23
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Application of parallel artificial membrane permeability assay technique and chemometric modeling for blood–brain barrier permeability prediction of protein kinase inhibitors

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Received 18 Dec 2023, Accepted 26 Mar 2024, Published online: 19 Apr 2024

References

  • Thomsen MS, Humle N, Hede E, Moos T, Burkhart A, Thomsen LB. The blood-brain barrier studied in vitro across species. PLOS ONE 16(3), e0236770 (2021).
  • Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol. Dis. 37(1), 13–25 (2010).
  • Bicker J, Alves G, Fortuna A, Falcão A. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur. J. Pharm. Biopharm. 87(3), 409–432 (2014).
  • Nielsen PA, Andersson O, Hansen SH, Simonsen KB, Andersson G. Models for predicting blood-brain barrier permeation. Drug Discov. Today 16(11–12), 472–475 (2011).
  • Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int. J. Mol. Med. 40(2), 271–280 (2017).
  • Theivendren P, Kunjiappan S, Hegde YM et al. Importance of protein kinase and its inhibitor: a review. 24, 75–100 (2021).
  • Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: a 2023 update. Pharmacol. Res. 187, 106552 (2023).
  • Carles F, Bourg S, Meyer C, Bonnet P. PKIDB: a curated, annotated and updated database of protein kinase inhibitors in clinical trials. Molecules 23(4), 1–18 (2018).
  • Liu DZ, Ander BP. Cell cycle inhibition without disruption of neurogenesis is a strategy for treatment of aberrant cell cycle diseases: an update. ScientificWorldJournal 2012, 491737 (2012).
  • Lui A, Vanleuven J, Perekopskiy D et al. FDA-approved kinase inhibitors in preclinical and clinical trials for neurological disorders. Pharmaceuticals 15(12), (2022).
  • Conde-Estévez D. Targeted cancer therapy: interactions with other medicines. Clin. Transl. Oncol. 19(1), 21–30 (2017).
  • Heffron TP. Small molecule kinase inhibitors for the treatment of brain cancer. J. Med. Chem. 59(22), 10030–10066 (2016).
  • Chico LK, Van Eldik LJ, Watterson DM. Targeting protein kinases in central nervous system disorders. Nat. Rev. Drug Discov. 8(11), 892–909 (2009).
  • Pavlovic V, Petkovic M, Popovic S, Savic V. Synthesis of 4-Aryl-2-aminopyridine derivatives and related compounds. Inter. J. Rapid Commun. Synth. Organ. Chem. 39(23), 4249–4263 (2009).
  • Filipović NR, Elshaflu H, Grubišić S et al. Co(III) complexes of (1,3-selenazol-2-yl)hydrazones and their sulphur analogues. Dalt. Trans. 46(9), 2910–2924 (2017).
  • Elshaflu H, Todorović TR, Nikolić M et al. Selenazolyl-hydrazones as novel selective MAO inhibitors with antiproliferative and antioxidant activities: experimental and in-silico studies. Front. Chem. 6(7), 369118 (2018).
  • Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J. Med. Chem. 41(7), 1007–1010 (1998).
  • Avdeef A. The rise of PAMPA. Expert Opin. Drug Metab. Toxicol. 1(2), 325–342 (2005).
  • Di L, Kerns EH, Fan K, McConnell OJ, Carter GT. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem. 38(3), 223–232 (2003).
  • Kato R, Zeng W, Siramshetty VB et al. Development and validation of PAMPA-BBB QSAR model to predict brain penetration potential of novel drug candidates. Front. Pharmacol. 14, 1291246 (2023).
  • Cornelissen FMG, Markert G, Deutsch G et al. Explaining blood-brain barrier permeability of small molecules by integrated analysis of different transport mechanisms. J. Med. Chem. 66(11), 7253–7267 (2023).
  • Sun H, Nguyen K, Kerns E et al. Highly predictive and interpretable models for PAMPA permeability. Bioorg. Med. Chem. 25(3), 1266–1276 (2017).
  • Niazi SK, Mariam Z. Recent advances in machine-learning-based chemoinformatics: a comprehensive review. Int. J. Mol. Sci. 24(14), 11488 (2023).
  • Liu H, Sabus C, Carter GT, Du C, Avdeef A, Tischler M. In vitro permeability of poorly aqueous soluble compounds using different solubilizers in the PAMPA assay with liquid chromatography/mass spectrometry detection. Pharm. Res. 20(11), 1820–1826 (2003).
  • Wishart DS, Knox C, Guo AC et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34(Database issue), D668–D672 (2006).
  • Sander T, Freyss J, Von Korff M, Rufener C. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model 55(2), 460–473 (2015).
  • Frisch MJ, Trucks GW, Schlegel HB et al. Gaussian 09 (2009). https://gaussian.com/
  • Talete S.R.L. DRAGON for Windows (Software for Molecular Descriptor Calculations) version 6.5 (2011). www.talete.mi.it/
  • Simulation Plus Inc. ADMET Predictor version 9.5. (2019). www.simulations-plus.com/
  • StatSoft Inc. Statistica, Data Analysis Software System. version 13.6 (2019). www.statistica.com/
  • Ojha PK, Roy K. Comparative QSARs for antimalarial endochins: importance of descriptor-thinning and noise reduction prior to feature selection. Chemom. Intell. Lab. Syst. 109(2), 146–161 (2011).
  • Ojha PK, Mitra I, Das RN, Roy K. Further exploring rm2 metrics for validation of QSPR models. Chemom. Intell. Lab. Syst. 107(1), 194–205 (2011).
  • Chirico N, Gramatica P. Real external predictivity of QSAR models: how to evaluate It? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J. Chem. Inf. Model. 51(9), 2320–2335 (2011).
  • Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models (2014). www.oecd-ilibrary.org/environment/guidance-document-on-the-validation-of-quantitative-structure-activity-relationship-q-sar-models_9789264085442-en
  • Roy K, Kar S, Das RN. Statistical Methods in QSAR/QSPR. A Primer on QSAR/QSPR Modeling: Fundamental Concepts. 37–59 (2015).
  • SPSS Inc. PASW Statistics for Windows. Version 18.0. SPSS Inc., IL, USA (2009).
  • van Vliet EF, Knol MJ, Schiffelers RM, Caiazzo M, Fens MHAM. Levodopa-loaded nanoparticles for the treatment of Parkinson's disease. J. Control. Rel. 360, 212–224 (2023).
  • Sekhar GN, Fleckney AL, Boyanova ST et al. Region-specific blood-brain barrier transporter changes leads to increased sensitivity to amisulpride in Alzheimer's disease. bioRxiv 582387 (2019).
  • Bennion BJ, Be NA, McNerney MW et al. Predicting a drug's membrane permeability: a computational model validated with in vitro permeability assay data. J. Phys Chem. B 121(20), 5228–5237 (2017).
  • Peddi PF, Hurvitz SA. PI3K pathway inhibitors for the treatment of brain metastases with a focus on HER2+ breast cancer. J. Neurooncol. 117(1), 7 (2014).
  • Wang Q, Song LJ, Bin Ding Z et al. Advantages of Rho-associated kinases and their inhibitor fasudil for the treatment of neurodegenerative diseases. Neural Regen. Res. 17(12), 2623–2631 (2022).
  • Sato K, Nakagawa S, Morofuji Y et al. Effects of fasudil on blood-brain barrier integrity. Fluid. Barr. CNS 19(1), doi: 10.1186/s12987-022-00336-w (2022).
  • Leprieur EG, Fallet V, Cadranel J, Wislez M. Spotlight on crizotinib in the first-line treatment of ALK-positive advanced non-small-cell lung cancer: patients selection and perspectives. Lung Cancer Targets Ther. 7, 83 (2016).
  • Di L, Kerns EH. Passive Diffusion Permeability of the BBB-Examples and SAR. Blood-brain barrier in drug discovery: optimizing brain exposure of CNS drugs and minimizing brain side effects for peripheral drugs. John Wiley & Sons, Inc, NJ, USA 95–112 (2015).
  • Todeschini R, Consonni V. S. Molecular Descriptors for Chemoinformatics. Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 659–798 (2009).
  • Zhang L, Zhu H, Oprea TI, Golbraikh A, Tropsha A. QSAR modeling of the blood-brain barrier permeability for diverse organic compounds. Pharm. Res. 25(8), 1902–1914 (2008).
  • Barn D, Caulfield W, Cowley P et al. Design and synthesis of a maximally diverse and druglike screening library using REM resin methodology. J. Comb. Chem. 3(6), 534–541 (2001).
  • Wager TT, Hou X, Verhoest PR, Villalobos A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci. 1(6), 435–449 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.