158
Views
0
CrossRef citations to date
0
Altmetric
Review

Current Perspectives on the Safe Electrical Stimulation of Peripheral Nerves with Platinum Electrodes

ORCID Icon
Pages 37-49 | Received 19 May 2020, Accepted 06 Jul 2020, Published online: 28 Jul 2020

References

  • Hammer N , GlätznerJ, FejaCet al. Human vagus nerve branching in the cervical region. PLoS ONE10(2), e0118006 (2015).
  • Thompson N , MastitskayaS, HolderD. Avoiding off-target effects in electrical stimulation of the cervical vagus nerve: neuroanatomical tracing techniques to study fascicular anatomy of the vagus nerve. J. Neurosci. Methods325, 108325 (2019).
  • Volta A . On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, F. R. S. Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. K.B. P. R. S. Philos. Trans. R Soc. Lond.90, 403–431 (1800).
  • Sarnoff SJ , GaenslerEA, MaloneyJV Jr. Electrophrenic respiration; IV. The effectiveness of contralateral ventilation during activity of one phrenic nerve. J. Thorac. Surg.19(6), 929 (1950).
  • Djourno A , EyrièsC. Prothese auditive par excitation electrique a distance du nerf sensoriel a laide dun bobinage inclus a demeure. Presse Médicale65(63), 1417 (1957).
  • Eisen M . Djourno, Eyries, and the first implanted electrical neural stimulator to restore hearing. Otol. Neurotol.24(3), 500–506 (2003).
  • House WF , UrbanJ. Long term results of electrode implantation and electronic stimulation of the cochlea in man. Ann. Otol. Rhinol. Laryngol.82, 504–517 (1973).
  • Clark GM , BlackR, DewhurstDJ, ForsterIC, PatrickJF, TongYC. A multiple-electrode hearing prosthesis for cochlea implantation in deaf patients. Med. Prog. Technol.5(3), 127–140 (1977).
  • Liberson WT , HolmquestHJ, ScotD, DowM. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch. Phys. Med. Rehabil.42, 101–105 (1961).
  • Shealy CN , MortimerJT, ReswickJB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth. Analg.46(4), (1967).
  • LeRoy C . Ou l'on rend compte de quelques tentatives que l'on a faites pour guerir plusieurs maladies par l'electricite. Mem. Math Phys.60, 87–95 (1755).
  • Chuang AT , MargoCE, GreenbergPB. Retinal implants: a systematic review. Br. J. Ophthalmol.98(7), 852 LP–856 (2014).
  • Corning J . Electrization of the Sympathetic and pneumogastric nerves, with simultaneous bilateral compression of the carotids. New York Med. J.39, 212–215 (1884).
  • Yuan H , SilbersteinSD. Vagus nerve and vagus nerve stimulation, a comprehensive review: part III. Headache J. Head Face Pain56(3), 479–490 (2016).
  • Horn CC , ArdellJL, FisherLE. Electroceutical targeting of the autonomic nervous system. Physiology34(2), 150–162 (2019).
  • Naufel S , KnaackGL, MirandaRet al. DARPA investment in peripheral nerve interfaces for prosthetics, prescriptions, and plasticity. J. Neurosci. Methods332, 108539 (2020).
  • Drennan WP , RubinsteinJMDP. Music perception in cochlear implant users and its relationship with psychophysical capabilities. J. Rehabil. Res. Dev.45(5), 779 (2008).
  • Ohemeng KK , ParhamK. Vagal nerve stimulation: indications, implantation, and outcomes. Otolaryngol. Clin. North Am.53(1), 127–143 (2020).
  • Horch KW , DhillonGS. Neuroprosthetics: Theory and Practice.World Scientific, Toh Tuck Link, Singapore, (2004).
  • Franz S , RammeltS, ScharnweberD, SimonJC. Immune responses to implants – a review of the implications for the design of immunomodulatory biomaterials. Biomaterials32(28), 6692–6709 (2011).
  • Williams DF . On the mechanisms of biocompatibility. Biomaterials29(20), 2941–2953 (2008).
  • Seligman P . Prototype to product – developing a commercially viable neural prosthesis. J. Neural. Eng.6(6), 65006 (2009).
  • Dhanasingh A , JollyC. An overview of cochlear implant electrode array designs. Hear. Res.356(Suppl. C), 93–103 (2017).
  • Stronks HC , DagnelieG. The functional performance of the Argus II retinal prosthesis. Expert Rev. Med. Devices11(1), 23–30 (2014).
  • Weiland JD , HumayunMS. Retinal prosthesis. IEEE Trans. Biomed. Eng.61(5), 1412–1424 (2014).
  • Stingl K , Bartz-SchmidtKU, BeschDet al. Subretinal visual implant alpha IMS – clinical trial interim report. Vision Res.111, 149–160 (2015).
  • Bradley K . The technology: the anatomy of a spinal cord and nerve root stimulator: the lead and the power source. Pain Med.7(Suppl. 1), S27–S34 (2006).
  • Larson CE , MengE. A review for the peripheral nerve interface designer. J. Neurosci. Methods332, 108523 (2020).
  • Badia J , BoretiusT, AndreuD, Azevedo-CosteC, StieglitzT, NavarroX. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. J. Neural Eng.8(3), 36023 (2011).
  • Tykocinski M , DuanY, TaborB, CowanRS. Chronic electrical stimulation of the auditory nerve using high surface area (HiQ) platinum electrodes. Hear. Res.159(1–2), 53–68 (2001).
  • Schiavone G , WagnerF, FalleggerFet al. Long-term functionality of a soft electrode array for epidural spinal cord stimulation in a minipig model. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Honolulu, Hawaii, 1432–1435 (2018).
  • Yu X , SuJY, GuoJYet al. Spatiotemporal characteristics of neural activity in tibial nerves with carbon nanotube yarn electrodes. J. Neurosci. Methods328, 108450 (2019).
  • Wang K , FrewinCL, EsrafilzadehDet al. High-performance graphene-fiber-based neural recording microelectrodes. Adv. Mater.31(15), 1805867 (2019).
  • Gorman PH , MortimerJT. The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Trans. Biomed. Eng.BME-30(7), 407–414 (1983).
  • Harris AR , WallaceGG. Organic electrodes and communications with excitable cells. Adv. Funct. Mater.28(12), 1700587 (2018).
  • Agnew WF , McCreeryDB. Considerations for safety with chronically implanted nerve electrodes. Epilepsia31(s2), S27–S32 (1990).
  • Shannon RV . A model of safe levels for electrical stimulation. Biomed. Eng. IEEE Trans.39(4), cog (1992).
  • McCreery D , AgnewW, YuenT, BullaraL. Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes. Ann. Biomed. Eng.16(5), 463–481 (1988).
  • McCreery DB , AgnewWF, YuenTGH, BullaraL. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. Biomed. Eng. IEEE Trans.37(10), 996–1001 (1990).
  • Cogan SF , LudwigKA, WelleCG, TakmakovP. Tissue damage thresholds during therapeutic electrical stimulation. J. Neural Eng.13(2), 21001 (2016).
  • McCreery D , AgnewW, YuenT, BullaraL. Damage in peripheral nerve from continuous electrical stimulation: comparison of two stimulus waveforms. Med. Biol. Eng. Comput.30(1), 109–114 (1992).
  • McCreery DB , AgnewWF, YuenTGH, BullaraLA. Relationship between stimulus amplitude, stimulus frequency and neural damage during electrical stimulation of sciatic nerve of cat. Med. Biol. Eng. Comput.33(3), 426–429 (1995).
  • Walsh SM , Leake-JonesPA. Chronic electrical stimulation of auditory nerve in cat: physiological and histological results. Hear. Res.7(3), 281–304 (1982).
  • Shepherd RK , MatsushimaJ, MartinRL, ClarkGM. Cochlear pathology following chronic electrical stimulation of the auditory nerve: II deafened kittens. Hear. Res.81(1–2), 150–166 (1994).
  • Clark GM , ClarkJ, CardamoneTet al. Biomedical studies on temporal bones of the first multi-channel cochlear implant patient at the University of Melbourne. Cochlear Implants International.15(Suppl. 2), S1–S15 (2014).
  • Shepherd RK , CarterPM, EnkeYL, WiseAK, FallonJB. Chronic intracochlear electrical stimulation at high charge densities results in platinum dissolution but not neural loss or functional changes in vivo. J. Neural Eng.16(2), 26009 (2019).
  • Günter C , DelbekeJ, Ortiz-CatalanM. Safety of long-term electrical peripheral nerve stimulation: review of the state of the art. J. Neuroeng. Rehabil.16(1), 13 (2019).
  • Gunasekera B , SaxenaT, BellamkondaR, KarumbaiahL. Intracortical recording interfaces: Current challenges to chronic recording function. ACS Chem. Neurosci.6(1), 68–83 (2015).
  • Wang Y , QinZ. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis15(11), 1382–1402 (2010).
  • Harris AR , WallaceGG. Electrochemical methods for analysing and controlling charge transfer at the electrode-tissue interface. Curr. Opin. Electrochem.16, 143–148 (2019).
  • Harris AR , NewboldC, CarterP, CowanR, WallaceGG. Measuring the effective area and charge density of platinum electrodes for bionic devices. J. Neural Eng.15(4), 46015 (2018).
  • Harris AR , NewboldC, CarterP, CowanR, WallaceGG. Using chronopotentiometry to better characterize the charge injection mechanisms of platinum electrodes used in bionic devices. Front. Neurosci.13, 380 (2019).
  • Wissel K , BrandesG, PützNet al. Platinum corrosion products from electrode contacts of human cochlear implants induce cell death in cell culture models. PLoS ONE13(5), e0196649 (2018).
  • Kovach KM , KumsaDW, SrivastavaVet al. High-throughput in vitro assay to evaluate the cytotoxicity of liberated platinum compounds for stimulating neural electrodes. J. Neurosci. Methods273, 1–9 (2016).
  • Kumsa DW , HudakEM, BhadraN, MortimerJT. Electron transfer processes occurring on platinum neural stimulating electrodes: pulsing experiments for cathodic-first, charge-imbalanced, biphasic pulses for 0.566 ≥k ≥2.3 in rat subcutaneous tissues. J. Neural Eng.16(2), 26018 (2019).
  • Robblee LS , McHardyJ, MarstonJM, BrummerSB. Electrical stimulation with Pt electrodes. V. The effect of protein on Pt dissolution. Biomaterials1(3), 135–139 (1980).
  • Brummer SB , McHardyJ, TurnerMJ. Electrical stimulation with Pt electrodes: trace analysis for dissolved platinum and other dissolved electrochemical products. Brain Behav. Evol.14, 10–22 (1977).
  • Hibbert DB , WeitznerK, TaborB, CarterP. Mass changes and dissolution of platinum during electrical stimulation in artificial perilymph solution. Biomaterials21(21), 2177–2182 (2000).
  • Mitsushima S , KawaharaS, OtaK, KamiyaN. Consumption rate of Pt under potential cycling. J. Electrochem. Soc.154(2), B153–B158 (2007).
  • Harris AR , NewboldC, CowanR, WallaceGG. Insights into the electron transfer kinetics, capacitance and resistance effects of implantable electrodes using fourier transform AC voltammetry on platinum. J. Electrochem. Soc.166(12), G131–G140 (2019).
  • Merrill DR , BiksonM, JefferysJGR. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods141(2), 171–198 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.