673
Views
1
CrossRef citations to date
0
Altmetric
Review

Comparative physiology of Malpighian tubules: form and function

, , , &
Pages 13-23 | Published online: 21 Apr 2016

References

  • Snodgrass RE. Principles of insect morphology. New York: McGraw- Hill Book, 1956.
  • Borror DJ, Delong DM. Study of Insects. São Paulo, Ed. Edgard Blucha, 1969. Portuguese.
  • Wigglesworth, VB. The principles of insect physiology. New York: John Wiley Sons. 2003.
  • Wang J, Kean L, Yang J, Allan A K, Davies S A, Herzyk P, Dow JAT. Function-informed transcriptome analysis of Drosophila renal tubule. Genome Biol. 2004;5:69.
  • Maddrell SHP. The fastest fluid-secreting cell known: the upper Malpighian tubule cell of Rhodnius. BioEssays. 1991;13:357–362.
  • Jung AC, Denholm B, Skaer H, Affolter M. Renal tubule development in Drosophila: a closer look at the cellular level. J Am Soc Nephrol. 2005;16:322–328.
  • Singh SR, Hou SX. Lessons Learned About Adult Kidney Stem Cells From the Malpighian Tubules of Drosophila. J Am Soc Nephrol. 2008;19:660–666.
  • Chapman RF. The insects: Structure and function. Fourth Ed. Cambridge University Press, Cambridge, 1998.
  • Bradley TJ. The excretory system: structure and physiology. In: Kerkut, GA, Gilbert, LI (Eds.) Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 4, Pergamon Press, London, pp. 421–465, 1985.
  • Arab A, Caetano FH. Segmental specializations in the Malpighian tubules of the fire ant Solenopsis saevissima Forel 1904 (Myrmicinae): an electron microscopical study. Arthropod Struct Dev. 2002;30:281–292.
  • Beyenbach KW, Skaer H, Dow JAT. The Developmental, Molecular, and Transport Biology of Malpighian Tubules. Annu Rev Entomol. 2010;55:351–374.
  • Jung AC, Denholm B, Skaer H, Affolter M. Renal tubule development in Drosophila: a closer look at the cellular level. J Am Soc Nephrol. 2005;16(2):322–328.
  • Cruz-Landim C. Morfology and function of systems. 1ed. São Paulo: UNESP, 2009. Portuguese.
  • Cruz-Landim C, Rodrigues L. Development of rectal glands and Malpighian Tubules in bess from the genera Melipona, with relation to the humidity of their natural habitat. Ciência e Cultura. 1970;23:619–623. Portuguese.
  • Silva-de-Moraes RLM, Cruz-Landim C. Comparative studies of Malpighian tubules from larvae, pupae and adults workers of Melipona quadrifasciata anthidioides Lep. (Apidae, Meliponinae). Papéis Avulsos de Zoologia 29, 1976;249–257. Portuguese.
  • Cruz-Landim C. Localization of calcium and acid phosphatase in the Malpighian tubules of nurse workers of Melipona quadrifasciata anthidioides Lep. (Hymenoptera, Apidae, Meliponini). Biosci J. 2000;16:87–99.
  • Skaer HB. Development of the alimentary canal. In The Development of Drosophila, ed. CM Bate, A Martinez Arias, pp. 941–1012. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.1993.
  • Tapadia MG, Gautam NK. Non-apoptotic function of apoptotic proteins in the development of Malpighian tubules of Drosophila melanogaster. J Biosci Bangalore. 2011;36(3):531–544.
  • Ettershank G, Brown WL. The Malpighian tubules as meristic characters in ants (Hym., Formicidae). Entomologist´s Monthly magazine. 1964;100:5–7.
  • Caetano FH, Camargo-Mathias MI, Overal WL. Anatomy and histology of digestory tract from Dinoponera gigantea and Paraponera clavata (Formicidae: Ponerinae). Naturalia. 1986/1987;11/12:125–134. Portuguese.
  • Bution ML, Caetano FH, Zara FJ. Contribution of the Malpighian tubules for the maintenance of symbiotic microorganisms in Cephalotes ants Micron. 2008;39:1179–1183.
  • Arab A, Caetano FH. Segmental specializations in the Malpighian tubules of the fire ant Solenopsis saevissima Forel 1904 (Myrmicinae): an electron microscopical study. Arthropod Struc Develop. 2002;30:281–292.
  • Gonçalves WG, Fialho MDCQ, Azevedo DO, Zanuncio JC, Serrão, JE. Ultrastructure of the excretory organs of Bombus morio (Hymenoptera: Bombini): bee without rectal pads. Microscopy and Microanalysis. 2014;20(01):285–295.
  • Sohal RS. Fine structure of the Malpighian tubules in the house fly Musca domestica. Tissue Cell. 1974;6:719–728.
  • Dallai R, Del Bene G, Marchini D. The ultrastructure of Malpighian tubules and hindgut of Frankliniella occidentalis (pergande) (Thysanoptera: Thripidae). Int J Insect Morphol. 1991;20:223–233.
  • Ryerse JS. Ecdysterone switches off fluid secretion at pupation in insect Malpighian tubules. Nature. 1978;271:745–748.
  • Beyenbach KW Transport mechanisms of diuresis in Malpighian tubules of insects. J Exp Biol. 2003;206:3845–3856.
  • Caetano FH, Cruz-Landim C. Ultrastructure of columnar cells from ventricle of Camponotus arboreus (Hymenoptera: Formicidae) and their functional implications. Naturalia. 1983;8:91–100. Portuguese.
  • Silverthorn DU. Active Transport in Insect Malpighian Tubules, in: Goldman CA, Editor. Tested studies for laboratory teaching. 1995;16:141–154.
  • Cruz-Landim C. Specializations of the Malpighian Tubules cells in a stingless bee, Melipona quadrifasciata anthidioides Lep. (Hymenoptera, Apidae). Acta Microscopica. 1988;7:26–33.
  • Scholes DR, Suarez AV, Smith AA, Johnston JS, Paige KN. Organ-specific patterns of endopolyploidy in the giant ant Dinoponera australis. J Hymenop Res. 2014;37:113–126.
  • Rangel J, Strauss K, Seedorf K, Hjelmen CE, Johnston JS. Endopolyploidy Changes with Age-Related Polyethism in the Honey Bee, Apis mellifera. PloS one. 2015;10(4).
  • Wall BJ, Oschman JL, Schmidt BA. Morphology and function of Malpighian tubules and associated structures in the cockroach Periplaneta americana. J. Morph. 1975;146:265–306.
  • Wigglesworth VB, Salpeter MM. Histology of the Malpighian tubules in Rhodnius prolixus Stil (Hemiptera). Insect Physiol. 1962;8:299–307.
  • Maddrell SHP, Herman WS, Mooney RL, Overton JA. 5-hydroxytryptamine: a second diuretic hormone in Rhodnius prolixus. J Exp Biol. 1991;156:557–566.
  • Delakorda SL, Letofsky-Papst I, Novak T, Hofer F, Pabst MA. Structure of the Malpighian Tubule Cells and Annual Changes in the Structure and Chemical Composition of Their Spherites in the Cave Cricket Troglophilus neglectus Krauss, 1878 (Rhaphidophoridae, Saltatoria). Arthropod Struct Dev. 2009;38:315–327.
  • Bution ML, Caetano FH, Zara FJ. Comparative morphology of the ileum of three species of Cephalotes (Formicidae, Myrmicinae). Sociobiol. 2007;50:355–369.
  • Wang J, Kean L, Yang J, Allan AK, Davies SA, Herzyk P, Dow JA. Function-informed transcriptome analysis of Drosophila renal tubule. Genome Biol. 2004;5(9):R69.
  • Catania VA, Sanchez Pozzi EJ, Luquita MG, et al. Co-regulation of expression of phase II metabolizing enzymes and multidrug resistance-associated protein 2. Ann Hepatol. 2004;3:11–17.
  • Enayati AA, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Mol Biol. 2005;14:3–8.
  • Beyenbach KW. Mechanism and regulation of electrolyte transport in Malpighian tubules. J Insect Physiol. 1995;41:197–207.
  • Linton SM, O’Donnell MJO. Novel aspects of the transport of organic anions by the Malpighian tubules of Drosophila melanogaster. J Exp Biol. 2000;203:3575–3384.
  • Marshall AT, Cooper P, Rippon GD, Patak AE. Ion and fluid secretion by different segments of the Malpighian tubules of the black field cricket Teleogryllus oceanicus. J Exp Biol. 1993;177:1–22.
  • O’Donnell MJ, Maddrell SHP. Fluid reabsorption and ion transport by the lower Malpighian tubules of adult female Drosophila. J Exp Biol. 1995;198:1647–1653.
  • Van Kerkhove E. Cellular mechanisms of salt secretion by the Malpighian tubules of insects. Belg J Zool. 1994;124:73–90.
  • Coast GM. The neuroendocrine regulation of salt and water balance in insects. Zoology. 2001;103:179–188.
  • Spring JH, Albarwani SA. Excretion in the house cricket: stimulation of rectal reabsorption by homogenates of the corpus cardiacum. J Exp Biol. 1993;185:305–323.
  • Berrigde MJ, Oschman JL. A structural basis for fluid secretion by Malpighian tubules. Tissue Cell. 1969;1:247–272.
  • Beyenbach KW. Energizing epithelial transport with the vacuolar H+-ATPase. News Physiol Sci. 2001;16:145–151.
  • Verhulst H, Van Kerkhove E, De Decker N. KCl secretion by Malpighian tubules of Formica: evidence for the presence of a KCl cotransport system. Archs int Physiol Biochem. 1988;96:P8–P9.
  • Weltens R, Leyssens A, Zhang AL, Lohrmann E, Steels P, Van Kerkhove E. Unmasking of the apical electrogenic H+ pump in isolated Malpighian tubules (Formica polyctena) by the use of barium. Cell Physiol Biochem. 1992;2:101–116.
  • Leyssens A, Steels P, Lohrmann E, Weltens R, Van Kerkhove E. Intrinsic regulation of K+ transport in Malpighian tubules (Formica): electrophysiological evidence. J Insect Physiol. 1992;38:431–446.
  • Leyssens A, Zhang SL, Van Kerkhove E, Steels P. Both dinitrophenol and Ba2+ reduce KCl and fluid secretion in Malpighian tubules of Formica: the role of the apical H+ and K+ concentration gradient. J Insect Physiol. 1993;39:1061–1073.
  • Leyssens A, Van Kerkhove E, Zhang SL, Weltens R, Steels P. Measurement of intracellular and luminal K+ concentrations in a Malpighian tubule (Formica): estimates of basal and luminal electrochemical gradients. J Insect Physiol. 1993;39:945–958.
  • Leyssens A, Dijkstra S, Van Kerkhove E, Steels P. Mechanisms of K+ uptake across the basal membrane of Malpighian tubules of Formica polyctena: the effect of ions and inhibitors. J Exp Biol. 1994;195:123–145.
  • Chiang RG, Davey KG. A novel receptor capable of monitoring applied pressure in the abdomen of an insect. Science. 1988;241:1665–1667.
  • Kawedia JD, Nieman ML, Boivin GP, et al. Interaction between transcellular and paracellular water transport pathways through Aquaporin 5 and the tight junction complex. Proc Natl Acad Sci U S A. 2007;104:3621–3626.
  • Singh SR, Hou SX. Multipotent stem cells in the Malpighian tubules of adult Drosophila melanogaster. J Exp Biol. 2009;212:413–423.
  • Schooley DA, Horodyski FM, Coast GM. Hormones controlling homeostasis in insects: endocrinology. In: Gilbert LI, Iatrou K, Gill S, editors. Comprehensive Molecular Insect Science. Vol. 3. Amsterdam: Elsevier;2005.
  • Gibbs AG, Chippindale AK, Rose MR. Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. J Exp Biol. 1997;200:1821–1832.
  • Skaer NJV, Nässel DR, Maddrell SHP, Tublitz NJ. Neurochemical fine tuning of a peripheral tissue: peptidergic and aminergic regulation of fluid secretion by Malpighian tubules in the tobacco hawkmoth Manduca sexta. J Exp Biol. 2002;205:1869–1880.
  • Dircksen H. Insection transport peptides are derived from alternatively spliced genes and differentially expressed in the central and peripheral nervous system. J Exp Biol. 2009;212:401–412.
  • Phillips JE. Endocrine control of salt and water balance. Excretion. In Endocrinology of Insects (ed. H. Laufer and R. Downer), pp. 411–425. New York: Alan R. Liss, 1983.
  • Kastin AJ. (Ed.). The Handbook of Biologically Active Peptides. Elsevier, Amsterdam, 2006.
  • Mello ML. A mucous secretion in the Malphighian tubes of a neotropical bumblebee, Bombus atratus Franklin. Protoplasma. 1979;99:147–158.
  • Mello ML, Kerr WE. Histochemistry of salivary gland and Malpighian tubule secretions contribuiting to the cocoon in Plebeia droryana and Scaptotrigona postica (Hym., Apoidea). Zool Anz Jena. 1984;213:177–189.
  • Viviani VR, Prado RA, Arnoldi FCG, Abdalla, FC. An ancestral luciferase in the Malpighi tubules of a non-bioluminescent beetle!. Photochemical and Photobiological Sciences. 2009;8(1):57–61.
  • Verma P, Tapadia MG. Immune response and anti-microbial peptides expression in Malpighian tubules of Drosophila melanogaster is under developmental regulation. PLoS One, 2012;7(7):e40714. doi: 10.1371/journal.pone.0040714. Erratum in: PLoS One. 2012;7(8). doi: 10.1371/annotation/4b02305d-dcb8–40db-8f1f-1f7f0da51544
  • Sorour J. Ultrastructural variations in Lethocerus niloticum (Insecta: Hemiptera) caused by pollution in Lake Mariut, Alexandria, Egypt Ecotox Environ Safe. 2001;48:268–274.
  • Yang J, McCart C,Woods DJ, Terhzaz S, Greenwood KG, et al. A Drosophila systems approach to xenobiotic metabolism. Physiol Genomics. 2007;30:223–231.
  • Malaspina O, Silva-Zacarin, ECM. Cell markers for ecotoxicological studies in target organs of bees. Braz J Morphol Sci. 2006;23(3–4):129–136.
  • Sumida S, Silva-Zacarin ECM, Decio P, Malaspina O, Bueno FC, Bueno OC. Toxicological and histopathological effects of boric acid on Atta sexdens rubropilosa (Hymenoptera: Formicidae) workers. J Econ Entomol. 2010;103(3):676–690.
  • Decio P, Silva-Zacarin ECM, Bueno FC, Bueno OC. Toxicological and histopathological effects of hydramethylnon on Atta sexdens rubropilosa (Hymenoptera: Formicidae) workers. Micron. 2013;45:22–31.
  • Dow JAT. Insights into the Malpighian tubule from functional genomics. The Journal of Experimental Biology. 2009;212:435–445.
  • Chahine S, O’Donnell MJ. Interactions between detoxification mechanisms and excretion in Malpighian tubules of Drosophila melanogaster. J Exp Biol. 2011;214(Pt 3):462–8. doi: 10.1242/jeb.048884.
  • Davies SA, Cabrero P, Overend G, et al. Cell signalling mechanisms for insect stress tolerance. J Exp Biol. 2014;217(Pt 1):119–28. doi: 10.1242/jeb.090571.
  • Terhzaz S, Cabrero P, Brinzer RA, et al. A novel role of Drosophila cytochrome P450–4e3 in permethrin insecticide tolerance. Insect Biochem Mol Biol. doi: 10.1016/j.ibmb.2015.06.002.
  • Harrop TW, Sztal T, Lumb C, et al. Evolutionary changes in gene expression, coding sequence and copy-number at the Cyp6g1 locus contribute to resistance to multiple insecticides in Drosophila. PLoS One. 2014;9(1):e84879. doi: 10.1371/journal.pone.0084879. Erratum in: PLoS One. 2014;9(3):e92490.
  • Catae AF, Roat TC, De Oliveira RA, Ferreira Nocelli RC, Malaspina O. Cytotoxic effects of thiamethoxam in the midgut and Malpighian Tubules of Africanized Apis mellifera (Hymenoptera: Apidae). Microsc Res Tech. 2014;77:274–281.
  • Rossi CA, Roat TC, Tavares DA, Cintra-Socolowski P, Malaspina O. Effects of sublethal doses of imidacloprid in Malpighian tubules of Africanized Apis mellifera (Hymenoptera, Apidae). Microsc Res Tech. 2013;76(5):552–558.
  • Pannabecker TL, Beyenbach KW. Ca2+ and cAMP signaling pathways interact to increase the diuretic effect of serotonin in Malpighian tubules of the kissing bug. Focus on” Serotonin triggers cAMP-and PKA-1-mediated intracellular calcium waves in Malpighian tubules of Rhodnius prolixus. Am J Physiol-Reg I. 2014;37(7):819–821.
  • Gioino P, Murray BG, Ianowski JP. Serotonin triggers cAMP and PKA-mediated intracellular calcium waves in Malpighian tubules of Rhodnius prolixus. Am J Physiol-Reg I.2014;307(7):828–836.
  • Verma P, Tapadia MG. Early gene Broad complex plays a key role in regulating the immune response triggered by ecdysone in the Malpighian tubules of Drosophila melanogaster. Mol immunol. 2015;66.2:325–339.
  • Silva JR, Prado RA, Amaral DT, Viviani VR. First transcriptional survey of the Malpighian tubules of giant mealworm, Zophobas morio (Coleoptera: Tenebrionidae).Genet Mol Res. 2015a;1:464.
  • Silva JR, Amaral DT, Hastings JW, Wilson T, Viviani VR. A transcriptional and proteomic survey of Arachnocampa luminosa (Diptera: Keroplatidae) lanterns gives insights into the origin of bioluminescence from the Malpighian tubules in Diptera. Luminescence. 2015b;DOI 10.1002/bio.2850