29
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Beyond Immune Balance: The Pivotal Role of Decidual Regulatory T Cells in Unexplained Recurrent Spontaneous Abortion

, , , , &
Pages 2697-2710 | Received 12 Jan 2024, Accepted 18 Apr 2024, Published online: 30 Apr 2024

References

  • Förster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol. 2008;8(5):362–371. doi:10.1038/nri2297
  • Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. Regulatory T cells and human disease. Annu Rev Immunol. 2020;38:541–566. doi:10.1146/annurev-immunol-042718-041717
  • Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–787. doi:10.1016/j.cell.2008.05.009
  • Jiang Q, Yang G, Liu Q, Wang S, Cui D. Function and Role of Regulatory T Cells in Rheumatoid Arthritis. Front Immunol. 2021;12:626193. doi:10.3389/fimmu.2021.626193
  • Turner JA, Stephen-Victor E, Wang S, et al.. Regulatory T Cell-Derived TGF-β1 controls multiple checkpoints governing allergy and autoimmunity. Immunity. 2020;53:1202–1214.e6. doi:10.1016/j.immuni.2020.10.002
  • Bettini M, Bettini ML. Function, Failure, and the Future Potential of Tregs in Type 1 Diabetes. Diabetes. 2021;70:1211–1219. doi:10.2337/dbi18-0058
  • Daenthanasanmak A, Iamsawat S, Chakraborty P, et al.. Targeting Sirt-1 controls GVHD by inhibiting T-cell allo-response and promoting Treg stability in mice. Blood. 2019;133:266–279. doi:10.1182/blood-2018-07-863233
  • Hu X, Zhu Q, Wang Y, et al.. Newly characterized decidual Tim-3+ Treg cells are abundant during early pregnancy and driven by IL-27 coordinately with Gal-9 from trophoblasts. Hum Reprod. 2020;35:2454–2466. doi:10.1093/humrep/deaa223
  • Krop J, Heidt S, Claas F, Eikmans M. Regulatory T Cells in Pregnancy: it Is Not All About FoxP3. Front Immunol. 2020;11:1182. doi:10.3389/fimmu.2020.01182
  • Robertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo implantation and the immune response to pregnancy. J Clin Invest. 2018;128:4224–4235. doi:10.1172/JCI122182
  • Care AS, Bourque SL, Morton JS, Hjartarson EP, Robertson SA, Davidge ST. Reduction in regulatory T cells in early pregnancy causes uterine artery dysfunction in mice. Hypertension. 2018;72:177–187. doi:10.1161/HYPERTENSIONAHA.118.10858
  • Samstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell. 2012;150:29–38. doi:10.1016/j.cell.2012.05.031
  • Tamosiuniene R, Manouvakhova O, Mesange P, et al.. Dominant role for regulatory T cells in protecting females against pulmonary hypertension. Circ Res. 2018;122:1689–1702. doi:10.1161/CIRCRESAHA.117.312058
  • Sharma M, Schlegel MP, Afonso MS, et al.. Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. Circ Res. 2020;127:335–353. doi:10.1161/CIRCRESAHA.119.316461
  • Williams PJ, Searle RF, Robson SC, Innes BA, Bulmer JN. Decidual leucocyte populations in early to late gestation normal human pregnancy. J Reprod Immunol. 2009;82:24–31. doi:10.1016/j.jri.2009.08.001
  • Mjösberg J, Berg G, Jenmalm MC, Ernerudh J. FOXP3+ regulatory T cells and T helper 1, T helper 2, and T helper 17 cells in human early pregnancy decidua. Biol Reprod. 2010;82:698–705. doi:10.1095/biolreprod.109.081208
  • Tilburgs T, Roelen DL, van der Mast BJ, et al.. Differential distribution of CD4(+)CD25(bright) and CD8(+)CD28(-) T-cells in decidua and maternal blood during human pregnancy. Placenta. 2006;27:S47–53. doi:10.1016/j.placenta.2005.11.008
  • Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–562. doi:10.1146/annurev.immunol.21.120601.141122
  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–1164. doi:10.4049/jimmunol.155.3.1151
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–1061. doi:10.1126/science.1079490
  • Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003;4:337–342. doi:10.1038/ni909
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–336. doi:10.1038/ni904
  • Zhang YH, Sun HX. Immune checkpoint molecules in pregnancy: focus on regulatory T cells. Eur J Immunol. 2020;50:160–169. doi:10.1002/eji.201948382
  • Miko E, Meggyes M, Doba K, Barakonyi A, Szereday L. Immune Checkpoint Molecules in Reproductive Immunology. Front Immunol. 2019;10:846. doi:10.3389/fimmu.2019.00846
  • Xu YY, Wang SC, Li DJ, Du MR. Co-signaling molecules in maternal-fetal immunity. Trends Mol Med. 2017;23:46–58. doi:10.1016/j.molmed.2016.11.001
  • Joller N, Kuchroo VK. Tim-3, Lag-3, and TIGIT. Curr Top Microbiol Immunol. 2017;410:127–156. doi:10.1007/82_2017_62
  • Wagner MI, Jöst M, Spratte J, et al.. Differentiation of ICOS+ and ICOS- recent thymic emigrant regulatory T cells (RTE T regs) during normal pregnancy, pre-eclampsia and HELLP syndrome. Clin Exp Immunol. 2016;183:129–142. doi:10.1111/cei.12693
  • Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril. 2020;113:533–535. doi:10.1016/j.fertnstert.2019.11.025
  • Dimitriadis E, Menkhorst E, Saito S, Kutteh WH, Brosens JJ. Recurrent pregnancy loss. Nat Rev Dis Primers. 2020;6:98. doi:10.1038/s41572-020-00228-z
  • Garrido-Gimenez C, Alijotas-Reig J. Recurrent miscarriage: causes, evaluation and management. Postgrad Med J. 2015;91:151–162. doi:10.1136/postgradmedj-2014-132672
  • Alves C, Jenkins SM, Rapp A. StatPearls. Treasure Island (FL): StatPearls; 2024.
  • Daumová M, Hadravská Š, Putzová M. Spontaneous abortion in the first trimester of pregnancy. Cesk Patol. 2023;59(2):60–63.
  • Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril. 2012;98:1103–1111. doi:10.1016/j.fertnstert.2012.06.048
  • Sun H, Mao J, Su X, Du Q. Impact of spontaneous abortion history and induced abortion history on perinatal outcomes of singleton pregnancies. BMC Public Health. 2023;23(1):2360. doi:10.1186/s12889-023-17264-5
  • de Ziegler D, Frydman RF. Recurrent pregnancy losses, a lasting cause of infertility. Fertil Steril. 2021;115(3):531–532. doi:10.1016/j.fertnstert.2020.12.004
  • Schatz F, Guzeloglu-Kayisli O, Arlier S, Kayisli UA, Lockwood CJ. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. Hum Reprod Update. 2016;22:497–515. doi:10.1093/humupd/dmw004
  • Du Y, Fang Q, Zheng SG. Regulatory T cells: concept, classification, phenotype, and biological characteristics. Adv Exp Med Biol. 2021;1278:1–31. doi:10.1007/978-981-15-6407-9_1
  • Josefowicz SZ, Niec RE, Kim HY, et al.. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. 2012;482:395–399. doi:10.1038/nature10772
  • Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–564. doi:10.1146/annurev.immunol.25.022106.141623
  • Abbas AK, Benoist C, Bluestone JA, et al.. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol. 2013;14:307–308. doi:10.1038/ni.2554
  • Smigiel KS, Srivastava S, Stolley JM, Campbell DJ. Regulatory T-cell homeostasis: steady-state maintenance and modulation during inflammation. Immunol Rev. 2014;259:40–59. doi:10.1111/imr.12170
  • Liston A, Gray DH. Homeostatic control of regulatory T cell diversity. Nat Rev Immunol. 2014;14:154–165. doi:10.1038/nri3605
  • Dias S, D’Amico A, Cretney E, et al.. Effector Regulatory T cell differentiation and immune homeostasis depend on the transcription factor Myb. Immunity. 2017;46:78–91. doi:10.1016/j.immuni.2016.12.017
  • Burzyn D, Benoist C, Mathis D. Regulatory T cells in nonlymphoid tissues. Nat Immunol. 2013;14:1007–1013. doi:10.1038/ni.2683
  • Miragaia RJ, Gomes T, Chomka A, et al.. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity. 2019;50:493–504.e7. doi:10.1016/j.immuni.2019.01.001
  • Yu X, Harden K, Gonzalez LC, et al.. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 2009;10:48–57. doi:10.1038/ni.1674
  • Brlić P K, Lenac Roviš T, Cinamon G, Tsukerman P, Mandelboim O, Jonjić S. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol. 2019;16:40–52. doi:10.1038/s41423-018-0168-y
  • Joller N, Lozano E, Burkett PR, et al.. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity. 2014;40:569–581. doi:10.1016/j.immuni.2014.02.012
  • Levine AG, Mendoza A, Hemmers S, et al.. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature. 2017;546:421–425. doi:10.1038/nature22360
  • Paust S, Lu L, McCarty N, Cantor H. Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci USA. 2004;101:10398–10403. doi:10.1073/pnas.0403342101
  • Fallarino F, Grohmann U, Hwang KW, et al.. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003;4:1206–1212. doi:10.1038/ni1003
  • Tan CL, Kuchroo JR, Sage PT, et al.. PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance. J Exp Med. 2021;218:e20182232.
  • Maruhashi T, Sugiura D, Okazaki IM, et al.. Binding of LAG-3 to stable peptide-MHC class II limits T cell function and suppresses autoimmunity and anti-cancer immunity. Immunity. 2022;55:912–924.e8. doi:10.1016/j.immuni.2022.03.013
  • Bodmer JL, Holler N, Reynard S, et al.. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol. 2000;2:241–243. doi:10.1038/35008667
  • Ren X, Ye F, Jiang Z, Chu Y, Xiong S, Wang Y. Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4(+)CD25(+) regulatory T cells. Cell Death Differ. 2007;14:2076–2084. doi:10.1038/sj.cdd.4402220
  • Śledzińska A, Vila de Mucha M, Bergerhoff K, et al.. Regulatory T Cells Restrain Interleukin-2- and Blimp-1-Dependent Acquisition of Cytotoxic Function by CD4(+) T Cells. Immunity. 2020;52:151–166.e6. doi:10.1016/j.immuni.2019.12.007
  • Sundström P, Stenstad H, Langenes V, et al.. Regulatory T cells from colon cancer patients inhibit effector T-cell migration through an adenosine-dependent mechanism. Cancer Immunol Res. 2016;4:183–193. doi:10.1158/2326-6066.CIR-15-0050
  • Klein M, Bopp T. Cyclic AMP represents a crucial component of treg cell-mediated immune regulation. Front Immunol. 2016;7:315. doi:10.3389/fimmu.2016.00315
  • Su W, Chen X, Zhu W, et al.. The cAMP-adenosine feedback loop maintains the suppressive function of regulatory T cells. J Immunol. 2019;203:1436–1446. doi:10.4049/jimmunol.1801306
  • Schneider E, Winzer R, Rissiek A, et al.. CD73-mediated adenosine production by CD8 T cell-derived extracellular vesicles constitutes an intrinsic mechanism of immune suppression. Nat Commun. 2021;12:5911. doi:10.1038/s41467-021-26134-w
  • Hayashi Y, Ohnuma K, Furue MK. Pluripotent Stem Cell Heterogeneity. Adv Exp Med Biol. 2019;1123:71–94.
  • Zhao DM, Thornton AM, DiPaolo RJ, Shevach EM. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood. 2006;107:3925–3932. doi:10.1182/blood-2005-11-4502
  • Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity. 2004;21:589–601. doi:10.1016/j.immuni.2004.09.002
  • Gondek DC, Devries V, Nowak EC, et al.. Transplantation survival is maintained by granzyme B+ regulatory cells and adaptive regulatory T cells. J Immunol. 2008;181:4752–4760. doi:10.4049/jimmunol.181.7.4752
  • Yano H, Andrews LP, Workman CJ, Vignali D. Intratumoral regulatory T cells: markers, subsets and their impact on anti-tumor immunity. Immunology. 2019;157:232–247. doi:10.1111/imm.13067
  • Inada K, Shima T, Ito M, Ushijima A, Saito S. Helios-positive functional regulatory T cells are decreased in decidua of miscarriage cases with normal fetal chromosomal content. J Reprod Immunol. 2015;107:10–19. doi:10.1016/j.jri.2014.09.053
  • Hsu P, Santner-Nanan B, Dahlstrom JE, et al.. Altered decidual DC-SIGN+ antigen-presenting cells and impaired regulatory T-cell induction in preeclampsia. Am J Pathol. 2012;181:2149–2160. doi:10.1016/j.ajpath.2012.08.032
  • Arruvito L, Sanz M, Banham AH, Fainboim L. Expansion of CD4+CD25+and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J Immunol. 2007;178:2572–2578. doi:10.4049/jimmunol.178.4.2572
  • Lee SJ, Song L, Yang MC, et al.. Local administration of granulocyte macrophage colony-stimulating factor induces local accumulation of dendritic cells and antigen-specific CD8+ T cells and enhances dendritic cell cross-presentation. Vaccine. 2015;33:1549–1555. doi:10.1016/j.vaccine.2015.02.019
  • Tao Y, Li YH, Zhang D, et al.. Decidual CXCR4(+) CD56(bright) NK cells as a novel NK subset in maternal-foetal immune tolerance to alleviate early pregnancy failure. Clin Transl Med. 2021;11:e540.
  • Li Z, Liang X, Chen X, et al.. The role of thymus- and extrathymus-derived regulatory T cells in maternal-fetal tolerance. Front Immunol. 2023;14:1109352. doi:10.3389/fimmu.2023.1109352
  • Yasuda I, Shima T, Moriya T, et al.. Dynamic changes in the phenotype of dendritic cells in the uterus and uterine draining lymph nodes after coitus. Front Immunol. 2020;11:557720. doi:10.3389/fimmu.2020.557720
  • Kallikourdis M, Betz AG. Periodic accumulation of regulatory T cells in the uterus: preparation for the implantation of a semi-allogeneic fetus. PLoS One. 2007;2:e382.
  • Shima T, Sasaki Y, Itoh M, et al.. Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J Reprod Immunol. 2010;85:121–129. doi:10.1016/j.jri.2010.02.006
  • Moldenhauer LM, Diener KR, Hayball JD, Robertson SA. An immunogenic phenotype in paternal antigen-specific CD8(+) T cells at embryo implantation elicits later fetal loss in mice. Immunol Cell Biol. 2017;95:705–715. doi:10.1038/icb.2017.41
  • Chaturvedi V, Ertelt JM, Jiang TT, et al.. CXCR3 blockade protects against Listeria monocytogenes infection-induced fetal wastage. J Clin Invest. 2015;125:1713–1725. doi:10.1172/JCI78578
  • Li L, Tu J, Jiang Y, Zhou J, Schust DJ. Regulatory T cells decrease invariant natural killer T cell-mediated pregnancy loss in mice. Mucosal Immunol. 2017;10:613–623. doi:10.1038/mi.2016.84
  • Zhang Y, Liu Z, Tian M, et al.. The altered PD-1/PD-L1 pathway delivers the ‘one-two punch’ effects to promote the Treg/Th17 imbalance in pre-eclampsia. Cell Mol Immunol. 2018;15:710–723. doi:10.1038/cmi.2017.70
  • Erlebacher A. Immunology of the maternal-fetal interface. Annu Rev Immunol. 2013;31:387–411. doi:10.1146/annurev-immunol-032712-100003
  • Jiang X, Wang H. Macrophage subsets at the maternal-fetal interface. Cell Mol Immunol. 2020;17:889–891. doi:10.1038/s41423-020-0435-6
  • Wang F, Qualls AE, Marques-Fernandez L, Colucci F. Biology and pathology of the uterine microenvironment and its natural killer cells. Cell Mol Immunol. 2021;18:2101–2113. doi:10.1038/s41423-021-00739-z
  • Guerin LR, Moldenhauer LM, Prins JR, Bromfield JJ, Hayball JD, Robertson SA. Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment. Biol Reprod. 2011;85:397–408. doi:10.1095/biolreprod.110.088591
  • Shima T, Nakashima A, Yasuda I, et al.. Uterine CD11c+ cells induce the development of paternal antigen-specific Tregs via seminal plasma priming. J Reprod Immunol. 2020;141:103165. doi:10.1016/j.jri.2020.103165
  • Blois SM, Ilarregui JM, Tometten M, et al.. A pivotal role for galectin-1 in fetomaternal tolerance. Nat Med. 2007;13:1450–1457. doi:10.1038/nm1680
  • Vacca P, Cantoni C, Vitale M, et al.. Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc Natl Acad Sci U S A. 2010;107:11918–11923. doi:10.1073/pnas.1001749107
  • Munn DH, Zhou M, Attwood JT, et al.. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281:1191–1193. doi:10.1126/science.281.5380.1191
  • Zhang J, Dunk C, Croy AB, Lye SJ. To serve and to protect: the role of decidual innate immune cells on human pregnancy. Cell Tissue Res. 2016;363:249–265. doi:10.1007/s00441-015-2315-4
  • Perchellet AL, Jasti S, Petroff MG. Maternal CD4⁺ and CD8⁺ T cell tolerance towards a fetal minor histocompatibility antigen in T cell receptor transgenic mice. Biol Reprod. 2013;89:102. doi:10.1095/biolreprod.113.110445
  • Wang S, Qian J, Sun F, et al.. Bidirectional regulation between 1st trimester HTR8/SVneo trophoblast cells and in vitro differentiated Th17/Treg cells suggest a fetal-maternal regulatory loop in human pregnancy. Am J Reprod Immunol. 2019;81:e13106. doi:10.1111/aji.13106
  • Fu YY, Ren CE, Qiao PY, Meng YH. Uterine natural killer cells and recurrent spontaneous abortion. Am J Reprod Immunol. 2021;86:e13433.
  • Díaz-Hernández I, Alecsandru D, García-Velasco JA, Domínguez F. Uterine natural killer cells: from foe to friend in reproduction. Hum Reprod Update. 2021;27:720–746. doi:10.1093/humupd/dmaa062
  • Heikkinen J, Möttönen M, Alanen A, Lassila O. Phenotypic characterization of regulatory T cells in the human decidua. Clin Exp Immunol. 2004;136:373–378. doi:10.1111/j.1365-2249.2004.02441.x
  • Dimova T, Nagaeva O, Stenqvist AC, et al.. Maternal Foxp3 expressing CD4+ CD25+ and CD4+ CD25- regulatory T-cell populations are enriched in human early normal pregnancy decidua: a phenotypic study of paired decidual and peripheral blood samples. Am J Reprod Immunol. 2011;66(1):44–56. doi:10.1111/j.1600-0897.2011.01046.x
  • Salvany-Celades M, van der Zwan A, Benner M, et al.. Tilburgs T: three types of functional regulatory T Cells Control T cell responses at the human maternal-fetal interface. Cell Rep. 2019;27:2537–2547.e5. doi:10.1016/j.celrep.2019.04.109
  • Zare M, Namavar Jahromi B, Gharesi-Fard B. Analysis of the frequencies and functions of CD4(+)CD25(+)CD127(low/neg), CD4(+)HLA-G(+), and CD8(+)HLA-G(+) regulatory T cells in pre-eclampsia. J Reprod Immunol. 2019;133:43–51. doi:10.1016/j.jri.2019.06.002
  • Hsu P, Santner-Nanan B, Joung S, Peek MJ, Nanan R. Expansion of CD4(+) HLA-G(+) T Cell in human pregnancy is impaired in pre-eclampsia. Am J Reprod Immunol. 2014;71:217–228. doi:10.1111/aji.12195
  • Huang YH, Zozulya AL, Weidenfeller C, Schwab N, Wiendl H. T cell suppression by naturally occurring HLA-G-expressing regulatory CD4+ T cells is IL-10-dependent and reversible. J Leukoc Biol. 2009;86:273–281. doi:10.1189/jlb.1008649
  • Levings MK, Bacchetta R, Schulz U, Roncarolo MG. The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol. 2002;129:263–276. doi:10.1159/000067596
  • Sanjabi S, Oh SA, Li MO. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol. 2017;9:a022236. doi:10.1101/cshperspect.a022236
  • Zhang J, Dunk CE, Shynlova O, Caniggia I, Lye SJ. TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia. EBioMedicine. 2019;39:531–539. doi:10.1016/j.ebiom.2018.12.015
  • Häringer B, Lozza L, Steckel B, Geginat J. Identification and characterization of IL-10/IFN-gamma-producing effector-like T cells with regulatory function in human blood. J Exp Med. 2009;206:1009–1017.
  • Akdis M, Verhagen J, Taylor A, et al.. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med. 2004;199:1567–1575. doi:10.1084/jem.20032058
  • White AM, Wraith DC. Tr1-Like T cells - an enigmatic regulatory T cell lineage. Front Immunol. 2016;7:355. doi:10.3389/fimmu.2016.00355
  • Niedzielska M, Israelsson E, Angermann B, et al.. Differential gene expression in human tissue resident regulatory T cells from lung, colon, and blood. Oncotarget. 2018;9:36166–36184. doi:10.18632/oncotarget.26322
  • Weiner HL. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev. 2001;182:207–214. doi:10.1034/j.1600-065X.2001.1820117.x
  • Elkord E, Abd Al Samid M, Chaudhary B. Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP. Oncotarget. 2015;6:20026–20036.
  • Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5:266–271. doi:10.1038/ni1037
  • Woidacki K, Meyer N, Schumacher A, Goldschmidt A, Maurer M, Zenclussen AC. Transfer of regulatory T cells into abortion-prone mice promotes the expansion of uterine mast cells and normalizes early pregnancy angiogenesis. Sci Rep. 2015;5:13938. doi:10.1038/srep13938
  • Keller CC, Eikmans M, van der Hoorn MP, Lashley L. Recurrent miscarriages and the association with regulatory T cells; A systematic review. J Reprod Immunol. 2020;139:103105. doi:10.1016/j.jri.2020.103105
  • Banerjee P, Jana SK, Pasricha P, Ghosh S, Chakravarty B, Chaudhury K. Proinflammatory cytokines induced altered expression of cyclooxygenase-2 gene results in unreceptive endometrium in women with idiopathic recurrent spontaneous miscarriage. Fertil Steril. 2013;99:179–187.e2. doi:10.1016/j.fertnstert.2012.08.034
  • Yang X, Tian Y, Zheng L, Luu T, Kwak-Kim J. The Update Immune-Regulatory Role of Pro- and Anti-Inflammatory Cytokines in Recurrent Pregnancy Losses. Int J Mol Sci. 2022;24:132. doi:10.3390/ijms24010132
  • Kwak-Kim J, Bao S, Lee SK, Kim JW, Gilman-Sachs A. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress. Am J Reprod Immunol. 2014;72:129–140. doi:10.1111/aji.12234
  • Lissauer D, Goodyear O, Khanum R, Moss PA, Kilby MD. Profile of maternal CD4 T-cell effector function during normal pregnancy and in women with a history of recurrent miscarriage. Clin Sci (Lond). 2014;126:347–354. doi:10.1042/CS20130247
  • Lédée N, Munaut C, Aubert J, et al.. Specific and extensive endometrial deregulation is present before conception in IVF/ICSI repeated implantation failures (IF) or recurrent miscarriages. J Pathol. 2011;225:554–564. doi:10.1002/path.2948
  • Zhao X, Jiang Y, Wang L, Li Z, Li Q, Feng X. Advances in understanding the immune imbalance between T-Lymphocyte Subsets and NK cells in recurrent spontaneous abortion. Geburtshilfe Frauenheilkd. 2018;78(7):677–683. doi:10.1055/a-0634-1813
  • Cubro H, Kashyap S, Nath MC, Ackerman AW, Garovic VD. The role of interleukin-10 in the pathophysiology of preeclampsia. Curr Hypertens Rep. 2018;20:36. doi:10.1007/s11906-018-0833-7
  • Kedzierska AE, Lorek D, Slawek A, Chelmonska-Soyta A. Tregitopes regulate the tolerogenic immune response and decrease the foetal death rate in abortion-prone mouse matings. Sci Rep. 2020;10:10531. doi:10.1038/s41598-020-66957-z
  • Granne I, Shen M, Rodriguez-Caro H, et al.. Characterisation of peri-implantation endometrial Treg and identification of an altered phenotype in recurrent pregnancy loss. Mucosal Immunol. 2022;15:120–129. doi:10.1038/s41385-021-00451-1
  • Yang H, Qiu L, Chen G, Ye Z, C L, Lin Q. Proportional change of CD4+CD25+ regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients. Fertil Steril. 2008;89:656–661. doi:10.1016/j.fertnstert.2007.03.037
  • Jin LP, Chen QY, Zhang T, Guo PF, Li DJ. The CD4+CD25 bright regulatory T cells and CTLA-4 expression in peripheral and decidual lymphocytes are down-regulated in human miscarriage. Clin Immunol. 2009;133:402–410. doi:10.1016/j.clim.2009.08.009
  • Inada K, Shima T, Nakashima A, Aoki K, Ito M, Saito S. Characterization of regulatory T cells in decidua of miscarriage cases with abnormal or normal fetal chromosomal content. J Reprod Immunol. 2013;97:104–111. doi:10.1016/j.jri.2012.12.001
  • Sasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod. 2004;10:347–353. doi:10.1093/molehr/gah044
  • Wang WJ, Hao CF, Yi-Lin Y, Bao GJ, Qiu SH, Lin LH. QD: increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J Reprod Immunol. 2010;84:164–170. doi:10.1016/j.jri.2009.12.003
  • Robertson SA, Sharkey DJ. Seminal fluid and fertility in women. Fertil Steril. 2016;106:511–519. doi:10.1016/j.fertnstert.2016.07.1101
  • Omenetti S, Pizarro TT. The Treg/Th17 Axis: a dynamic balance regulated by the gut microbiome. Front Immunol. 2015;6:639. doi:10.3389/fimmu.2015.00639
  • Sadlon T, Brown CY, Bandara V, et al.. Unravelling the molecular basis for regulatory T-cell plasticity and loss of function in disease. Clin Transl Immunology. 2018;7:e1011.
  • Schjenken JE, Zhang B, Chan HY, Sharkey DJ, Fullston T, Robertson SA. mi RNA Regulation of Immune Tolerance in Early Pregnancy. Am J Reprod Immunol. 2016;75:272–280. doi:10.1111/aji.12490
  • Hori S. Lineage stability and phenotypic plasticity of Foxp3⁺ regulatory T cells. Immunol Rev. 2014;259:159–172. doi:10.1111/imr.12175
  • Liu C, Wang XZ, Sun XB. Assessment of sperm antigen specific T regulatory cells in women with recurrent miscarriage. Early Hum Dev. 2013;89:95–100. doi:10.1016/j.earlhumdev.2012.08.003
  • Bettelli E, Carrier Y, Gao W, et al.. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–238. doi:10.1038/nature04753
  • Zhao J, Zhao J, Perlman S. Differential effects of IL-12 on Tregs and non-Treg T cells: roles of IFN-γ, IL-2 and IL-2R. PLoS One. 2012;7:e46241.
  • Prins JR, Zhang B, Schjenken JE, Guerin LR, Barry SC, Robertson SA. Unstable Foxp3+ regulatory T cells and altered dendritic cells are associated with lipopolysaccharide-induced fetal loss in pregnant interleukin 10-deficient mice. Biol Reprod. 2015;93:95. doi:10.1095/biolreprod.115.128694
  • Rowe JH, Ertelt JM, Aguilera MN, Farrar MA, Way SS. Foxp3(+) regulatory T cell expansion required for sustaining pregnancy compromises host defense against prenatal bacterial pathogens. Cell Host Microbe. 2011;10:54–64. doi:10.1016/j.chom.2011.06.005
  • Robertson SA. Immune regulation of conception and embryo implantation-all about quality control. J Reprod Immunol. 2010;85:51–57. doi:10.1016/j.jri.2010.01.008
  • Mazziotta C, Pellielo G, Tognon M, Martini F, Rotondo JC. Significantly low levels of igg antibodies against oncogenic Merkel cell polyomavirus in sera from females affected by spontaneous abortion. Front Microbiol. 2021;12:789991. doi:10.3389/fmicb.2021.789991
  • D’Addio F, Riella LV, Mfarrej BG, et al.. The link between the PDL1 costimulatory pathway and Th17 in fetomaternal tolerance. J Immunol. 2011;187:4530–4541. doi:10.4049/jimmunol.1002031
  • Chang J-H, Xiao Y, Hu H, et al.. Ubc13 maintains the suppressive function of regulatory T cells and prevents their conversion into effector-like T cells. Nat Immunol. 2012;13(5):481–490. doi:10.1038/ni.2267
  • Steinborn A, Schmitt E, Kisielewicz A, et al.. Pregnancy-associated diseases are characterized by the composition of the systemic regulatory T cell (Treg) pool with distinct subsets of Tregs. Clin Exp Immunol. 2012;167:84–98. doi:10.1111/j.1365-2249.2011.04493.x
  • Bluestone JA, Trotta E, Xu D. The therapeutic potential of regulatory T cells for the treatment of autoimmune disease. Expert Opin Ther Targets. 2015;19:1091–1103. doi:10.1517/14728222.2015.1037282
  • Zhang Q, Wang HY, Marzec M, Raghunath PN, Nagasawa T, Wasik MA. STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc Natl Acad Sci U S A. 2005;102:6948–6953. doi:10.1073/pnas.0501959102
  • Hodge DR, Cho E, Copeland TD, et al.. IL-6 enhances the nuclear translocation of DNA cytosine-5-methyltransferase 1 (DNMT1) via phosphorylation of the nuclear localization sequence by the AKT kinase. Cancer Genomics Proteomics. 2007;4:387–398.
  • Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40:1830–1835. doi:10.1002/eji.201040391
  • Raffin C, Vo LT, Bluestone JA. T(reg) cell-based therapies: challenges and perspectives. Nat Rev Immunol. 2020;20:158–172. doi:10.1038/s41577-019-0232-6
  • Nishimoto N, Yoshizaki K, Miyasaka N, et al.. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 2004;50:1761–1769. doi:10.1002/art.20303
  • Ito H, Takazoe M, Fukuda Y, et al.. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology. 2004;126:989–996. doi:10.1053/j.gastro.2004.01.012
  • Illei GG, Shirota Y, Yarboro CH, et al.. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 2010;62:542–552. doi:10.1002/art.27221
  • Abbas AK, Trotta E, Simeonov D, Marson A, Bluestone JA. Revisiting IL-2: biology and therapeutic prospects. Sci Immunol. 2018;3:eaat1482. doi:10.1126/sciimmunol.aat1482
  • Barron L, Dooms H, Hoyer KK, et al.. Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J Immunol. 2010;185:6426–6430. doi:10.4049/jimmunol.0903940
  • Boardman DA, Levings MK. Cancer immunotherapies repurposed for use in autoimmunity. Nat Biomed Eng. 2019;3:259–263. doi:10.1038/s41551-019-0359-6
  • Tang Q, Adams JY, Penaranda C, et al.. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity. 2008;28:687–697. doi:10.1016/j.immuni.2008.03.016
  • Grinberg-Bleyer Y, Baeyens A, You S, et al.. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med. 2010;207:1871–1878. doi:10.1084/jem.20100209
  • Trotta E, Bessette PH, Silveria SL, et al.. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med. 2018;24:1005–1014. doi:10.1038/s41591-018-0070-2
  • Ito S, Bollard CM, Carlsten M, et al.. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol Ther. 2014;22:1388–1395. doi:10.1038/mt.2014.50
  • Winger EE, Reed JL. Low circulating CD4(+) CD25(+) Foxp3(+) T regulatory cell levels predict miscarriage risk in newly pregnant women with a history of failure. Am J Reprod Immunol. 2011;66:320–328. doi:10.1111/j.1600-0897.2011.00992.x
  • Mohammadi S, Abdollahi E, Nezamnia M, et al. Adoptive transfer of Tregs: a novel strategy for cell-based immunotherapy in spontaneous abortion: lessons from experimental models. Int Immunopharmacol. 2021;90:107195. doi:10.1016/j.intimp.2020.107195
  • Siddiqui I, Erreni M, van Brakel M, Debets R, Allavena P. Enhanced recruitment of genetically modified CX3CR1-positive human T cells into Fractalkine/CX3CL1 expressing tumors: importance of the chemokine gradient. J Immunother Cancer. 2016;4:21. doi:10.1186/s40425-016-0125-1
  • Garetto S, Sardi C, Martini E, et al.. Tailored chemokine receptor modification improves homing of adoptive therapy T cells in a spontaneous tumor model. Oncotarget. 2016;7:43010–43026. doi:10.18632/oncotarget.9280
  • Idorn M, Skadborg SK, Kellermann L, et al.. Chemokine receptor engineering of T cells with CXCR2 improves homing towards subcutaneous human melanomas in xenograft mouse model. Oncoimmunology. 2018;7:e1450715.
  • Zhang L, Long X, Yin Y, et al.. Histone methyltransferase Nsd2 ensures maternal-fetal immune tolerance by promoting regulatory T-cell recruitment. Cell Mol Immunol. 2022;19:634–643. doi:10.1038/s41423-022-00849-2
  • Motwani K, Peters LD, Vliegen WH, et al.. Human regulatory T cells from umbilical cord blood display increased repertoire diversity and lineage stability relative to adult peripheral blood. Front Immunol. 2020;11:611. doi:10.3389/fimmu.2020.00611
  • Jagger A, Shimojima Y, Goronzy JJ, Weyand CM. Regulatory T cells and the immune aging process: a mini-review. Gerontology. 2014;60:130–137. doi:10.1159/000355303
  • Carbone F, La Rocca C, De Candia P, et al.. Metabolic control of immune tolerance in health and autoimmunity. Semin Immunol. 2016;28:491–504. doi:10.1016/j.smim.2016.09.006
  • Murai M, Krause P, Cheroutre H, Kronenberg M. Regulatory T-cell stability and plasticity in mucosal and systemic immune systems. Mucosal Immunol. 2010;3:443–449. doi:10.1038/mi.2010.27
  • Amersfoort J, Kuiper J. T cell metabolism in metabolic disease-associated autoimmunity. Immunobiology. 2017;222:925–936. doi:10.1016/j.imbio.2017.03.001
  • Issazadeh-Navikas S, Teimer R, Bockermann R. Influence of dietary components on regulatory T cells. Mol Med. 2012;18:95–110. doi:10.2119/molmed.2011.00311
  • Sharkey DJ, Tremellen KP, Briggs NE, Dekker GA, Robertson SA. Seminal plasma pro-inflammatory cytokines interferon-γ (IFNG) and C-X-C motif chemokine ligand 8 (CXCL8) fluctuate over time within men. Hum Reprod. 2017;32:1373–1381. doi:10.1093/humrep/dex106
  • Robertson SA, Moldenhauer LM, Green ES, Care AS, Hull ML. Immune determinants of endometrial receptivity: a biological perspective. Fertil Steril. 2022;117:1107–1120. doi:10.1016/j.fertnstert.2022.04.023
  • Yamazaki S, Nishioka A, Kasuya S, et al.. Homeostasis of thymus-derived Foxp3+ regulatory T cells is controlled by ultraviolet B exposure in the skin. J Immunol. 2014;193:5488–5497. doi:10.4049/jimmunol.1400985
  • Burzyn D, Kuswanto W, Kolodin D, et al.. A special population of regulatory T cells potentiates muscle repair. Cell. 2013;155:1282–1295. doi:10.1016/j.cell.2013.10.054
  • Li J, Chen Y, Liu C, Hu Y, Li L. Intravenous immunoglobulin treatment for repeated IVF/ICSI failure and unexplained infertility: a systematic review and a meta-analysis. Am J Reprod Immunol. 2013;70:434–447. doi:10.1111/aji.12170
  • Winger EE, Reed JL. Treatment with tumor necrosis factor inhibitors and intravenous immunoglobulin improves live birth rates in women with recurrent spontaneous abortion. Am J Reprod Immunol. 2008;60:8–16. doi:10.1111/j.1600-0897.2008.00585.x
  • Tempfer CB, Kurz C, Bentz EK, et al.. A combination treatment of prednisone, aspirin, folate, and progesterone in women with idiopathic recurrent miscarriage: a matched-pair study. Fertil Steril. 2006;86:145–148. doi:10.1016/j.fertnstert.2005.12.035
  • Vomstein K, Feil K, Strobel L, et al.. Immunological risk factors in recurrent pregnancy loss: guidelines versus current state of the art. J Clin Med. 2021;10:869. doi:10.3390/jcm10040869
  • Lee JH, Ulrich B, Cho J, Park J, Kim CH. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. J Immunol. 2011;187:1778–1787. doi:10.4049/jimmunol.1003919
  • Lee JH, Lydon JP, Kim CH. Progesterone suppresses the mTOR pathway and promotes generation of induced regulatory T cells with increased stability. Eur J Immunol. 2012;42:2683–2696. doi:10.1002/eji.201142317
  • Piccinni MP, Scaletti C, Maggi E, Romagnani S. Role of hormone-controlled Th1- and Th2-type cytokines in successful pregnancy. J Neuroimmunol. 2000;109:30–33. doi:10.1016/S0165-5728(00)00299-X