tanshinone IIA inhibits viral oncogene expression leading to apoptosis and inhibition of cervical cancer. Cancer Lett. 2015;356:536–546.
  • Wu CF, Hong CL, Klauck SM, Lin YL, Efferth T. Molecular mechanisms of rosmarinic acid from salvia miltiorrhiza in acute lymphoblastic leukemia cells. J Ethnopharmacol. 2015;176:55–68.
  • Carew JS, Zhou Y, Albitar M, Carew JD, Keating MJ, Huang P. Mitochondrial DNA mutations in primary leukemia cells after chemotherapy: clinical significance and therapeutic implications. Leukemia. 2003;17:1437–1447.
  • Zhang KJ, Li J, Meng WT, Xing HY, Yang YM. Tanshinone IIA inhibits acute promyelocytic leukemia cell proliferation and induces their apoptosis in vivo. Blood Cells Mol Dis. 2016;56:46–52.
  • Wang Y, Li Q, Fan ZZ, et al. Tanshinone IIA induces apoptosis of pancreatic cancer cells via the SAPK/JNK signal pathway. Word Chin J Digestol. 2011;19:1028–1033.
  • Zhu M, Chen P, Shi XY, Kong X, Guo LX, Zheng F. The effect of inhibition and inducing apoptosis of tanshinone IIA on human ovarian cancer A2780 cell lines. J Emerg Tradit Chin Med. 2009;18:596–597. Chinese.
  • Zhuang YY, Wang HL, Du RT, Zhang C. The studies of apoptosis effect and its mechanisms of tanshinone IIA on human ovarian cancer cell SKOV3. Int J Obstet Gynaecol. 2011;38:328–331.