5
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring of novel oxazolones and imidazolones as anti-inflammatory and analgesic candidates with cyclooxygenase inhibitory action

, ORCID Icon, ORCID Icon & ORCID Icon
Received 15 Nov 2023, Accepted 06 Mar 2024, Published online: 19 Apr 2024

References

  • Rayar AM, Lagarde N, Ferroud C, Zagury JF, Montes M, Veitia MS. Update on COX-2 selective inhibitors. Curr. Top. Med. Chem. 17(26), 2935–2956 (2017).
  • Gedawy EM, Kassab AE, Kerdawy AM. Design, synthesis and biological evaluation of novel pyrazole sulfonamide derivatives as dual COX-2/5-LOX inhibitors. Eur. J. Med. Chem. 189, 112066 (2020).
  • Chaiamnuay S, Allison JJ, Curtis JR. Risks versus benefits of cyclooxygenase-2-selective nonsteroidal antiinflammatory drugs. Am. J. Health Syst. Pharm. 63(19), 1837–1851 (2006).
  • Vane JR, Botting RM. Mechanism of action of nonsteroidal antiinflammatory drugs. Am. J. Med. 104(3A), 2S–8S (1998).
  • Zeilhofer HU. Prostanoids in nociception and pain. Biochem. Pharmacol. 73(2), 165–174 (2007).
  • Ryn JV, Trummlitz G, Pairet M. COX-2 selectivity and inflammatory processes. Current. Med. Chem. 7(11), 1145–1161 (2000).
  • Bekhit AA, Farghaly AM, Shafik RM et al. Synthesis, biological evaluation and molecular modeling of novel thienopyrimidinone and triazolothienopyrimidinone derivatives as dual anti-inflammatory antimicrobial agents. Bioorg. Chem. 77, 38–46 (2018).
  • Cashman JN. The mechanisms of action of NSAIDs in analgesia. Drugs 52, 13–23 (1996).
  • Bailey DB, Mitchell JA, Warner TD. COX-2 in cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 26(5), 956–958 (2006).
  • Mason RP, Walter MF, Day CA, Jacob RF. A biological rationale for the cardiotoxic effects of rofecoxib: comparative analysis with other COX-2 selective agents and nsaids. Subcell. Biochem. 42, 175–190 (2007).
  • Lawson FC, Crofford LJ. Cyclooxygenase inhibition and thrombogenicity. Am. J. Med. 110(3), 28–32 (2001).
  • Kajita S, Ruebel KH, Casey MB, Nakamura N, loyd RV. Role of COX-2, thromboxane A2 synthase, and prostaglandin I2 synthase in papillary thyroid carcinoma growth. Mod. Pathol. 18(3), 221–227 (2005).
  • Sharma S, Kumar D, Singh G, Monga V, Kumar B. Recent advancements in the development of heterocyclic antiinflammatory agents. Eur. J. Med. Chem. 200, 112438 (2020).
  • Zhang H, Zhao Z, Zhou C. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem. 144, 444–492 (2018).
  • Khudhair MA, Mahdi MF, Khan AK, AbdRazik BM. Molecular modeling, drug design and binding evaluation of new oxazole derivatives as cyclooxygenase inhibitors. Egypt. J. Chem. 64(9), 5101–5109 (2021).
  • Mohamed LW, El-Badry OM, El-Ansary AK, Ismael A. Design & synthesis of novel oxazolone & triazinone derivatives and their biological evaluation as COX-2 inhibitors. Bioorg. Chem. 72, 308–314 (2017).
  • Eren G, Ünlü S, Nuñez MT et al. Synthesis, biological evaluation, and docking studies of novel heterocyclic diaryl compounds as selective COX-2 inhibitors. Bioorg. Med. Chem. 18(17), 6367–6376 (2010).
  • Shakya AK, Kaur A, Al-Najjar BO, Naik RR. Molecular modeling, synthesis, characterization and pharmacological evaluation of benzo[d]oxazole derivatives as on-steroidal anti-inflammatory agents. Saudi Pharm. J. 24(5), 616–624 (2016).
  • Zhou XP, Zhang M, Sun W et al. Design, synthesis, and in-vivo evaluation of 4,5-diaryloxazole as novel nonsteroidal anti-inflammatory drug. Biol. Pharm. Bull. 32(12), 1986–1990 (2009).
  • Navidpour L, Shadnia H, Shafaroodi H, Amini M, Dehpourd AR, Shafieea A. Design, synthesis, and biological evaluation of substituted 2-alkylthio-1,5-diarylimidazoles as selective COX-2 inhibitors. Bioorg. Med. Chem. 15(5), 1976–1982 (2007).
  • Hassanein HH, Khalifa MM, El-Samaloty ON, Abd El-Rahim M, Taha RA, Ismail MMF. Synthesis and biological evaluation of novel imidazolone derivatives as potential COX-2 inhibitors. Arch. Pharm. Res. 31(5), 562–568 (2008).
  • Sethia R, Jainb S, Aroraa S, Sainib D, Jain N. Synthesis, characterization and molecular docking studies of novel N-(benzimidazol-1-ylmethyl)-4-chlorobenzamide analogues for potential anti-inflammatory and antimicrobial activity. Antiinflamm. Antiallergy Agents Med. Chem. 17(1), 16–31 (2018).
  • Zala SP, Badmanaban R, Sen DJ, Patel CN. Synthesis and biological evaluation of 2,4,5-triphenyl-1H-imidazole-1-yl derivatives. J. Appl. Pharm. Sci. 2(7), 202–208 (2012).
  • Gaba M, Singh S, Mohan C et al. Design, synthesis and pharmacological evaluation of gastroprotective anti-inflammatory analgesic agents based on dual oxidative stress cyclooxygenase inhibition. Antiinflamm. Antiallergy Agents Med. Chem. 19(3), 268–290 (2020).
  • Puratchikodya A, Doble M. Antinociceptive and antiinflammatory activities and QSAR studies on 2-substituted-4,5-diphenyl-1H-imidazoles. Bioorg. Med. Chem. 15(2), 1083–1090 (2007).
  • Navidpour L, Shafaroodi H, Abdi K et al. Design, synthesis, and biological evaluation of substituted 3-alkylthio-4,5-diaryl-4H-1,2,4-triazoles as selective COX-2 inhibitors. Bioorg. Med. Chem. 14(8), 2507–2517 (2006).
  • Carullo G, Galligano F, Aiello F. Structure–activity relationships for the synthesis of selective cyclooxygenase 2 inhibitors. Med. Chem. Commun. 8(3), 492–500 (2017).
  • Song Y, Connor DT, Doubleday R et al. Synthesis, structure–activity relationships, and in vivo evaluations of substituted di-tert-butylphenols as a novel class of potent, selective, and orally active cyclooxygenase-2 inhibitors. 1. thiazolone and oxazolone series. J. Med. Chem. 42(7), 1151–1160 (1999).
  • Zarghi A, Arfaei S. Selective COX-2 inhibitors: a review of their structure–activity relationships. Iran. J. Pharm. Res. 10(4), 655–683 (2011).
  • Abdellatif KRA, Elshemy HAH, Azoz AA. 1-(4-Methane (amino) sulfonylphenyl)-3-(4-substituted-phenyl)-5-(4-trifluoromethylphenyl)-1H-2-pyrazolines / pyrazoles as potential anti-inflammatory agents. Bioorg. Chem. 63, 13–23 (2015).
  • Dundar Y, Unlu S, Banoglu E et al. Synthesis and biological evaluation of 4,5-diphenyloxazolone derivatives on route towards selective COX-2 inhibitors. Eur. J. Med. Chem. 44(5), 1830–1837 (2009).
  • Shaaban MA, Kamal AM, Faggal SI et al. Design, synthesis, and biological evaluation of new pyrazoloquinazoline derivatives as dual COX-2/5-LOX inhibitors. Arch. Pharm. 353(11), 1–17 (2020).
  • Hawkey CJ. COX-2 inhibitors. Lancet 353(9149), 307–314 (1999).
  • Abdellatif KRA, Abdelall EKA, Fadaly WAA, Kamel GM. Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1,3,5-triarylpyrazoline and 1,5-diarylpyrazole derivatives as selective COX-2 inhibitors. Bioorg. Med. Chem. Lett. 26(2), 406–412 (2016).
  • Abdellatif KRA, Fadaly WAA. New 1,2-diaryl-4-substituted-benzylidene-5-4H imidazolone derivatives. Bioorg. Chem. 72, 123–129 (2017).
  • Michaux C, Charlier C. Structural approach for COX-2 inhibition. Mini-Rev. Med. Chem. 4(6), 603–615 (2004).
  • Abdellatif KRA, Abdelall EKA, Labib MB, Fadaly WAA, Zidan TH. Synthesis of novel halogenated triarylpyrazoles as selective COX-2 inhibitors: anti-inflammatory activity, histopatholgical profile and in-silico studies. Bioorg. Chem. 105, 104418 (2020).
  • Abdellatif KRA, Fadaly WAA, Elshaier YAMM, Ali WAM, Kamel GM. Non-acidic 1,3,4-trisubstituted-pyrazole derivatives as lonazolac analogs with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorg. Chem. 77, 568–578 (2018).
  • Abdellatif KRA, Abdelgawad MA, Labib MB, Zidan TH. Synthesis and biological evaluation of new diarylpyrazole and triarylimidazoline derivatives as selective COX-2 inhibitors. Arch. Pharm. Chem. Life Sci. 350(8), 1600386 (2017).
  • Ghanim AM, Abdel-wahab HAA. Synthesis, biological evaluation and molecular docking of diarylimidazole derivatives as new potential anti-inflammatory agents targeting COX-2 enzyme. Bull. Pharm. Sci. Assiut. Univ. 46(1), 235–250 (2023).
  • Husain A, Alasmari AF, Azmi SNH et al. Rational drug design, synthesis, and in vivo biological activity of new indolyl–imidazolone hybrids as potential and safer non-steroidal anti-inflammatory agents. J. King Saud Univ. Sci. 34(4), 102023 (2022).
  • Shahrasbia M, Movahedb MA, Dadrasa OG, Daraeic B, Zarghib A. Design, synthesis and biological evaluation of new imidazo[2,1-b] thiazole derivatives as selective COX-2 inhibitors. Iran. J. Pharm. Res. 17(4), 1288–1296 (2018).
  • Cui WL, Wang MH, Yang YH, Wang JY. Effect of different substituents on the fluorescence properties of precursors of synthetic GFP analogues and a polarity-sensitive lipid droplet probe with AIE properties for imaging cells and zebrafish. Org. Biomol. Chem. 21(14), 2960–2967 (2023).
  • Jean-Claude P, Lazszlo B, Pierre H, Jacques D. Phenylalaninderivate, Verfahren zu deren Herstellung und diese Verbindungen Enthaltende Pharmazeutische Zusammensetzungen. SCIENCE UNION - DE2310827, 1973, A1[Chem.Abstr., vol. 79, # 146848][Chem.Abstr., vol. 79, # 146848]). https://worldwide.espacenet.com/patent/search?q=pn%3DGB1366554A
  • El-Araby M, Omar A, Hassanein HH, El-Helby AH, Abdel-Rahman AA. Design, synthesis and in vivo anti-inflammatory activities of 2,4-diaryl-5-4H-imidazolone derivatives. Molecule 17(10), 12262–12275 (2012).
  • Winter CA, Risely EA, Nuss GM. Carrageenan-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc. Soc. Exp. Biol. Med. 111(3), 544–547 (1962).
  • Naumov RN, Panda SS, Girgis AS, George RF, Farhat M, Katritzky AR. Synthesis and QSAR study of novel anti-inflammatory active mesalazine–metronidazole conjugates. Bioorg. Med. Chem. Lett. 25(11), 2314–2320 (2015).
  • Panda SS, Girgis AS, Honkanadavar HH, George RF, Srour AM. Synthesis of new ibuprofen hybrid conjugates as potential anti-inflammatory and analgesic agents. Future Med. Chem. 12(15), 1369–1386 (2020).
  • Collirer HJ, Dinneen LC, Johnson CA, Scheider C. The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br. J. Pharmacol. Chemother. 32(2), 295–310 (1968).
  • Finney DJ. Statistical Methods in Biological Assay (2nd Ed), Griffin, London, 597 (1964).
  • Meshali M, El-Sabbagh E, Foda A. Effect of encapsulation of flufenamic acid with acrylic resins on its bioavailability and gastric ulcerogenic activity in rats. Acta Pharm. Technol. 29, 217–230 (1983).
  • Robert A, Nezamis JE, Phillips JP. Effect of prostaglandin E1 on gastric secretion and ulcer formation in the rat. Gastroenterology 55(4), 481–487 (1968).
  • Bancroft JD, Stevans A, Turner DR. Theory and practice of histological techniques (4th Ed). Churchill Livingstone, Edinburgh, London, Melbourne, New York (1996).
  • Boligon AA, Freitas RB, Brum TF et al. Antiulcerogenic activity of Scutiabuxifolia on gastric ulcers induced by ethanol in rats. Acta. Pharm. Sin. B 4(5), 358–367 (2014).
  • RCSB: Protein Data Bank [Internet]. RCSB. www.rcsb.org/
  • Rimon G, Sidhu RS, Lauver DA, Smith WL. Crystal Structure of Cyclooxygenase-1 in complex with celecoxib. Proc. Natl. Acad. Sci. USA 107(1), 28–33 (2010).
  • Kiefer JR, Kurumbail RG, Stallings WC. Structureof celecoxib bound at the COX-2 active site RCSB: Protein Data Bank: RCSB: PDB. (2010). www.rcsb.org/structure/3ln1.
  • Can NÖ, Osmaniye D, Levent S et al. Design, synthesis and biological assessment of new thiazolylhydrazine derivatives as selective and reversible hmao-A inhibitors. Eur. J. Med. Chem. 144, 68–81 (2018).
  • Plöchl J. Über einige Derivate derBenzoylimidozimtsäure” [On some derivatives of benzoyl-imido-cinnaminic acid]. Berichte der deutschen chemischen Gesellschaft. 17(2), 1616–1624 (1884).
  • Erlenmeyer F. Ueber die Condensation derHippursäure mit Phtalsäureanhydrid und mit Benzaldehyd". Annalen der Chemie. 275(1), 1–8 (1893).
  • Bell EW, Zhang Y. Dockrmsd: an open-source toolfor atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. J. Cheminform. 11(40), (2019).
  • Shaikh MM, Patel AP, Patel SP, Chikhalia KH. Synthesis, in vitro COX-1/COX-2 inhibition testing and molecular docking study of novel 1,4-benzoxazine derivatives. New. J. Chem. 43(26), 10305–10317 (2019).
  • Dvorakova M, Langhansova L, Temml V, Pavicic A, Vanek T, Landa P. Synthesis, Inhibitory Activity, and In Silico Modeling of Selective COX–1 Inhibitors with a Quinazoline Core. ACS Med. Chem. Lett. 12(4), 610–616 (2021).
  • Kanamori K, Roberts JD. Nitrogen-15 NuclearMagnetic Resonance Study of Benzenesulfonamide and Cyanate Binding to Carbonic Anhydrase. Biochem. 22(11), 2658–2664 (1983).
  • Sisa M, Dvorakova M, Temml V, Jarosova V, Vanek T, Landa P. Synthesis, inhibitory activity and in silico docking of dual COX/5-LOX inhibitors with quinone and resorcinol core. Eur. J. Med. Chem. 204, 112620 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.