1,168
Views
2
CrossRef citations to date
0
Altmetric
Review

Smart implants in orthopedic surgery, improving patient outcomes: a review

, , &
Pages 41-51 | Published online: 29 Aug 2018

References

  • Burny F, Donkerwolcke M, Moulart F, et al. Concept, design and fabrication of smart orthopaedic implants. Med Eng Phys. 2000;22(7):469–479.
  • Andreu-Perez J, Leff DR, Ip HM, Yang GZ. From wearable sensors to smart implants-toward pervasive and personalized healthcare. IEEE Trans Biomed Eng. 2015;62(12):2750–2762.
  • O’Connor C, Kiourti A. Wireless sensors for smart orthopedic implants. J Bio Tribo Corros. 2017;3:20.
  • Sell P. Instrumented implants in orthopedics. J Biomed Eng. 1989;11(2):111–112.
  • Ledet EH, D’Lima D, Westerhoff P, Szivek JA, Wachs RA, Bergmann G. Implantable sensor technology: from research to clinical practice. J Am Acad Orthop Surg. 2012;20(6):383–392.
  • Korduba L, Grabowsky M, Uhl RL, Hella MM, Ledet EH. RFID as a testbed for integration of low frequency RF sensors into orthopaedic implants. J Med Devices. 2013;7:011008.
  • Roberts V. Strain gage techniques in biomechanics. Exp Mech. 1966;6(3):19A–22A.
  • Murray WM, Miller WR. The Bonded Electrical Resistance Strain Gage: An Introduction. New York: Oxford University Press; 1992.
  • Graichen F, Rohlmann A, Bender A, et al. Instrumented Orthopaedic Implants for Wireless Load Measurements. Berlin: Technical Aids for Rehabilitation; 2007:85–86.
  • Graichen F, Bergmann G. Four-channel telemetry system for in vivo measurement of hip joint forces. J Biomed Eng. 1991;13(5):370–374.
  • Graichen F, Arnold R, Rohlmann A, Bergmann G. Implantable 9-channel telemetry system for in vivo load measurements with orthopedic implants. IEEE Trans Biomed Eng. 2007;54(2):253–261.
  • Bergmann G, Graichen F, Siraky J, Jendrzynski H, Rohlmann A. Multichannel strain gauge telemetry for orthopaedic implants. J Biomech. 1988;21(2):169–176.
  • Bergmann G, Graichen F, Rohlmann A, et al. Design and calibration of load sensing orthopaedic implants. J Biomech Eng. 2008;130(2):021009.
  • Bergmann G, Graichen F, Rohlmann A. Hip joint contact forces during stumbling. Langenbecks Arch Surg. 2004;389(1):53–59.
  • Rydell NW. Forces acting on the femoral head-prosthesis. A study on strain gauge supplied prostheses in living persons. Acta Orthop Scand. 1966;37(Suppl 88):1–132.
  • Waugh T. Intravital measurements during instrumental correction of idiopathic scoliosis. Acta Orthop Scand. 1966;93:58–75.
  • Wachs R, Grabowsky M, Glennon JC, et al. In vivo loads in the cervical spine: a preliminary investigation using a force sensing implant. Spine J. 2012;12:S141.
  • Ledet EH, Peterson J, Wachs RA, Grabowsky MBM, Glennon J, DiRisio DJ. Direct measure of cervical interbody forces in vivo: load reversal after plating. Spine J. 2016;16(10):S362–S363.
  • Brown R, Brustein A, Frankel V. Telemetering in vivo loads from nail plate implants. J Biomech. 1982;15(11):815–823.
  • Davy D, Kotzar G, Brown R, et al. Telemetric force measurements across the hip after total arthroplasty. J Bone Joint Surg. 1988;70(1):45–50.
  • van Gaalen JB, Trejos AL, Nikolov HN, et al. Versatile smart hip implant technology using 3D metal printing. 2016 IEEE International Symposium on Circuits and Systems (ISCAS). Montreal, QC: IEEE; 2016:2731–2734.
  • Ledet E, Sachs B, Brunski J, Gatto CE, Donzelli PS. Real-time in vivo loading in the lumbar spine. Part 1. Interbody implant: load cell design and preliminary results. Spine. 2000;25(20):2595–2600.
  • Ledet EH, Tymeson MP, DiRisio DJ, Cohen B, Uhl RL. Direct real-time measurement of in vivo forces in the lumbar spine. Spine J. 2005;5(1):85–94.
  • dos Santos MPS, Ferreira JA, Ramos A, et al. Instrumented hip implants: electric supply systems. J Biomech. 2013;46(15):2561–2571.
  • Carlson CE, Mann RW, Harris WH. A radio telemetry device for monitoring cartilage surface pressures in the human hip. IEEE Trans Biomed Eng. 1974:257–264.
  • Nachemson A, Elfstrom G. Intravital wireless telemetry of axial forces in Harrington distraction rods in patients with idiopathic scoliosis. J Bone Joint Surg. 1971;53(3):445–465.
  • Atkinson J, Shurtleff D, Foltz E. Radio telemetry for the measurement of intracranial pressure. J Neurosurg. 1967;27(5):428–432.
  • Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–785.
  • Evans BM, Mahfouz MR, Pritchard ER. Biocompatible MEMS electrode array for determination of three-dimensional strain. Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE. IEEE; 2006:4092–4095.
  • Kaufman KR, Kovacevic N, Irby SE, Colwell CW. Instrumented implant for measuring tibiofemoral forces. J Biomech. 1996;29(5):667–671.
  • D’Lima DD, Townsend CP, Arms SW, Morris BA, Colwell CW Jr. An implantable telemetry device to measure intra-articular tibial forces. J Biomech. 2005;38(2):299–304.
  • Kirking B, Krevolin J, Townsend C, Colwell CW Jr, D’Lima DD. A multiaxial force-sensing implantable tibial prosthesis. J Biomech. 2006;39(9):1744–1751.
  • Heinlein B, Graichen F, Bender A, Rohlmann A, Bergmann G. Design, calibration and pre-clinical testing of an instrumented tibial tray. J Biomech. 2007;40(Suppl 1):S4–S10.
  • D’Lima DD, Patil S, Steklov N, Slamin JE, Colwell CW Jr. The Chitranjan Ranawat award: in vivo knee forces after total knee arthroplasty. Clin Orthop Relat Res. 2005;440:45–49.
  • D’Lima DD, Steklov N, Patil S, Colwell CW Jr. The Mark Coventry award: in vivo knee forces during recreation and exercise after knee arthroplasty. Clin Orthop Relat Res. 2008;466(11):2605–2611.
  • Kutzner I, Heinlein B, Graichen F, et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech. 2010;43(11):2164–2173.
  • Heinlein B, Kutzner I, Graichen F, et al. Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6–10 months. Clin Biomech. 2009;24(4):315–326.
  • Mündermann A, Dyrby CO, D’Lima DD, Colwell CW Jr, Andriacchi TP. In vivo knee loading characteristics during activities of daily living as measured by an instrumented total knee replacement. J Orthop Res. 2008;26(9):1167–1172.
  • D’Lima DD, Patil S, Steklov N, Chien S, Colwell CW Jr. In vivo knee moments and shear after total knee arthroplasty. J Biomech. 2007;40(Suppl 1):S11–S17.
  • Dion M, Drazan J, Abdoun K, et al. Smart orthopaedic implants: applications in total knee arthroplasty. Am J Eng Appl Sci. 2016;9:1232–1238.
  • Almouahed S, Gouriou M, Hamitouche C, Stindel E, Roux C. Design and evaluation of instrumented smart knee implant. IEEE Trans Biomed Eng. 2011;58(4):971–982.
  • Cassak D. OrthoSensor: will sensor-enabled data transform orthopedics? OrthoSensor is trying to bring a data-driven revolution to orthopedics based on a novel premise: that the key to improved outcomes lies in better surgical technique, not better implants. In Vivo Bus Med Rep. 2011;29:28.
  • Gustke KA, Golladay GJ, Roche MW, Jerry GJ, Elson LC, Anderson CR. Increased satisfaction after total knee replacement using sensor-guided technology. Bone Joint J. 2014;96-B(10):1333–1338.
  • Gustke KA, Golladay GJ, Roche MW, Elson LC, Anderson CR. A new method for defining balance: promising short-term clinical outcomes of sensor-guided TKA. J Arthroplasty. 2014;29(5):955–960.
  • Geller JA, Lakra A, Murtaugh T. The use of electronic sensor device to augment ligament balancing leads to a lower rate of arthrofibrosis after total knee arthroplasty. J Arthroplasty. 2017;32(5):1502–1504.
  • Roth JD, Howell SM, Hull ML. An improved tibial force sensor to compute contact forces and contact locations in vitro after total knee arthroplasty. J Biomech Eng. 2017;139(4):1–8.
  • English T, Kilvington M. In vivo records of hip loads using a femoral implant with telemetric output. J Biomed Eng. 1979;1(2):111–115.
  • Hodge WA, Carlson KL, Fijan RS, et al. Contact pressures from an instrumented hip endoprosthesis. J Bone Joint Surg Am. 1989;71(9):1378–1386.
  • Damm P, Graichen F, Rohlmann A, Bender A, Bergmann G. Total hip joint prosthesis for in vivo measurement of forces and moments. Med Eng Phys. 2010;32(1):95–100.
  • Graichen F, Bergmann G, Rohlmann A. Hip endoprosthesis for in vivo measurement of joint force and temperature. J Biomech. 1999;32(10):1113–1117.
  • Bergmann G, Graichen F, Dymke J, Rohlmann A, Duda GN, Damm P. High-tech hip implant for wireless temperature measurements in vivo. PLoS One. 2012;7(8):e43489.
  • Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993;26(8):969–990.
  • Bergmann G, Deuretzbacher G, Heller M, et al. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34(7):859–871.
  • Damm P, Dymke J, Bender A, Duda G, Bergmann G. In vivo hip joint loads and pedal forces during ergometer cycling. J Biomech. 2017;60:197–202.
  • Damm P, Schwachmeyer V, Dymke J, Bender A, Bergmann G. In vivo hip joint loads during three methods of walking with forearm crutches. Clin Biomech (Bristol, Avon). 2013;28(5):530–535.
  • Bergmann G, Graichen F, Rohlmann A, Verdonschot N, van Lenthe GH. Frictional heating of total hip implants. Part 1: measurements in patients. J Biomech. 2001;34(4):421–428.
  • Marschner U, Grätz H, Jettkant B, et al. Integration of a wireless lock-in measurement of hip prosthesis vibrations for loosening detection. Sens Actuators A Phys. 2009;156(1):145–154.
  • Bergmann G, Graichen F, Rohlmann A, et al. Realistic loads for testing hip implants. Biomed Mater Eng. 2010;20(2):65–75.
  • Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–2223.
  • Murray C, Lopez A. Measuring the global burden of disease. N Engl J Med. 2013;369(5):448–457.
  • Lee J. Rethinking spine care. Mod Healthc. 2014;44(12):14–16.
  • Elfstrom G, Nachemson A. Telemetry recordings of forces in the Harrington distraction rod: a method for increasing safety in the operative treatment of scoliosis patients. Clin Orthop Relat Res. 1973;93:158–172.
  • Daniels AU, Gemperline P, Grahn AR, Dunn HK. A new method for continuous intraoperative measurement of Harrington rod loading patterns. Ann Biomed Eng. 1984;12(3):233–246.
  • Rohlmann A, Bergmann G, Graichen F. A spinal fixation device for in vivo load measurement. J Biomech. 1994;27(7):961–967.
  • Graichen F, Bergmann G, Rohlmann A. Patient monitoring system for load measurement with spinal fixation devices. Med Eng Phys. 1996;18(2):167–174.
  • Rohlmann A, Bergmann G, Graichen F, Mayer HM. Telemetrized load measurement using instrumented spinal internal fixators in a patient with degenerative instability. Spine. 1995;20(24):2683–2689.
  • Rohlmann A, Bergmann G, Graichen F, Mayer HM. Influence of muscle forces on loads in internal spinal fixation devices. Spine. 1998;23(5):537–542.
  • Rohlmann A, Bergmann G, Graichen F. Loads on an internal spinal fixation device during walking. J Biomech. 1996;30(1):41–47.
  • Rohlmann A, Gabel U, Graichen F, Bender A, Bergmann G. An instrumented implant for vertebral body replacement that measures loads in the anterior spinal column. Med Eng Phys. 2007;29(5):580–585.
  • Peterson J, Chlebek C, Ledet EH. Spinal fusion implant stiffness affects load sharing. Spine J. 2016;16(10):S260.
  • Rohlmann A, Graichen F, Bender A, Kayser R, Bergmann G. Loads on a telemeterized vertebral body replacement measured in three patients within the first postoperative month. Clin Biomech. 2008;23(2):147–158.
  • Rohlmann A, Pohl D, Bender A, et al. Activities of everyday life with high spinal loads. PLoS One. 2014;9(5):e98510.
  • Rohlmann A, Graichen F, Kayser R, Bender A, Bergmann G. Loads on a telemeterized vertebral body replacement measured in two patients. Spine. 2008;33(11):1170–1179.
  • Aebersold J, Hnat W, Voor M, et al. Development of a strain transferring sensor housing for a lumbar spinal fusion detection system. J Med Devices. 2007;1(2):159–164.
  • Lin J, Walsh K, Jackson D, et al. Development of capacitive pure bending strain sensor for wireless spinal fusion monitoring. Sens Actuators A. 2007;138(2):276–287.
  • Ferrara L, Gordon I, Coquillette M, et al. A preliminary biomechanical evaluation in a simulated spinal fusion model. J Neurosurg Spine. 2007;7(5):542–548.
  • Rohlmann A, Bergmann G, Graichen F, Weber U. Comparison of loads on internal spinal fixation devices measured in vitro and in vivo. Med Eng Phys. 1997;19(6):539–546.
  • Zbinden D. Wireless Implantable Load Monitoring System for Scoliosis Surgery [master’s thesis]. Alberta: University of Alberta; 2011.
  • Demetropoulos CK, Morgan CR, Sengupta DK, Herkowitz HN. Development of a 4-axis load cell used for lumbar interbody load measurements. Med Eng Phys. 2009;31(7):846–851.
  • Rohlmann A, Graichen F, Weber U, Bergmann G. Monitoring in vivo implant loads with a telemeterized internal spinal fixation device. Spine. 2000;25(23):2981–2986.
  • Rohlmann A, Dreischarf M, Zander T, et al. Monitoring the load on a telemeterised vertebral body replacement for a period of up to 65 months. Eur Spine J. 2013;22(11):2575–2581.
  • Peterson J. Optimization of Spinal Instrumentation Stiffness and Its Effect on Interbody Fusion. Biomedical Engineering. Troy, NY: Rensselaer Polytechnic Institute; 2017.
  • Burny F, Zucman J, Bourgois R, et al. Utilisation des Jauges Extensometriques Pour la Mesure de la Consolidation des Fractures du Tibia Traitees par Enclouage Centromedullaire. Acta Orthop Belg. 1971;37:266–277.
  • Burny F, Donkerwolcke M, Bourgois R, Domb M, Saric O. Twenty years experience in fracture healing measurements with strain gauges. Orthopedics. 1984;7(12):1823–1826.
  • An K, Kasman R, Chao E. Theoretical analysis of fracture healing monitoring with external fixators. Eng Med. 1988;17(1):11–15.
  • Schneider E, Michel MC, Genge M, Zuber K, Ganz R, Perren SM. Loads acting in an intramedullary nail during fracture healing in the human femur. J Biomech. 2001;34(7):849–857.
  • Claes L, Cunningham J. Monitoring the mechanical properties of healing bone. Clin Orthop Relat Res. 2009;467(8):1964–1971.
  • Claes L, Grass R, Schmickal T, et al. Monitoring and healing analysis of 100 tibial shaft fractures. Langenbecks Arch Surg. 2002;387(3–4):146–152.
  • Bassey E, Littlewood J, Taylor S. Relations between compressive axial forces in an instrumented massive femoral implant, ground reaction forces, and integrated electromyographs from vastus lateralis during various ‘osteogenic’ exercises. J Biomech. 1997;30(3):213–223.
  • Burny F. Strain gague measurement of fracture healing. In: Brooker A, Cooney W, Chao E, editors. Principles of External Fixation. Baltimore: Williams and Wilkins; 1983:71–82.
  • Taylor SJ, Perry JS, Meswania JM, Donaldson N, Walker PS, Cannon SR. Telemetry of forces from proximal femoral replacements and relevance to fixation. J Biomech. 1997;30(3):225–234.
  • Taylor S, Walker P. Forces and moments telemetered from two distal femoral replacements during various activities. J Biomech. 2001;34(7):839–848.
  • Stoffel K, Klaue K, Perren S. Functional load of plates in fracture fixation in vivo and its correlate in bone healing. Injury. 2000;31(Suppl 2): SB37–SB50.
  • Sauer S, Marschner U, Adolphi B, et al. Passive wireless resonant Galfenol sensor for osteosynthesis plate bending measurement. IEEE Sens J. 2012;12(5):1226–1233.
  • Wilson DJ, Morgan RL, Hesselden KL, Dodd JR, Janna SW, Fagan MJ. A single-channel telemetric intramedullary nail for in vivo measurement of fracture healing. J Orthop Trauma. 2009;23(10):702–709.
  • Panescu D. Emerging technologies [wireless communication systems for implantable medical devices]. IEEE Engineering in Medicine and Biology Magazine. 2008:96–101.
  • Silva NM, Santos PM, Ferreira JA, et al. Power management architecture for smart hip prostheses comprising multiple energy harvesting systems. Sens Actuators A Phys. 2013;202:183–192.
  • Ferrara L, Fleischman A, Togawa D, et al. An in vivo biocompatability assessment of MEMS materials for spinal fusion monitoring. Biomed Microdevices. 2003;5(4):297–302.
  • Alfaro F, Weiss L, Campbell P, et al. Design of a multi-axis implantable MEMS sensor for intraosseous bone stress monitoring. J Micromech Microeng. 2009;19:1–13.
  • Melik R, Perkgoz N, Unal E, et al. Bio-implantable passive on-chip RF-MEMS strain sensing resonators for orthopaedic applications. J Micromech Microeng. 2008;18:1–9.
  • Forchelet D, Simoncini M, Arami A, et al. Enclosed electronic system for force measurements in knee implants. Sensors (Basel). 2014;14(8):15009–15021.
  • Micolini C, Holness FB, Johnson JA, et al. Conductive polymer sensor arrays for smart orthopaedic implants. Nanosensors, Biosensors, Info-Tech Sensors and 3D Systems 2017: International Society for Optics and Photonics. 2017:101670D.
  • Wachs R, Ellstein D, Drazan J, et al. Elementary implantable force sensor for smart orthopaedic implants. Adv Biosens Bioelectron. 2013;2(4):12477.
  • Drazan J, Gunko A, Dion M, et al. Archimedean spiral pairs with no electrical connections as a passive wireless implantable sensor. J Biomed Technol Res. 2014;1:8.
  • Ledet E, Wachs R. Wireless implantable sensors with no electrical connections enable the next generation of smart orthopaedic implants. Bone Zone. 2012;6:82–84.