321
Views
8
CrossRef citations to date
0
Altmetric
Review

Robotically Steered Needles: A Survey of Neurosurgical Applications and Technical Innovations

, &
Pages 1-23 | Published online: 19 Mar 2020

References

  • Perlmutter JS, Mink JW. Deep brain stimulation. Annu Rev Neurosci. 2006;29:229–257. doi:10.1146/annurev.neuro.29.051605.112824
  • Goldstein HE, Youngerman BE, Shao B, et al. Safety and efficacy of stereoelectroencephalography in pediatric focal epilepsy: a single-center experience. J Neurosurg Pediatr. 2018;22(4):444–452. doi:10.3171/2018.5.PEDS1856
  • Engh JA, Minhas DS, Kondziolka D, Riviere CN. Percutaneous intracerebral navigation by duty-cycled spinning of flexible bevel-tipped needles. Neurosurgery. 2010;67(4):1117–1122. doi:10.1227/NEU.0b013e3181ec1551
  • Chandrasoma PT, Smith MM, Apuzzo ML. Stereotactic biopsy in the diagnosis of brain masses: comparison of results of biopsy and resected surgical specimen. Neurosurgery. 1989;24(2):160–165. doi:10.1227/00006123-198902000-00002
  • Chen L, Dong L, She L, et al. Treatment of chronic subdural hematoma by novel YL-1 hollow needle aspiration drainage system (697 cases report). Neurol Sci. 2017;38(1):109–113. doi:10.1007/s10072-016-2717-4
  • Schwarz SB, Thon N, Nikolajek K, et al. Iodine-125 brachytherapy for brain tumours – a review. Radiat Oncol. 2012;7:30. doi:10.1186/1748-717X-7-30
  • MacDonell J, Patel N, Rubino S, et al. Magnetic resonance-guided interstitial high-intensity focused ultrasound for brain tumor ablation. Neurosurg Focus. 2018;44(2):E11. doi:10.3171/2017.11.FOCUS17613
  • Medical. Introducing NeuroBlate OPTIC laser probes. [Online]. Available from: https://www.monteris.com/wp-content/uploads/2019/11/AA10365-Rev-B.1-NeuroBlate-Technical-Brochure-1-1.pdf. Accessed February 20, 2020.
  • Reed KB, Majewicz A, Kallem V, et al. Robot-assisted needle steering. IEEE Robot Autom Mag. 2011;18(4):35–46. doi:10.1109/MRA.2011.942997
  • Cowan J, Goldberg K, Chirikjian GS, et al. Robotic needle steering: design, modeling, planning, and image guidance. In: Rosen J, Hannaford B, Satava R, editors. Surgical Robotics - Systems, Applications, and Visions. s.l. Springer; 2011:557–582.
  • Miller K, Joldes G, Lance D, Wittek A. Total lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun Numer Meth Eng. 2007;23:121–134. doi:10.1002/cnm.887
  • Drakopoulos F, Foteinos P, Liu Y, Chrisochoides NP. Toward a real time multi-tissue adaptive physics-based non-rigid registration framework for brain tumor resection. Front Neuroinform. 2014;8:11. doi:10.3389/fninf.2014.00011
  • Audette MA, Chernikov AN, Chrisochoides NP,. A review of mesh generation for medical simulators. In: Sokolowski JA, Banks CM, editors. Handbook of Real‐World Applications in Modeling and Simulation; 2012. doi:10.1002/9781118241042.ch7
  • Webster RJ, Kim JS, Cowan NJ, Chirikjian GS, Okamura AM. Nonholonomic modeling of needle steering. Int J Rob Res. 2006;25(5–6):509–525. doi:10.1177/0278364906065388
  • Reed KB, Kallem V, Alterovitz R, Goldberg K, Okamura AM, Cowan NJ. Integrated planning and image-guided control for planar needle steering. Proceeding IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; October 19, 2008; Pisa, Italy. 819–824.
  • Konh B, Honarvar M, Hutapea P Application of SMA wire for an active steerable cannula. ASME Conference Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2; 2013.
  • Okazawa S, Ebrahimi R, Chuang J, Salcudean S, Rohling R. Hand-held steerable needle device. IEEE ASME Trans Mechatron. 2005;10:285–296. doi:10.1109/TMECH.2005.848300
  • Dupont PE, Lock JL, Itkowitz B, Butler E. Design and control of concentric-tube robots. IEEE Trans Robot. 2010;26(2):209–225. doi:10.1109/TRO.2009.2035740
  • Rucker DC, Webster RJ 3rd, Chirikjian GS, Cowan NJ. Equilibrium conformations of concentric-tube continuum robots. Int J Rob Res. 2010;29(10):1263–1280. doi:10.1177/0278364910367543
  • DiMaio SP, Salcudean SE. Needle steering and motion planning in soft tissues. IEEE Trans Biomed Eng. 2005;52(6):965–974. doi:10.1109/TBME.2005.846734
  • Glozman D, Shoham M. Image-guided robotic flexible needle steering. IEEE Trans Rob. 2007;23:459–467. doi:10.1109/TRO.2007.898972
  • Mallapragada VG, Sarkar N, Podder TK. Robot-assisted real-time tumor manipulation for breast biopsy. IEEE Trans Robot. 2009;25(2):316–324. doi:10.1109/TRO.2008.2011418
  • Winters BS, Shepard SR, Foty RA. Biophysical measurement of brain tumor cohesion. Int J Cancer. 2005;114(3):371–379. doi:10.1002/(ISSN)1097-0215
  • Park W, Kim JS, Zhou Y, Cowan NJ, Okamura AM, Chirikjian GS. Diffusion-based motion planning for a nonholonomic flexible needle model. Proc. IEEE International Conference on Robotics and Automation; Barcelona, Spain; 2005:4600–4605.
  • Luca AD, Oriolo G,. Modelling and control of nonholonomic mechanical systems. Kinematics and dynamics of multi-body systems. In: Angeles J, Kecskeméthy A, editors. CISM International Centre for Mechanical Sciences (Courses and Lectures). Vol. 360. Vienna: Springer; 1995. doi:10.1007/978-3-7091-4362-9_7
  • Abolhassani N, Patel RV, Ayazi F. Minimization of needle deflection in robot-assisted percutaneous therapy. Int J Med Robot. 2007;3(2):140–148. doi:10.1002/(ISSN)1478-596X
  • Abolhassani N, Patel R, Moallem M. Trajectory generation for robotic needle insertion in soft tissue. Conf Proc IEEE Eng Med Biol Soc. 2004;4:2730–2733. doi:10.1109/IEMBS.2004.1403782
  • Abolhassani N, Patel RV. Deflection of a flexible needle during insertion into soft tissue. Conf Proc IEEE Eng Med Biol Soc. 2006;1:3858–3861.
  • Alterovitz R, Branicky M, Goldberg K. Motion planning under uncertainty for image-guided medical needle steering. Int J Rob Res. 2008;27(11–12):1361–1374. doi:10.1177/0278364908097661
  • Alterovitz R, Lim A, Goldberg K, Chirikjian G, Okamura A. Steering flexible needles under Markov motion uncertainty. Intell Rob Syst. 2005;1570–1575.
  • Chinzei K, Hata H, Jolesz FA, Kikinis R. MRI Compatible Surgical Assist Robot: System Integration and Preliminary Feasibility Study. Vol. 1935. Springer, MICCAI; 2000:921–930.
  • Fischer GS, Cole GA, Pilitsis JG System and method for robotic surgical intervention. 12/873,152, US Patent Application. 2010 Aug.
  • Sutherland GR, Latour I, Greer AD, Fielding T, Feil G, Newhook P. An image-guided magnetic resonance-compatible surgical robot. Neurosurgery. 2008;62(2):286–292. doi:10.1227/01.neu.0000315996.73269.18
  • NeuroArm. Project. [Online]. Available from: http://www.neuroarm.org/project/. Accessed December 20, 2019.
  • Cole G, Pilitsis J, Fischer GS,. Design of a robotic system for MRI-guided deep brain stimulation electrode placement. International Conference on Robotics and Automation; 2009;Kobe, Japan. 4450–4456.
  • Chakravarty MM, Sadikot AF, Mongia S, Bertrand G, Collins DL. Towards a multi-modal atlas for neurosurgical planning. Med Image Comput Comput Assist Interv. 2006;9(Pt2):389–396. doi:10.1007/11866763_48
  • Rashid T, Sultana S, Fischer GS, Pilitsis JG, Audette MA. Deformable Multi-Material 2-Simplex Surface Mesh for Intraoperative MRI-Ready Surgery Planning and Simulation, with Deep-Brain Stimulation Applications. Quebec City, Canada: MICCAI BIVPCS/POCUS 94-102; 2017.
  • Huang J, Chen C, Axel L. Fast multi-contrast MRI reconstruction. Med Image Comput Comput Assist Interv. 2012;15(Pt1):281–288. doi:10.1007/978-3-642-33415-3_35
  • Deoni SC, Josseau MJ, Rutt BK, Peters TM. Visualization of thalamic nuclei on high resolution, multi-averaged T1 and T2 maps acquired at 1.5 T. Hum Brain Mapp. 2005;25(3):353–359. doi:10.1002/hbm.20117
  • Xiao Y 1, Beriault S, Pike GB, Collins DL. Multicontrast multiecho FLASH MRI for targeting the subthalamic nucleus. Magn Reson Imaging. 2012;30(5):627–640. doi:10.1016/j.mri.2012.02.006
  • Alterovitz R, Goldberg K, Okamura AM. Planning for steerable bevel-tip needle insertion. Proceeding IEEE International Conference on Robotics and Automation. Barcelona, Spain; 2005:1652–1657
  • Chentanez N, Alterovitz R, Ritchie D, et al. Interactive simulation of surgical needle insertion and steering, Prof. ACM SIGGRAPH; 2009; New Orleans, LA, USA. 1–10.
  • Bui HP, Tomar S, Courtecuisse H, Audette M, Cotin S, Bordas SPA. Controlling the error on target motion through real-time mesh adaptation: applications to deep brain stimulation. Int j Numer Method Biomed Eng. 2018;34(5):e2958. doi:10.1002/cnm.2958
  • Bui HP, Tomar S, Courtecuisse H, Cotin S, Bordas SPA. Real-time error control for surgical simulation. IEEE Trans Biomed Eng. 2018;65(3):596–607. doi:10.1109/TBME.2017.2695587
  • Courtecuisse H, Allard J, Kerfriden P, Bordas SP, Cotin S, Duriez C. Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal. 2014;18(2):394–410. doi:10.1016/j.media.2013.11.001
  • Bui HP, Tomar S, Bordas SPA. Corotational cut finite element method for real-time surgical simulation: application to needle insertion simulation. Comput Methods Appl Mech Eng. 2019;345:183–211. doi:10.1016/j.cma.2018.10.023
  • Xu J, Wang L, Wong KCL, Shi P A meshless framework for bevel-tip flexible needle insertion through soft tissue. IEEE RAS & EMBS Int. Conf. Biomedical Robotics and Biomechatronics. Tokyo; 2010:753–758.
  • Rappel H, Beex LAA, Hale JS, Noels L, Bordas SPA. A tutorial on bayesian inference to identify material parameters in solid mechanicss. Arch Computat Methods Eng. 2019. doi:10.1007/s11831-018-09311-x
  • Rappel H, Beex L, Bordas S. Bayesian inference to identify parameters in viscoelasticity. Mech Time-Depend Mater. 2017;22. doi:10.1007/s11043-017-9361-0
  • Rappel H, Beex LAA. Estimating fibres’ material parameter distributions from limited data with the help of bayesian inference. Eur J Mech a Solids. 2019;75:169–196. doi:10.1016/j.euromechsol.2019.01.001
  • Mohamedou M, Zulueta K, Chung CN, et al. Bayesian identification of mean-field homogenization model parameters and uncertain matrix behavior in non-aligned short fiber composites. Compos Struct. 2019;220:64–80. doi:10.1016/j.compstruct.2019.03.066
  • Hauseux P, Hale JS, Bordas SPA. Accelerating Monte Carlo estimation with derivatives of high-level finite element models. Comput Methods Appl Mech Eng. 2017;318:917–936. doi:10.1016/j.cma.2017.01.041
  • Hauseux P, Hale JS, Bordas SPA. Calculating the malliavin derivative of some stochastic mechanics problems. PLoS One. 2017;12(12):e0189994. doi:10.1371/journal.pone.0189994
  • Hauseux P, Hale JS, Cotin S, Bordas SPA. Quantifying the uncertainty in a hyperelastic soft tissue model with stochastic parameters. Appl Math Model. 2018;62:86–102. doi:10.1016/j.apm.2018.04.021
  • Olivi A, Weingart JD, Liauw J, Raza SM. Frame and Frameless Stereotactic Brain Biopsy. Youmans and Winn Neurological Surgery. 7th ed. s.l: Elsevier; 2016:942–948.
  • Tilgner J, Herr M, Ostertag C, Volk B. Validation of intraoperative diagnoses using smear preparations from stereotactic brain biopsies: intraoperative versus final diagnosis–influence of clinical factors. Neurosurgery. 2005;56(2):257–265. doi:10.1227/01.NEU.0000148899.39020.87
  • Leksell L. A stereotaxic apparatus for intracerebral surgery. Acta Chir Scand. 1949;99:229–233.
  • Brown RA. A stereotactic head frame for use with CT body scanners. Invest Radiol. 1979;14:300–304. doi:10.1097/00004424-197907000-00006
  • Leksell L, Leksell D, Schwebel J. Stereotaxis and nuclear magnetic resonance. J Neurol Neurosurg Psychiatry. 1985;48:14–18. doi:10.1136/jnnp.48.1.14
  • Krieger MD, Chandrasoma PT, Zee C-S, et al. Role of stereotactic biopsy in the diagnosis and management of brain tumors. Semin Surg Oncol. 1998;14:13–25. doi:10.1002/(ISSN)1098-2388
  • Trippel M, Nikkhah G. Stereotactic neurosurgical treatment options for craniopharyngioma. Front Endocrinol (Lausanne). 2012;3:63. doi: 10.3389/fendo.2012.00063
  • Lemieux L, Jagoe R. Effect of fiducial marker localization on stereotactic target coordinate calculation in CT slices and radiographs. Phys Med Biol. 1994;39(11):1915–1928. doi:10.1088/0031-9155/39/11/008
  • BrainLab. Cranial navigation application. [Online]. Available from: https://www.brainlab.com/surgery-products/overview-neurosurgery-products/cranial-navigation/. Accessed December 20, 2019.
  • Medtronic. Stealth navigation for neurosurgery. [Online] Available from: https://www.medtronic.com/us-en/healthcare-professionals/products/neurological/surgical-navigation-systems.html. Accessed December 20, 2019.
  • Quiñones-Hinojosa A 1, Ware ML, Sanai N, McDermott MW. Assessment of image guided accuracy in a skull model: comparison of frameless stereotaxy techniques vs. frame-based localization. J Neurooncol. 2006;76(1):65–70. doi:10.1007/s11060-005-2915-z
  • Wikipedia. Stereotactic surgery. Available from: https://en.wikipedia.org/wiki/Stereotactic_surgery. Accessed February 20, 2020.
  • Kongkham PN, Knifed E, Tamber MS, Bernstein M. Complications in 622 cases of frame-based stereotactic biopsy, a decreasing procedure. Can J Neurol Sci. 2008;35(1):79–84. doi:10.1017/S0317167100007605
  • Sierens DK, Kutz S, Pilitsis JG, Bakay RAE. Stereotactic Surgery with Microelectrode Recordings. [book auth.]. In: Bakay RAE, editor. Movement Disorders: The Essentials. Thieme; 2008:83–114.
  • Lyons KE, Wilkinson SB, Overman JB, Pahwa R. Surgical and hardware complications of subthalamic stimulation A series of 160 procedures. Neurol. 2004;63:612–616. doi:10.1212/01.WNL.0000134650.91974.1A
  • Ewert S, Plettig P, Li N, et al. Toward defining deep brain stimulation targets in MNI space: a subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage. 2018;170:271–282. doi:10.1016/j.neuroimage.2017.05.015
  • Butson CR, Cooper SE, Henderson JM, McIntyre CC. Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage. 2007;34(2):661–670. doi:10.1016/j.neuroimage.2006.09.034
  • McIntyre CC 1, Grill WM, Sherman DL, Thakor NV. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol. 2004;91(4):1457–1469. doi:10.1152/jn.00989.2003
  • Zhang Q, Kim Y-C and Narayanan NS. Disease-modifying therapeutic directions for Lewy-Body dementias. Front. Neurosci. 2015;9:293. doi: 10.3389/fnins.2015.00293
  • Thalamus-schematic-de.svg. Available from: https://commons.wikimedia.org/wiki/File:Thalamus-schematic-de.svg. Accessed February 20, 2020.
  • Subthalamic nucleus. Available from: https://en.wikipedia.org/wiki/Subthalamic_nucleus#/media/File:Basal-ganglia-coronal-sections-large.png. Accessed February 20, 2020.
  • National Institute on Drug Abuse. Public Domain Picture: Brain reward pathway. Available from http://www.publicdomainfiles.com/show_file.php?id=13989816622720. Accessed February 20, 2020.
  • Wang J, Wang Q, Wang M, et al. Occipital lobe epilepsy with ictal fear: evidence from a stereo-electroencephalography (sEEG) case. Front Neurol. 2018;9:644. doi:10.3389/fneur.2018.00644
  • Dagdeviren C, Ramadi KB, Joe P, et al. Miniaturized neural system for chronic, local intracerebral drug delivery. Sci Transl Med. 2018;10(425):eaan2742. doi:10.1126/scitranslmed.aan2742
  • Kalamangalam GP, Tandon N. Stereo-EEG implantation strategy. J Clin Neurophysiol. 2016;33(6):483–489. doi:10.1097/WNP.0000000000000254
  • González-Martínez J, Bulacio J, Thompson S, et al. Technique, results, and complications related to robot-assisted stereoelectroencephalography. Neurosurgery. 2016;78(2):169–180. doi:10.1227/NEU.0000000000001034
  • Souweidane MM, Kramer K, Pandit-Taskar N, et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, Phase 1 trial. Lancet Oncol. 2018;19(8):1040–1050. doi:10.1016/S1470-2045(18)30322-X
  • UCSF Brain Center. Convection enhanced delivery. [Online] Available from: https://braintumorcenter.ucsf.edu/treatment/experimental-diagnostics-therapies/convection-enhanced-delivery. Accessed December 20, 2019.
  • Boviatsis EJ, Kouyialis AT, Stranjalis G, Korfias S, Sakas DE. CT-guided stereotactic aspiration of brain abscesses. Neurosurg Rev. 2003;26(3):206–209. doi:10.1007/s10143-003-0257-x
  • Kellner CP, Chartrain AG, Nistal DA, et al. The stereotactic intracerebral hemorrhage underwater blood aspiration (SCUBA) technique for minimally invasive endoscopic intracerebral hemorrhage evacuation. J Neurointerv Surg. 2018;10(8):771–776. doi:10.1136/neurintsurg-2017-013719
  • Liu X, Yu Q, Zhang Z, et al. Same-day stereotactic aspiration and Gamma Knife surgery for cystic intracranial tumors. J Neurosurg. 2012;117(Suppl):45–48. doi:10.3171/2012.7.GKS121019
  • Holm HH, Strøyer I, Hansen H, Stadil F. Ultrasonically guided percutaneous interstitial implantation of iodine 125 seeds in cancer therapy. Br J Radiol. 1981;54(644):665–670. doi:10.1259/0007-1285-54-644-665
  • Kim JH, Hilaris B. Iodine 125 source in interstitial tumor therapy. Clinical and biological considerations. Am J Roentgenol Radium Ther Nucl Med. 1975;123(1):163–169. doi:10.2214/ajr.123.1.163
  • Mundinger F, Ostertag CB, Birg W, Weigel K. Stereotactic treatment of brain lesions. Biopsy, interstitial radiotherapy (iridium-192 and iodine-125) and drainage procedures. Appl Neurophysiol. 1980;43(3–5):198–204.
  • Bernstein M, Gutin PH. Interstitial irradiation of brain tumors: a review. Neurosurgery. 1981;9(6):741–750. doi:10.1227/00006123-198112000-00022
  • Monteris Medical. NeuroBlate® system. [Online] Available from: https://www.monteris.com/neuroblate-system/. Accessed February 20, 2020.
  • Monteris Medical. NeuroBlate® system disposables. [Online] Available from: https://www.monteris.com/neuroblate-system-disposables/. Accessed February 20, 2020.
  • Medtronic. Visualase MRI-guided laser ablation. [Online] Available from: https://www.medtronic.com/us-en/healthcare-professionals/products/neurological/laser-ablation/visualase.html. Accessed December 20, 2019.
  • North RY, Raskin JS, Curry DJ. MRI-guided laser interstitial thermal therapy for epilepsy. Neurosurg Clin N Am. 2017;28(4):545–557. doi:10.1016/j.nec2017.06.001
  • Boerwinkle VL, Mohanty D, Foldes ST, et al. Correlating resting-state fMRI connectivity by independent component analysis-based epileptogenic zones with intracranial electroencephalogram localizes seizure onset zones and surgical outcomes in prospective pediatric intractable epilepsy study. Brain Connect. 2017;7(7):424–442. doi:10.1089/brain.2016.0479
  • Chen G, Stang J, Haynes M, Leuthardt E, Moghaddam M. Real-time three-dimensional microwave monitoring of interstitial thermal therapy. IEEE Trans Biomed Eng. 2018;65(3):528–538. doi:10.1109/TBME.2017.2702182
  • Maier-Hein KH, Neher PF, Descoteaux M, et al. The challenge of mapping the human connectome based on diffusion tractography. Nat Commun. 2017;8(1):1349. doi:10.1038/s41467-017-01285-x
  • Vaillancourt O, Girard G, Bore A, Descoteaux M. A fiber navigator for neurosurgical planning (NeuroPlanningNavigator). Organ Hum Brain Mapp. 2010;1.
  • Nadkarni TN, Andreoli MJ, Prabhakaran V, et al. Usage of fMRI for pre-surgical planning in brain tumor and vascular lesion patients: task and statistical threshold effects on language lateralization. Neuroimage Clin. 2014;7:415–423. doi:10.1016/j.nicl.2014.12.014
  • Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88. doi:10.1016/j.media.2017.07.005
  • BWH. 3D slicer. [Online]. Available from: https://www.slicer.org/. Accessed December 20, 2019.
  • Queen’s University. Slicer IGT. [Online]. Available from: http://www.slicerigt.org/wp/. Accessed December 20, 2019.
  • Tokuda J, Fischer GS, Papademetris X, et al. OpenIGTLink: an open network protocol for image-guided therapy environment. Int J Med Robot. 2009;5(4):423–434. doi:10.1002/rcs.274
  • Arata J, Kozuka H, Kim HW, et al. Open core control software for surgical robots. Int J Comput Assist Radiol Surg. 2010;5(3):211–220. doi:10.1007/s11548-009-0388-9
  • Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G. PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng. 2014;61(10):2527–2537. doi:10.1109/TBME.2014.2322864
  • DFKZ. The medical imaging interaction toolkit (MITK). [Online] Available from: http://mitk.org. Accessed December 20, 2019.
  • Kitware. The visualization toolkit. [Online]. Available from: vtk.org. Accessed December 20, 2019.
  • Kitware Insight segmentation and registration toolkit (ITK). [Online]. Available from: itk.org. Accessed December 20, 2019.
  • OpenRAVE. Open robotics automation virtual environment. [Online]. Available from: openrave.org. Accessed December 20, 2019.
  • Open Robotics. Gazebo. [Online]. Available from: gazebosim.org. Accessed December 20, 2019.
  • SOFA. Simulation open framework architecture. [Online] Available from: www.sofa-framework.org. Accessed December 20, 2019.
  • Kitware. Interactive medical simulation toolkit. [Online]. Available from: www.imstk.org. Accessed December 20, 2019.