88
Views
0
CrossRef citations to date
0
Altmetric
Review

Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging

&
Pages 19-32 | Published online: 11 Nov 2015

References

  • Davies GL, Kramberger I, Davis JJ. Environmentally responsive MRI contrast agents. Chem Commun. 2013;49:9704–9721.
  • Lauterbur PC, Dias MHM, Rudin AM. Augmentation of tissue water proton spin-lattice relaxation rates by in-vivo addition of paramagnetic ions. Front Biol Energ. 1978;1:752–759.
  • Ali MM, Guanshu L, Tejas S, Flask CA, Pagel MD. Using two chemical exchange saturation transfer magnetic resonance imaging contrast agents for molecular imaging studies. Acc Chem Res. 2009;42(7):915–924.
  • Ward KM, Balaban RS. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med. 2000;44:799–802.
  • Yang X, Yadav NN, Song X, et al. Tuning phenols with Intra-Molecular Bond Shifted HYdrogens (IM-SHY) as diaCEST MRI contrast agents. Chem Eur J. 2014;20:15824–15832.
  • Yoo B, Pagel MD. A paraCEST MRI contrast agent to detect enzyme activity. J Am Chem Soc. 2006;128:14032–14033.
  • Suchý M, Ta R, Li AX, et al. A paramagnetic chemical exchange-based MRI probe metabolized by cathepsin D: design, synthesis and cellular uptake studies. Org Biomol Chem. 2010;8:2560–2566.
  • Yoo B, Sheth VR, Howison CM, et al. Detection of in vivo enzyme activity with catalyCEST MRI. Magn Reson Med. 2014;71:1221–1230.
  • Hingorani DV, Randtke EA, Pagel MD. A catalyCEST MRI contrast agent that detects the enzyme-catalyzed creation of a covalent bond. J Am Chem Soc. 2013;135:6396–6398.
  • Chauvin T, Durand P, Bernier M, et al. Detection of enzymatic activity by PARACEST MRI: a general approach to target a large variety of enzymes. Angew Chem Int Ed Engl. 2008;47:4370–4372.
  • Li Y, Sheth VR, Liu G, Pagel MD. A self-calibrating PARACEST MRI contrast agent that detects esterase enzyme activity. Contrast Media Mol Imaging. 2011;6:219–228.
  • Liu G, Liang Y, Bar-Shir A, et al. Monitoring enzyme activity using a diamagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent. J Am Chem Soc. 2011;133:16326–16329.
  • Jamin Y, Eykyn TR, Poon E, Springer CJ, Robinson SP. Detection of the prodrug-activating enzyme carboxypeptidase G2 activity with chemical exchange saturation transfer magnetic resonance. Mol Imaging Biol. 2014;16:152–157.
  • Wu Y, Carney CE, Denton M, et al. Polymeric paraCEST MRI contrast agents as potential reporters for gene therapy. Org Biomol Chem. 2010;8:5333–5338.
  • Nwe K, Andolina CM, Huang CH, Morrow JR. ParaCEST properties of a dinuclear neodymium(III) complex bound to DNA or carbonate. Bioconjug Chem. 2009;20:1375–1382.
  • Gilad AA, McMahon MT, Walczak P, et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol. 2007;25:217–219.
  • Minn I, Bar-Shir A, Yarlagadda K, et al. Tumor-specific expression and detection of a CEST reporter gene. Magn Reson Med. 2015;74:544–549.
  • Farrar CT, Buhrman JS, Liu G, et al. Establishing the lysine-rich protein CEST reporter gene as a CEST MR imaging detector for oncolytic virotherapy. Radiology. 2015;275:746–754.
  • McMahon MT, Gilad AA, DeLiso MA, Cromer Berman SM, Bulte JWM, van Zijl PCM. New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn Reson Med. 2008;60:803–812.
  • Bar-Shir A, Liu G, Chan KW, et al. Human protamine-1 as an MRI reporter gene based on chemical exchange. ACS Chem Biol. 2014;9:134–138.
  • Bar-Shir A, Liang Y, Chan KWY, Assaf A, Gilad AA, Bulte JWM. Supercharged green fluorescent proteins as bimodal reporter genes for CEST MRI and optical imaging. Chem Commun. 2015;51:4869–4871.
  • Oskolkov N, Bar-Shir A, Chan KWY, et al. Biophysical characterization of human protamine-1 as a responsive CEST MR contrast agent. ACS Macro Lett. 2015;4:34–38.
  • Ren J, Trokowski R, Zhang S, Malloy CR, Sherry AD. Imaging the tissue distribution of glucose in livers using a paraCEST sensor. Magn Reson Med. 2008;60:1047–1055.
  • Aime S, Delli Castelli D, Fedeli F, Terreno E. A paramagnetic MRI-CEST agent responsive to lactate concentration. J Am Chem Soc. 2002;124:9364–9365.
  • Huang CH, Morrow JR. A paraCEST agent responsive to inner- and outer-sphere phosphate ester interactions for MRI applications. J Am Chem Soc. 2009;131:4206–4207.
  • Liu G, Li Y, Pagel MD. Design and characterization of a new irreversible responsive paraCEST MRI contrast agent that detects nitric oxide. Magn Reson Med. 2007;58:1249–1256.
  • Walker-Samuel S, Ramasawmy R, Torrealdea F, et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat Med. 2013;19(8):1067–1072.
  • Chan KWY, McMahon MT, Kato Y, et al. Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer. Magn Reson Med. 2012;68(6):1764–1773.
  • Nasrallah FA, Pages G, Kuchel PW, Golay X, Chuang KH. Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI. J Cereb Blood Flow Metab. 2013;33(8):1270–1278.
  • Rivlin M, Horev J, Tsarfaty I, Navon G. Molecular imaging of tumors and metastases using chemical exchange saturation transfer (CEST) MRI. Sci Rep. 2013;3:3045.
  • Rivlin M, Tsarfaty I, Navon G. Functional molecular imaging of tumors by chemical exchange saturation transfer MRI of 3-O-methyl-D-glucose. Magn Reson Med. 2014;72(5):1375–1380.
  • Wang J, Hwang K, Fuller C, et al. SU-E-J-225: CEST imaging in head and neck cancer patients. Med Phys. 2015;42(6):3317.
  • Trokowski R, Ren J, Kalman FK, Sherry AD. Selective sensing of zinc ions with a paraCEST contrast agent. Angew Chem Int Ed Engl. 2005;44:6920–6923.
  • Angelovski G, Chauvin T, Pohmann R, Logothetis NK, Tóth é. Calcium-responsive paramagnetic CEST agents. Bioorg Med Chem. 2011;19:1097–1105.
  • Tsitovich PB, Spernyak JA, Morrow JR. A redox-activated MRI contrast agent that switches between paramagnetic and diamagnetic states. Angew Chem Int Ed Engl. 2013;52:13997–14000.
  • Ratnakar S, Viswanathan JS, Kovacs Z, Jindal AK, Green KN, Sherry AD. Europium(III) DOTA-tetraamide complexes as redox-active MRI sensors. J Am Chem Soc. 2012;134:5798–5800.
  • Song B, Wu Y, Yu M, et al. A europium(III)-based paraCEST agent for sensing singlet oxygen by MRI. Dalton Trans. 2013;14:8066–8069.
  • Zhang S, Malloy CR, Sherry AD. MRI thermometry based on paraCEST agents. J Am Chem Soc. 2005;127:17572–17573.
  • Li AX, Wojciechowski F, Suchy M, et al. A sensitive paraCEST contrast agent for temperature MRI: Eu3+-DOTAM-glycine(Gly)-phenylalanine(Phe). Magn Reson Med. 2008;59:374–381.
  • Stevens TK, Milneb M, Elmehrikib AAH, Suchý M, Barthaa R, Hudson RHE. A DOTAM-based paraCEST agent favoring TSAP geometry for enhanced amide proton chemical shift dispersion and temperature sensitivity. Contrast Media Mol Imaging. 2013;8:289–292.
  • Zhang S, Michaudet L, Burgess S, Sherry AD. The amide protons of an ytterbium(III) dota tetraamide complex act as efficient antennae for transfer of magnetization to bulk water. Angew Chem Int Ed Engl. 2002;41:1919–1921.
  • Aime S, Delli Castelli D, Terreno E. Novel pH-reporter MRI contrast agents. Angew Chem Int Ed Engl. 2002;114:4510–4512.
  • Sheth VR, Li Y, Chen LQ, Howison CM, Flask CA, Pagel MD. Measuring in vivo tumor pHe with CEST-FISP MRI. Magn Reson Med. 2012;67:760–768.
  • Delli Castelli D, Terreno E, Aime S. YbIII-HPDO3A: a dual pH- and temperature-responsive CEST agent. Angew Chem Int Ed Engl. 2011;50:1798–1800.
  • Dorazio SJ, Olatunde AO, Spernyak JA, Morrow JR. CoCEST: cobalt(II) amide-appended paraCEST MRI contrast agents. Chem Commun. 2013;49:10025–10027.
  • Longo DL, Busato A, Lanzardo S, Antico F, Aime S. Imaging the pH evolution of an acute kidney injury model by means of iopamidol, a MRI-CEST pH-responsive contrast agent. Magn Reson Med. 2013;70(3):859–864.
  • Chen LQ, Randtke EA, Jones KM, Moon BF, Howison CH, Pagel MD. Evaluations of tumor acidosis within in vivo tumor models using parametric maps generated with acidoCEST MRI. Mol Imaging Biol. 2015;17(4):488–496.
  • Chen LQ, Howison CM, Spier C, et al. Assessment of carbonic anhydrase IX expression and extracellular pH in B-cell lymphoma cell line models. Leuk Lymphoma. 2015;56(5):1432–1439.
  • Melkus G, Grabau M, Karampinos DC, Majumdar S. Chemical exchange saturation transfer effect of glycosaminoglycan in the intervertebral disc. Magn Reson Med. 2014;71:1743–1749.
  • Longo DL, Sun PZ, Consolino L, Michelotti FM, Uggeri F, Aime S. A general MRI-CEST ratiometric approach for pH imaging: demonstration of in vivo pH mapping with iobitridol. J Am Chem Soc. 2014;136:14333–14336.
  • McVicar N, Li AX, Suchý M, Hudson RHE, Menon RS, Bartha R. Simultaneous in vivo pH and temperature mapping using a PARACEST- MRI contrast agent. Magn Reson Med. 2013;70:1016–1025.
  • Wu Y, Soesbe TC, Kiefer GE, Zhao P, Sherry AD. A responsive europium(III) chelate that provides a direct readout of pH by MRI. J Am Chem Soc. 2010;132:14002–14003.
  • Wu Y, Zhou Y, Ouari O, et al. Polymeric paraCEST agents for enhancing MRI contrast sensitivity. J Am Chem Soc. 2008;130:13854–13855.
  • Pikkemaat JA, Wegh RT, Lamerichs R, et al. Dendritic paraCEST contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging. 2007;2:229–239.
  • Winter PM, Cai K, Chen J, et al. Targeted paraCEST nanoparticle contrast agent for the detection of fibrin. Magn Reson Med. 2006;56:1384–1388.
  • Aime S, Delli Castelli D, Terreno E. Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. Angew Chem. 2005;117:5649–5651.
  • Aime S, Delli Castelli D, Terreno E. Supramolecular adducts between poly-l-arginine and [TmIIIdotp]: a route to sensitivity-enhanced magnetic resonance imaging-chemical exchange saturation transfer agents. Angew Chem Int Ed Engl. 2003;42:4527–4529.
  • Chan KWY, Bulte JWM, McMahon MT. Diamagnetic chemical exchange saturation transfer (diaCEST) liposomes: physicochemical properties and imaging applications. Nanomed Nanobiotech. 2014;6(1):111–124.
  • Snoussi K, Bulte JWM, Guéron M, van Zijl PCM. Sensitive CEST agents based on nucleic acid imino proton exchange: detection of poly(rU) and of a dendrimer-poly(rU) model for nucleic acid delivery and pharmacology. Magn Reson Med. 2003;49(6):998–1005.
  • Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology. 2007;242:647–649.
  • Dorazio SJ, Tsitovich PB, Siters KE, Spernyak JA, Morrow JR. Iron(II) paraCEST MRI contrast agents. J Am Chem Soc. 2011;133:14154–14156.
  • Yadav NN, Xu J, Bar-Shir A, et al. Natural D-glucose as a biodegradable MRI relaxation agent. Magn Reson Med. 2014;72:823–828.
  • Soesbe TC, Ratnakar SJ, Milne M, et al. Maximizing T2-exchange in Dy3+DOTA-(amide)X chelates: fine-tuning the water molecule exchange rate for enhanced T2 contrast in MRI. Magn Reson Med. 2014;71:1179–1185.
  • Sherry AD, Wu Y. The importance of water exchange rates in the design of responsive agents for MRI. Curr Opin Chem Biol. 2013;17(2):167–174.
  • Bloch F. Nuclear induction. Phys Rev. 1946;70:460–474.
  • McConnell HM. Reaction rates by nuclear magnetic resonance. J Chem Phys. 1956;28:430–431.
  • Leigh JS Jr. Relaxation times in systems with chemical exchange: some exact solution. J Magn Reson. 1971;4:308–311.
  • Carver JP, Richards RE. A general two-site solution for the chemical exchange produced dependence of T2 upon the Carr-Purcell pulse separation. J Magn Reson. 1972;6:89–105.
  • Swift TJ, Connick RE. NMR-relaxation mechanisms of 017 in aqueous solutions of paramagnetic cations and the lifetime of water molecules in the first coordination sphere. J Chem Phys. 1962;37(2):307–320.
  • Vold RL, Daniel ES, Chan SO. Magnetic resonance measurements of proton exchange in aqueous urea. J Am Chem Soc. 1970;92(23):6771–6776.
  • Bryant RG, Eads TM. Solvent peak suppression in high resolution NMR. J Magn Reson. 1985;64(2):312–315.
  • Granot J, Fiat D. Effect of chemical exchange on the transverse relaxation rate of nuclei in solution containing paramagnetic ions. J Magn Reson. 1974;15(3):540–548.
  • Rabenstein DL, Fan S, Nakashima TT. Attenuation of the water resonance in Fourier transform1H NMR spectra of aqueous solutions by spin-spin relaxation. J Magn Reson. 1985;64(3):541–546.
  • Connor S, Nicholson JK. Chemical-exchange and paramagnetic T2 relaxation agents for water suppression in spin-echo proton nuclear magnetic resonance spectroscopy of biological fluids. Anal Chem. 1987;59:2885–2891.
  • Aime S, Nano R, Grandi M. A new class of contrast agents for magnetic resonance imaging based on selective reduction of water-T2 by chemical exchange. Invest Radiol. 1988;23:S267–S270.
  • Soesbe TC, Merritt ME, Green KN, Rojas-Quijano FA, Sherry AD. T2 exchange agents: a new class of paramagnetic MRI contrast agent that shortens water T2 by chemical exchange rather than relaxation. Magn Reson Med. 2011;66:1697–1703.
  • Daryaei I, Pagel MD. New type of responsive MRI contrast agent that modulates T2ex relaxation: detection of nitric oxide. In: Allen M, Caravan P, Pierre V, editors. Proceedings of American Chemical Society. Dallas TX: ACS Publications; 2014:498.
  • Hills BP, Cano C, Belton PS. Proton NMR relaxation studies of aqueous polysaccharide systems. Macromolecules. 1991;24:2944–2950.
  • Liepinsh E, Otting G. Proton exchange rates from amino acid side chains – implications for image contrast. Magn Reson Med. 1996;35(1):30–42.
  • Aime S, Fedeli F, Sanino A, Terreno E. A R2/R1 ratiometric procedure for a concentration-independent, pH-responsive, Gd(III)-based MRI agent. J Am Chem Soc. 2006;128:11326–11327.