2,818
Views
27
CrossRef citations to date
0
Altmetric
Special Focus Review

The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome

&
Pages 525-536 | Received 15 Apr 2013, Accepted 27 Jun 2013, Published online: 10 Jul 2013

References

  • Moraz ML, Kunz S. Pathogenesis of arenavirus hemorrhagic fevers. Expert Rev Anti Infect Ther 2011; 9:49 - 59; http://dx.doi.org/10.1586/eri.10.142; PMID: 21171877
  • Wahl-Jensen VM, Afanasieva TA, Seebach J, Ströher U, Feldmann H, Schnittler HJ. Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J Virol 2005; 79:10442 - 50; http://dx.doi.org/10.1128/JVI.79.16.10442-10450.2005; PMID: 16051836
  • Yang ZY, Duckers HJ, Sullivan NJ, Sanchez A, Nabel EG, Nabel GJ. Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med 2000; 6:886 - 9; http://dx.doi.org/10.1038/78645; PMID: 10932225
  • Mongkolsapaya J, Dejnirattisai W, Xu XN, Vasanawathana S, Tangthawornchaikul N, Chairunsri A, et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 2003; 9:921 - 7; http://dx.doi.org/10.1038/nm887; PMID: 12808447
  • Amarasinghe A, Letson GW. Dengue in the Middle East: a neglected, emerging disease of importance. Trans R Soc Trop Med Hyg 2012; 106:1 - 2; http://dx.doi.org/10.1016/j.trstmh.2011.08.014; PMID: 22137535
  • Baruah K, Singh PK, Mohalia MM, Dhariwal AC. A study on dengue outbreak during 2009 in Bhopal and Indore districts of Madhya Pradesh, India. J Commun Dis 2010; 42:273 - 9; PMID: 22471197
  • Sinha N, Gupta N, Jhamb R, Gulati S, Kulkarni Ajit V. The 2006 dengue outbreak in Delhi, India. J Commun Dis 2008; 40:243 - 8; PMID: 19579715
  • Franco C, Hynes NA, Bouri N, Henderson DA. The dengue threat to the United States. Biosecur Bioterror 2010; 8:273 - 6; http://dx.doi.org/10.1089/bsp.2010.0032; PMID: 20718665
  • Morens DM, Fauci AS. Dengue and hemorrhagic fever: a potential threat to public health in the United States. JAMA 2008; 299:214 - 6; http://dx.doi.org/10.1001/jama.2007.31-a; PMID: 18182605
  • Gubler D, Kuno G, Markoff L. Flavivirus, Field’s Virology. Lippincott Williams & Wilkins, 2007.
  • Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T, Gutman D, et al. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog 2012; 8:e1002934; http://dx.doi.org/10.1371/journal.ppat.1002934; PMID: 23055924
  • Muñoz-Jordán JL, Laurent-Rolle M, Ashour J, Martínez-Sobrido L, Ashok M, Lipkin WI, et al. Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol 2005; 79:8004 - 13; http://dx.doi.org/10.1128/JVI.79.13.8004-8013.2005; PMID: 15956546
  • Endy TP, Chunsuttiwat S, Nisalak A, Libraty DH, Green S, Rothman AL, et al. Epidemiology of inapparent and symptomatic acute dengue virus infection: a prospective study of primary school children in Kamphaeng Phet, Thailand. Am J Epidemiol 2002; 156:40 - 51; http://dx.doi.org/10.1093/aje/kwf005; PMID: 12076887
  • Srikiatkhachorn A, Green S. Markers of dengue disease severity. Curr Top Microbiol Immunol 2010; 338:67 - 82; http://dx.doi.org/10.1007/978-3-642-02215-9_6; PMID: 19802579
  • WHO. Dengue hemorrhagic fever: diagnosis, treatment, prevention and control. Geneva: WHO, 1997.
  • Cam BV, Fonsmark L, Hue NB, Phuong NT, Poulsen A, Heegaard ED. Prospective case-control study of encephalopathy in children with dengue hemorrhagic fever. Am J Trop Med Hyg 2001; 65:848 - 51; PMID: 11791985
  • Marques N, Gan VC, Leo YS. Dengue myocarditis in Singapore: two case reports. Infection 2013; 41:709 - 14; http://dx.doi.org/10.1007/s15010-012-0392-9; PMID: 23277366
  • Alexander N, Balmaseda A, Coelho IC, Dimaano E, Hien TT, Hung NT, et al, European Union, World Health Organization (WHO‐TDR) supported DENCO Study Group. Multicentre prospective study on dengue classification in four South-east Asian and three Latin American countries. Trop Med Int Health 2011; 16:936 - 48; http://dx.doi.org/10.1111/j.1365-3156.2011.02793.x; PMID: 21624014
  • Sumarmo TW, Talogo W, Asrin A, Isnuhandojo B, Sahudi A. Failure of hydrocortisone to affect outcome in dengue shock syndrome. Pediatrics 1982; 69:45 - 9; PMID: 7054760
  • Tam DT, Ngoc TV, Tien NT, Kieu NT, Thuy TT, Thanh LT, et al. Effects of short-course oral corticosteroid therapy in early dengue infection in Vietnamese patients: a randomized, placebo-controlled trial. Clin Infect Dis 2012; 55:1216 - 24; http://dx.doi.org/10.1093/cid/cis655; PMID: 22865871
  • Tassniyom S, Vasanawathana S, Chirawatkul A, Rojanasuphot S. Failure of high-dose methylprednisolone in established dengue shock syndrome: a placebo-controlled, double-blind study. Pediatrics 1993; 92:111 - 5; PMID: 8516054
  • Burke DS, Nisalak A, Johnson DE, Scott RM. A prospective study of dengue infections in Bangkok. Am J Trop Med Hyg 1988; 38:172 - 80; PMID: 3341519
  • Bravo JR, Guzmán MG, Kouri GP. Why dengue haemorrhagic fever in Cuba? 1. Individual risk factors for dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS). Trans R Soc Trop Med Hyg 1987; 81:816 - 20; http://dx.doi.org/10.1016/0035-9203(87)90041-1; PMID: 3450004
  • Halstead SB. In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J Infect Dis 1979; 140:527 - 33; http://dx.doi.org/10.1093/infdis/140.4.527; PMID: 117061
  • Halstead SB. Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. Rev Infect Dis 1989; 11:Suppl 4 S830 - 9; http://dx.doi.org/10.1093/clinids/11.Supplement_4.S830; PMID: 2665015
  • Stephens HA. HLA and other gene associations with dengue disease severity. Curr Top Microbiol Immunol 2010; 338:99 - 114; http://dx.doi.org/10.1007/978-3-642-02215-9_8; PMID: 19802581
  • Perez AB, Sierra B, Garcia G, Aguirre E, Babel N, Alvarez M, et al. Tumor necrosis factor-alpha, transforming growth factor-β1, and interleukin-10 gene polymorphisms: implication in protection or susceptibility to dengue hemorrhagic fever. Hum Immunol 2010; 71:1135 - 40; http://dx.doi.org/10.1016/j.humimm.2010.08.004; PMID: 20732366
  • OhAinle M, Balmaseda A, Macalalad AR, Tellez Y, Zody MC, Saborío S, et al. Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity. Sci Transl Med 2011; 3:ra128; http://dx.doi.org/10.1126/scitranslmed.3003084; PMID: 22190239
  • Rico-Hesse R, Harrison LM, Salas RA, Tovar D, Nisalak A, Ramos C, et al. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 1997; 230:244 - 51; http://dx.doi.org/10.1006/viro.1997.8504; PMID: 9143280
  • Leitmeyer KC, Vaughn DW, Watts DM, Salas R, Villalobos I, de Chacon, et al. Dengue virus structural differences that correlate with pathogenesis. J Virol 1999; 73:4738 - 47; PMID: 10233934
  • Grant D, Tan GK, Qing M, Ng JK, Yip A, Zou G, et al. A single amino acid in nonstructural protein NS4B confers virulence to dengue virus in AG129 mice through enhancement of viral RNA synthesis. J Virol 2011; 85:7775 - 87; http://dx.doi.org/10.1128/JVI.00665-11; PMID: 21632767
  • Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, Putvatana R, et al. Human skin Langerhans cells are targets of dengue virus infection. Nat Med 2000; 6:816 - 20; http://dx.doi.org/10.1038/77553; PMID: 10888933
  • Taweechaisupapong S, Sriurairatana S, Angsubhakorn S, Yoksan S, Bhamarapravati N. In vivo and in vitro studies on the morphological change in the monkey epidermal Langerhans cells following exposure to dengue 2 (16681) virus. Southeast Asian J Trop Med Public Health 1996; 27:664 - 72; PMID: 9253864
  • Limon-Flores AY, Perez-Tapia M, Estrada-Garcia I, Vaughan G, Escobar-Gutierrez A, Calderon-Amador J, et al. Dengue virus inoculation to human skin explants: an effective approach to assess in situ the early infection and the effects on cutaneous dendritic cells. Int J Exp Pathol 2005; 86:323 - 34; http://dx.doi.org/10.1111/j.0959-9673.2005.00445.x; PMID: 16191104
  • Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 2003; 197:823 - 9; http://dx.doi.org/10.1084/jem.20021840; PMID: 12682107
  • Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, et al. CLEC5A is critical for dengue-virus-induced lethal disease. Nature 2008; 453:672 - 6; http://dx.doi.org/10.1038/nature07013; PMID: 18496526
  • Watson AA, Lebedev AA, Hall BA, Fenton-May AE, Vagin AA, Dejnirattisai W, et al. Structural flexibility of the macrophage dengue virus receptor CLEC5A: implications for ligand binding and signaling. J Biol Chem 2011; 286:24208 - 18; http://dx.doi.org/10.1074/jbc.M111.226142; PMID: 21566123
  • Balsitis SJ, Coloma J, Castro G, Alava A, Flores D, McKerrow JH, et al. Tropism of dengue virus in mice and humans defined by viral nonstructural protein 3-specific immunostaining. Am J Trop Med Hyg 2009; 80:416 - 24; PMID: 19270292
  • Jessie K, Fong MY, Devi S, Lam SK, Wong KT. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 2004; 189:1411 - 8; http://dx.doi.org/10.1086/383043; PMID: 15073678
  • Bhamarapravati N, Tuchinda P, Boonyapaknavik V. Pathology of Thailand haemorrhagic fever: a study of 100 autopsy cases. Ann Trop Med Parasitol 1967; 61:500 - 10; PMID: 5634140
  • Limonta D, Capó V, Torres G, Pérez AB, Guzmán MG. Apoptosis in tissues from fatal dengue shock syndrome. J Clin Virol 2007; 40:50 - 4; http://dx.doi.org/10.1016/j.jcv.2007.04.024; PMID: 17693133
  • Kangwanpong D, Bhamarapravati N, Lucia HL. Diagnosing dengue virus infection in archived autopsy tissues by means of the in situ PCR method: a case report. Clin Diagn Virol 1995; 3:165 - 72; http://dx.doi.org/10.1016/0928-0197(94)00032-P; PMID: 15566798
  • Couvelard A, Marianneau P, Bedel C, Drouet MT, Vachon F, Hénin D, et al. Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Hum Pathol 1999; 30:1106 - 10; http://dx.doi.org/10.1016/S0046-8177(99)90230-7; PMID: 10492047
  • Kalayanarooj S, Vaughn DW, Nimmannitya S, Green S, Suntayakorn S, Kunentrasai N, et al. Early clinical and laboratory indicators of acute dengue illness. J Infect Dis 1997; 176:313 - 21; http://dx.doi.org/10.1086/514047; PMID: 9237695
  • Libraty DH, Endy TP, Houng HS, Green S, Kalayanarooj S, Suntayakorn S, et al. Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J Infect Dis 2002; 185:1213 - 21; http://dx.doi.org/10.1086/340365; PMID: 12001037
  • Libraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S, Green S, et al. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis 2002; 186:1165 - 8; http://dx.doi.org/10.1086/343813; PMID: 12355369
  • Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 2000; 181:2 - 9; http://dx.doi.org/10.1086/315215; PMID: 10608744
  • Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W, et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science 2010; 328:745 - 8; http://dx.doi.org/10.1126/science.1185181; PMID: 20448183
  • Srikiatkhachorn A, Wichit S, Gibbons RV, Green S, Libraty DH, Endy TP, et al. Dengue viral RNA levels in peripheral blood mononuclear cells are associated with disease severity and preexisting dengue immune status. PLoS One 2012; 7:e51335; http://dx.doi.org/10.1371/journal.pone.0051335; PMID: 23284680
  • Ubol S, Phuklia W, Kalayanarooj S, Modhiran N. Mechanisms of immune evasion induced by a complex of dengue virus and preexisting enhancing antibodies. J Infect Dis 2010; 201:923 - 35; http://dx.doi.org/10.1086/651018; PMID: 20158392
  • Modhiran N, Kalayanarooj S, Ubol S. Subversion of innate defenses by the interplay between DENV and pre-existing enhancing antibodies: TLRs signaling collapse. PLoS Negl Trop Dis 2010; 4:e924; http://dx.doi.org/10.1371/journal.pntd.0000924; PMID: 21200427
  • Green S, Vaughn DW, Kalayanarooj S, Nimmannitya S, Suntayakorn S, Nisalak A, et al. Elevated plasma interleukin-10 levels in acute dengue correlate with disease severity. J Med Virol 1999; 59:329 - 34; http://dx.doi.org/10.1002/(SICI)1096-9071(199911)59:3<329::AID-JMV12>3.0.CO;2-G; PMID: 10502265
  • Mangada MM, Rothman AL. Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes. J Immunol 2005; 175:2676 - 83; PMID: 16081844
  • Friberg H, Burns L, Woda M, Kalayanarooj S, Endy TP, Stephens HA, et al. Memory CD8+ T cells from naturally acquired primary dengue virus infection are highly cross-reactive. Immunol Cell Biol 2011; 89:122 - 9; http://dx.doi.org/10.1038/icb.2010.61; PMID: 20421879
  • Mongkolsapaya J, Duangchinda T, Dejnirattisai W, Vasanawathana S, Avirutnan P, Jairungsri A, et al. T cell responses in dengue hemorrhagic fever: are cross-reactive T cells suboptimal?. J Immunol 2006; 176:3821 - 9; PMID: 16517753
  • Nasirudeen AM, Wong HH, Thien P, Xu S, Lam KP, Liu DX. RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 2011; 5:e926; http://dx.doi.org/10.1371/journal.pntd.0000926; PMID: 21245912
  • Jones M, Davidson A, Hibbert L, Gruenwald P, Schlaak J, Ball S, et al. Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol 2005; 79:5414 - 20; http://dx.doi.org/10.1128/JVI.79.9.5414-5420.2005; PMID: 15827155
  • Yu CY, Chang TH, Liang JJ, Chiang RL, Lee YL, Liao CL, et al. Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog 2012; 8:e1002780; http://dx.doi.org/10.1371/journal.ppat.1002780; PMID: 22761576
  • Ashour J, Morrison J, Laurent-Rolle M, Belicha-Villanueva A, Plumlee CR, Bernal-Rubio D, et al. Mouse STAT2 restricts early dengue virus replication. Cell Host Microbe 2010; 8:410 - 21; http://dx.doi.org/10.1016/j.chom.2010.10.007; PMID: 21075352
  • Rodriguez-Madoz JR, Belicha-Villanueva A, Bernal-Rubio D, Ashour J, Ayllon J, Fernandez-Sesma A. Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. J Virol 2010; 84:9760 - 74; http://dx.doi.org/10.1128/JVI.01051-10; PMID: 20660196
  • Bosch I, Xhaja K, Estevez L, Raines G, Melichar H, Warke RV, et al. Increased production of interleukin-8 in primary human monocytes and in human epithelial and endothelial cell lines after dengue virus challenge. J Virol 2002; 76:5588 - 97; http://dx.doi.org/10.1128/JVI.76.11.5588-5597.2002; PMID: 11991987
  • Dejnirattisai W, Duangchinda T, Lin CL, Vasanawathana S, Jones M, Jacobs M, et al. A complex interplay among virus, dendritic cells, T cells, and cytokines in dengue virus infections. J Immunol 2008; 181:5865 - 74; PMID: 18941175
  • Huang KJ, Li SY, Chen SC, Liu HS, Lin YS, Yeh TM, et al. Manifestation of thrombocytopenia in dengue-2-virus-infected mice. J Gen Virol 2000; 81:2177 - 82; PMID: 10950974
  • Avirutnan P, Malasit P, Seliger B, Bhakdi S, Husmann M. Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. J Immunol 1998; 161:6338 - 46; PMID: 9834124
  • Azeredo EL, Zagne SM, Alvarenga AR, Nogueira RM, Kubelka CF, de Oliveira-Pinto LM. Activated peripheral lymphocytes with increased expression of cell adhesion molecules and cytotoxic markers are associated with dengue fever disease. Mem Inst Oswaldo Cruz 2006; 101:437 - 49; http://dx.doi.org/10.1590/S0074-02762006000400016; PMID: 16951817
  • Braga EL, Moura P, Pinto LM, Ignácio SR, Oliveira MJ, Cordeiro MT, et al. Detection of circulant tumor necrosis factor-alpha, soluble tumor necrosis factor p75 and interferon-gamma in Brazilian patients with dengue fever and dengue hemorrhagic fever. Mem Inst Oswaldo Cruz 2001; 96:229 - 32; http://dx.doi.org/10.1590/S0074-02762001000200015; PMID: 11285501
  • Bashyam HS, Green S, Rothman AL. Dengue virus-reactive CD8+ T cells display quantitative and qualitative differences in their response to variant epitopes of heterologous viral serotypes. J Immunol 2006; 176:2817 - 24; PMID: 16493038
  • Bozza FA, Cruz OG, Zagne SM, Azeredo EL, Nogueira RM, Assis EF, et al. Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infect Dis 2008; 8:86; http://dx.doi.org/10.1186/1471-2334-8-86; PMID: 18578883
  • Butthep P, Chunhakan S, Yoksan S, Tangnararatchakit K, Chuansumrit A. Alteration of cytokines and chemokines during febrile episodes associated with endothelial cell damage and plasma leakage in dengue hemorrhagic fever. Pediatr Infect Dis J 2012; 31:e232 - 8; http://dx.doi.org/10.1097/INF.0b013e31826fd456; PMID: 22926216
  • Mota J, Rico-Hesse R. Humanized mice show clinical signs of dengue fever according to infecting virus genotype. J Virol 2009; 83:8638 - 45; http://dx.doi.org/10.1128/JVI.00581-09; PMID: 19535452
  • Shresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E. Murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol 2006; 80:10208 - 17; http://dx.doi.org/10.1128/JVI.00062-06; PMID: 17005698
  • Wu-Hsieh BA, Yen YT, Chen HC. Dengue hemorrhage in a mouse model. Ann N Y Acad Sci 2009; 1171:Suppl 1 E42 - 7; http://dx.doi.org/10.1111/j.1749-6632.2009.05053.x; PMID: 19751401
  • Srikiatkhachorn A, Ajariyakhajorn C, Endy TP, Kalayanarooj S, Libraty DH, Green S, et al. Virus-induced decline in soluble vascular endothelial growth receptor 2 is associated with plasma leakage in dengue hemorrhagic Fever. J Virol 2007; 81:1592 - 600; http://dx.doi.org/10.1128/JVI.01642-06; PMID: 17151115
  • Zhang JL, Wang JL, Gao N, Chen ZT, Tian YP, An J. Up-regulated expression of beta3 integrin induced by dengue virus serotype 2 infection associated with virus entry into human dermal microvascular endothelial cells. Biochem Biophys Res Commun 2007; 356:763 - 8; http://dx.doi.org/10.1016/j.bbrc.2007.03.051; PMID: 17382900
  • Cardier JE, Rivas B, Romano E, Rothman AL, Perez-Perez C, Ochoa M, et al. Evidence of vascular damage in dengue disease: demonstration of high levels of soluble cell adhesion molecules and circulating endothelial cells. Endothelium 2006; 13:335 - 40; http://dx.doi.org/10.1080/10623320600972135; PMID: 17090406
  • Koraka P, Murgue B, Deparis X, Van Gorp EC, Setiati TE, Osterhaus AD, et al. Elevation of soluble VCAM-1 plasma levels in children with acute dengue virus infection of varying severity. J Med Virol 2004; 72:445 - 50; http://dx.doi.org/10.1002/jmv.20007; PMID: 14748068
  • Michels M, van der Ven AJ, Djamiatun K, Fijnheer R, de Groot PG, Griffioen AW, et al. Imbalance of angiopoietin-1 and angiopoetin-2 in severe dengue and relationship with thrombocytopenia, endothelial activation, and vascular stability. Am J Trop Med Hyg 2012; 87:943 - 6; http://dx.doi.org/10.4269/ajtmh.2012.12-0020; PMID: 22949515
  • Parikh SM, Mammoto T, Schultz A, Yuan HT, Christiani D, Karumanchi SA, et al. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 2006; 3:e46; http://dx.doi.org/10.1371/journal.pmed.0030046; PMID: 16417407
  • Ricciuto DR, dos Santos CC, Hawkes M, Toltl LJ, Conroy AL, Rajwans N, et al. Angiopoietin-1 and angiopoietin-2 as clinically informative prognostic biomarkers of morbidity and mortality in severe sepsis. Crit Care Med 2011; 39:702 - 10; http://dx.doi.org/10.1097/CCM.0b013e318206d285; PMID: 21242795
  • Dewi BE, Takasaki T, Kurane I. In vitro assessment of human endothelial cell permeability: effects of inflammatory cytokines and dengue virus infection. J Virol Methods 2004; 121:171 - 80; http://dx.doi.org/10.1016/j.jviromet.2004.06.013; PMID: 15381354
  • Kelley JF, Kaufusi PH, Nerurkar VR. Dengue hemorrhagic fever-associated immunomediators induced via maturation of dengue virus nonstructural 4B protein in monocytes modulate endothelial cell adhesion molecules and human microvascular endothelial cells permeability. Virology 2012; 422:326 - 37; http://dx.doi.org/10.1016/j.virol.2011.10.030; PMID: 22129847
  • Lee YR, Liu MT, Lei HY, Liu CC, Wu JM, Tung YC, et al. MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells. J Gen Virol 2006; 87:3623 - 30; http://dx.doi.org/10.1099/vir.0.82093-0; PMID: 17098977
  • Luplertlop N, Missé D, Bray D, Deleuze V, Gonzalez JP, Leardkamolkarn V, et al. Dengue-virus-infected dendritic cells trigger vascular leakage through metalloproteinase overproduction. EMBO Rep 2006; 7:1176 - 81; http://dx.doi.org/10.1038/sj.embor.7400814; PMID: 17028575
  • Sosothikul D, Seksarn P, Pongsewalak S, Thisyakorn U, Lusher J. Activation of endothelial cells, coagulation and fibrinolysis in children with Dengue virus infection. Thromb Haemost 2007; 97:627 - 34; PMID: 17393026
  • Wills BA, Oragui EE, Stephens AC, Daramola OA, Dung NM, Loan HT, et al. Coagulation abnormalities in dengue hemorrhagic Fever: serial investigations in 167 Vietnamese children with Dengue shock syndrome. Clin Infect Dis 2002; 35:277 - 85; http://dx.doi.org/10.1086/341410; PMID: 12115093
  • Djamiatun K, van der Ven AJ, de Groot PG, Faradz SM, Hapsari D, Dolmans WM, et al. Severe dengue is associated with consumption of von Willebrand factor and its cleaving enzyme ADAMTS-13. PLoS Negl Trop Dis 2012; 6:e1628; http://dx.doi.org/10.1371/journal.pntd.0001628; PMID: 22563509
  • Cabello-Gutiérrez C, Manjarrez-Zavala ME, Huerta-Zepeda A, Cime-Castillo J, Monroy-Martínez V, Correa BB, et al. Modification of the cytoprotective protein C pathway during Dengue virus infection of human endothelial vascular cells. Thromb Haemost 2009; 101:916 - 28; PMID: 19404546
  • Huerta-Zepeda A, Cabello-Gutiérrez C, Cime-Castillo J, Monroy-Martínez V, Manjarrez-Zavala ME, Gutiérrez-Rodríguez M, et al. Crosstalk between coagulation and inflammation during Dengue virus infection. Thromb Haemost 2008; 99:936 - 43; PMID: 18449425
  • Jiang Z, Tang X, Xiao R, Jiang L, Chen X. Dengue virus regulates the expression of hemostasis-related molecules in human vein endothelial cells. J Infect 2007; 55:e23 - 8; http://dx.doi.org/10.1016/j.jinf.2007.04.351; PMID: 17573116
  • Chuang YC, Lei HY, Lin YS, Liu HS, Wu HL, Yeh TM. Dengue virus-induced autoantibodies bind to plasminogen and enhance its activation. J Immunol 2011; 187:6483 - 90; http://dx.doi.org/10.4049/jimmunol.1102218; PMID: 22079981
  • Lin CF, Lei HY, Shiau AL, Liu CC, Liu HS, Yeh TM, et al. Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J Med Virol 2003; 69:82 - 90; http://dx.doi.org/10.1002/jmv.10261; PMID: 12436482
  • Lin CF, Lei HY, Shiau AL, Liu HS, Yeh TM, Chen SH, et al. Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. J Immunol 2002; 169:657 - 64; PMID: 12097367
  • Lin YS, Yeh TM, Lin CF, Wan SW, Chuang YC, Hsu TK, et al. Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Exp Biol Med (Maywood) 2011; 236:515 - 23; http://dx.doi.org/10.1258/ebm.2011.010339; PMID: 21502191
  • Schmaljohn CS, Nichol ST. Bunyaviridae. In: Knipe DM, Howley PM, eds. Fields Virology. 5th ed. Philadelphia, Pa: Lippincott-Raven, 2007:1741-89.
  • Nichol ST, Spiropoulou CF, Morzunov S, Rollin PE, Ksiazek TG, Feldmann H, et al. Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 1993; 262:914 - 7; http://dx.doi.org/10.1126/science.8235615; PMID: 8235615
  • Hjelle B, Torres-Pérez F. Hantaviruses in the americas and their role as emerging pathogens. Viruses 2010; 2:2559 - 86; http://dx.doi.org/10.3390/v2122559; PMID: 21994631
  • Jonsson CB, Hooper J, Mertz G. Treatment of hantavirus pulmonary syndrome. Antiviral Res 2008; 78:162 - 9; http://dx.doi.org/10.1016/j.antiviral.2007.10.012; PMID: 18093668
  • Martinez VP, Bellomo C, San Juan J, Pinna D, Forlenza R, Elder M, et al. Person-to-person transmission of Andes virus. Emerg Infect Dis 2005; 11:1848 - 53; http://dx.doi.org/10.3201/eid1112.050501; PMID: 16485469
  • Schmaljohn C, Hjelle B. Hantaviruses: a global disease problem. Emerg Infect Dis 1997; 3:95 - 104; http://dx.doi.org/10.3201/eid0302.970202; PMID: 9204290
  • Centers for Disease Control and Prevention (CDC). Hantavirus pulmonary syndrome in visitors to a national park--Yosemite Valley, California, 2012. MMWR Morb Mortal Wkly Rep 2012; 61:952; PMID: 23169317
  • Dolgin E. Hantavirus treatments advance amidst outbreak in US park. Nat Med 2012; 18:1448; http://dx.doi.org/10.1038/nm1012-1448a; PMID: 23042337
  • Duchin JS, Koster FT, Peters CJ, Simpson GL, Tempest B, Zaki SR, et al, The Hantavirus Study Group. Hantavirus pulmonary syndrome: a clinical description of 17 patients with a newly recognized disease. N Engl J Med 1994; 330:949 - 55; http://dx.doi.org/10.1056/NEJM199404073301401; PMID: 8121458
  • Zaki SR, Greer PW, Coffield LM, Goldsmith CS, Nolte KB, Foucar K, et al. Hantavirus pulmonary syndrome. Pathogenesis of an emerging infectious disease. Am J Pathol 1995; 146:552 - 79; PMID: 7887439
  • Macneil A, Nichol ST, Spiropoulou CF. Hantavirus pulmonary syndrome. Virus Res 2011; 162:138 - 47; http://dx.doi.org/10.1016/j.virusres.2011.09.017; PMID: 21945215
  • Spiropoulou CF, Morzunov S, Feldmann H, Sanchez A, Peters CJ, Nichol ST. Genome structure and variability of a virus causing hantavirus pulmonary syndrome. Virology 1994; 200:715 - 23; http://dx.doi.org/10.1006/viro.1994.1235; PMID: 8178455
  • Spiropoulou CF. Hantavirus maturation. Curr Top Microbiol Immunol 2001; 256:33 - 46; http://dx.doi.org/10.1007/978-3-642-56753-7_3; PMID: 11217405
  • Spiropoulou CF, Goldsmith CS, Shoemaker TR, Peters CJ, Compans RW. Sin Nombre virus glycoprotein trafficking. Virology 2003; 308:48 - 63; http://dx.doi.org/10.1016/S0042-6822(02)00092-2; PMID: 12706089
  • Dietl CA, Wernly JA, Pett SB, Yassin SF, Sterling JP, Dragan R, et al. Extracorporeal membrane oxygenation support improves survival of patients with severe Hantavirus cardiopulmonary syndrome. J Thorac Cardiovasc Surg 2008; 135:579 - 84; http://dx.doi.org/10.1016/j.jtcvs.2007.11.020; PMID: 18329474
  • Khan AS, Khabbaz RF, Armstrong LR, Holman RC, Bauer SP, Graber J, et al. Hantavirus pulmonary syndrome: the first 100 US cases. J Infect Dis 1996; 173:1297 - 303; http://dx.doi.org/10.1093/infdis/173.6.1297; PMID: 8648200
  • Ketai LH, Williamson MR, Telepak RJ, Levy H, Koster FT, Nolte KB, et al. Hantavirus pulmonary syndrome: radiographic findings in 16 patients. Radiology 1994; 191:665 - 8; PMID: 8184043
  • Williams RJ, Bryan RT, Mills JN, Palma RE, Vera I, De Velasquez F, et al. An outbreak of hantavirus pulmonary syndrome in western Paraguay. Am J Trop Med Hyg 1997; 57:274 - 82; PMID: 9311636
  • Castillo C, Naranjo J, Sepúlveda A, Ossa G, Levy H. Hantavirus pulmonary syndrome due to Andes virus in Temuco, Chile: clinical experience with 16 adults. Chest 2001; 120:548 - 54; http://dx.doi.org/10.1378/chest.120.2.548; PMID: 11502657
  • Boroja M, Barrie JR, Raymond GS. Radiographic findings in 20 patients with Hantavirus pulmonary syndrome correlated with clinical outcome. AJR Am J Roentgenol 2002; 178:159 - 63; http://dx.doi.org/10.2214/ajr.178.1.1780159; PMID: 11756112
  • Riquelme R, Riquelme M, Torres A, Rioseco ML, Vergara JA, Scholz L, et al. Hantavirus pulmonary syndrome, southern Chile. Emerg Infect Dis 2003; 9:1438 - 43; http://dx.doi.org/10.3201/eid0911.020798; PMID: 14718088
  • Toro J, Vega JD, Khan AS, Mills JN, Padula P, Terry W, et al. An outbreak of hantavirus pulmonary syndrome, Chile, 1997. Emerg Infect Dis 1998; 4:687 - 94; http://dx.doi.org/10.3201/eid0404.980425; PMID: 9866751
  • Padula P, Martinez VP, Bellomo C, Maidana S, San Juan J, Tagliaferri P, et al. Pathogenic hantaviruses, northeastern Argentina and eastern Paraguay. Emerg Infect Dis 2007; 13:1211 - 4; http://dx.doi.org/10.3201/eid1308.061090; PMID: 17953094
  • Godoy P, Marsac D, Stefas E, Ferrer P, Tischler ND, Pino K, et al. Andes virus antigens are shed in urine of patients with acute hantavirus cardiopulmonary syndrome. J Virol 2009; 83:5046 - 55; http://dx.doi.org/10.1128/JVI.02409-08; PMID: 19279096
  • Peters CJ, Zaki SR. Role of the endothelium in viral hemorrhagic fevers. Crit Care Med 2002; 30:Suppl S268 - 73; http://dx.doi.org/10.1097/00003246-200205001-00016; PMID: 12004247
  • Srikiatkhachorn A, Krautrachue A, Ratanaprakarn W, Wongtapradit L, Nithipanya N, Kalayanarooj S, et al. Natural history of plasma leakage in dengue hemorrhagic fever: a serial ultrasonographic study. Pediatr Infect Dis J 2007; 26:283 - 90, discussion 291-2; http://dx.doi.org/10.1097/01.inf.0000258612.26743.10; PMID: 17414388
  • Srikiatkhachorn A. Plasma leakage in dengue haemorrhagic fever. Thromb Haemost 2009; 102:1042 - 9; PMID: 19967133
  • Tseng CS, Lo HW, Teng HC, Lo WC, Ker CG. Elevated levels of plasma VEGF in patients with dengue hemorrhagic fever. FEMS Immunol Med Microbiol 2005; 43:99 - 102; http://dx.doi.org/10.1016/j.femsim.2004.10.004; PMID: 15607642
  • Dalrymple NA, Mackow ER. Endothelial cells elicit immune-enhancing responses to dengue virus infection. J Virol 2012; 86:6408 - 15; http://dx.doi.org/10.1128/JVI.00213-12; PMID: 22496214
  • Schnittler HJ, Feldmann H. Viral hemorrhagic fever--a vascular disease?. Thromb Haemost 2003; 89:967 - 72; PMID: 12783108
  • Terajima M, Hayasaka D, Maeda K, Ennis FA. Immunopathogenesis of hantavirus pulmonary syndrome and hemorrhagic fever with renal syndrome: Do CD8+ T cells trigger capillary leakage in viral hemorrhagic fevers?. Immunol Lett 2007; 113:117 - 20; http://dx.doi.org/10.1016/j.imlet.2007.08.003; PMID: 17897725
  • Borges AA, Campos GM, Moreli ML, Souza RL, Aquino VH, Saggioro FP, et al. Hantavirus cardiopulmonary syndrome: immune response and pathogenesis. Microbes Infect 2006; 8:2324 - 30; http://dx.doi.org/10.1016/j.micinf.2006.04.019; PMID: 16793309
  • Borges AA, Campos GM, Moreli ML, Moro Souza RL, Saggioro FP, Figueiredo GG, et al. Role of mixed Th1 and Th2 serum cytokines on pathogenesis and prognosis of hantavirus pulmonary syndrome. Microbes Infect 2008; 10:1150 - 7; http://dx.doi.org/10.1016/j.micinf.2008.06.006; PMID: 18606242
  • Koster F, Foucar K, Hjelle B, Scott A, Chong YY, Larson R, et al. Rapid presumptive diagnosis of hantavirus cardiopulmonary syndrome by peripheral blood smear review. Am J Clin Pathol 2001; 116:665 - 72; http://dx.doi.org/10.1309/CNWF-DC72-QYMR-M8DA; PMID: 11710682
  • Markotić A, Hensley L, Daddario K, Spik K, Anderson K, Schmaljohn C. Pathogenic hantaviruses elicit different immunoreactions in THP-1 cells and primary monocytes and induce differentiation of human monocytes to dendritic-like cells. Coll Antropol 2007; 31:1159 - 67; PMID: 18217475
  • Temonen M, Vapalahti O, Holthöfer H, Brummer-Korvenkontio M, Vaheri A, Lankinen H. Susceptibility of human cells to Puumala virus infection. J Gen Virol 1993; 74:515 - 8; http://dx.doi.org/10.1099/0022-1317-74-3-515; PMID: 8445370
  • Raftery MJ, Kraus AA, Ulrich R, Krüger DH, Schönrich G. Hantavirus infection of dendritic cells. J Virol 2002; 76:10724 - 33; http://dx.doi.org/10.1128/JVI.76.21.10724-10733.2002; PMID: 12368315
  • Jenison S, Yamada T, Morris C, Anderson B, Torrez-Martinez N, Keller N, et al. Characterization of human antibody responses to four corners hantavirus infections among patients with hantavirus pulmonary syndrome. J Virol 1994; 68:3000 - 6; PMID: 7512156
  • Valdivieso F, Vial P, Ferres M, Ye C, Goade D, Cuiza A, et al. Neutralizing antibodies in survivors of Sin Nombre and Andes hantavirus infection. Emerg Infect Dis 2006; 12:166 - 8; http://dx.doi.org/10.3201/eid1201.050930; PMID: 16494739
  • Bharadwaj M, Nofchissey R, Goade D, Koster F, Hjelle B. Humoral immune responses in the hantavirus cardiopulmonary syndrome. J Infect Dis 2000; 182:43 - 8; http://dx.doi.org/10.1086/315657; PMID: 10882580
  • MacNeil A, Comer JA, Ksiazek TG, Rollin PE. Sin Nombre virus-specific immunoglobulin M and G kinetics in hantavirus pulmonary syndrome and the role played by serologic responses in predicting disease outcome. J Infect Dis 2010; 202:242 - 6; http://dx.doi.org/10.1086/653482; PMID: 20521946
  • Mori M, Rothman AL, Kurane I, Montoya JM, Nolte KB, Norman JE, et al. High levels of cytokine-producing cells in the lung tissues of patients with fatal hantavirus pulmonary syndrome. J Infect Dis 1999; 179:295 - 302; http://dx.doi.org/10.1086/314597; PMID: 9878011
  • Sundstrom JB, McMullan LK, Spiropoulou CF, Hooper WC, Ansari AA, Peters CJ, et al. Hantavirus infection induces the expression of RANTES and IP-10 without causing increased permeability in human lung microvascular endothelial cells. J Virol 2001; 75:6070 - 85; http://dx.doi.org/10.1128/JVI.75.13.6070-6085.2001; PMID: 11390609
  • Khaiboullina SF, St Jeor SC. Hantavirus immunology. Viral Immunol 2002; 15:609 - 25; http://dx.doi.org/10.1089/088282402320914548; PMID: 12513931
  • Khaiboullina SF, Rizvanov AA, Deyde VM, St Jeor SC. Andes virus stimulates interferon-inducible MxA protein expression in endothelial cells. J Med Virol 2005; 75:267 - 75; http://dx.doi.org/10.1002/jmv.20266; PMID: 15602733
  • Geimonen E, Neff S, Raymond T, Kocer SS, Gavrilovskaya IN, Mackow ER. Pathogenic and nonpathogenic hantaviruses differentially regulate endothelial cell responses. Proc Natl Acad Sci U S A 2002; 99:13837 - 42; http://dx.doi.org/10.1073/pnas.192298899; PMID: 12368479
  • Marsac D, García S, Fournet A, Aguirre A, Pino K, Ferres M, et al. Infection of human monocyte-derived dendritic cells by ANDES Hantavirus enhances pro-inflammatory state, the secretion of active MMP-9 and indirectly enhances endothelial permeability. Virol J 2011; 8:223; http://dx.doi.org/10.1186/1743-422X-8-223; PMID: 21569520
  • Manigold T, Mori A, Graumann R, Llop E, Simon V, Ferrés M, et al. Highly differentiated, resting gn-specific memory CD8+ T cells persist years after infection by andes hantavirus. PLoS Pathog 2010; 6:e1000779; http://dx.doi.org/10.1371/journal.ppat.1000779; PMID: 20174562
  • Ennis FA, Cruz J, Spiropoulou CF, Waite D, Peters CJ, Nichol ST, et al. Hantavirus pulmonary syndrome: CD8+ and CD4+ cytotoxic T lymphocytes to epitopes on Sin Nombre virus nucleocapsid protein isolated during acute illness. Virology 1997; 238:380 - 90; http://dx.doi.org/10.1006/viro.1997.8827; PMID: 9400611
  • Kilpatrick ED, Terajima M, Koster FT, Catalina MD, Cruz J, Ennis FA. Role of specific CD8+ T cells in the severity of a fulminant zoonotic viral hemorrhagic fever, hantavirus pulmonary syndrome. J Immunol 2004; 172:3297 - 304; PMID: 14978138
  • Borges AA, Donadi EA, Campos GM, Moreli ML, de Sousa RL, Saggioro FP, et al. Association of -308G/A polymorphism in the tumor necrosis factor-alpha gene promoter with susceptibility to development of hantavirus cardiopulmonary syndrome in the Ribeirão Preto region, Brazil. Arch Virol 2010; 155:971 - 5; http://dx.doi.org/10.1007/s00705-010-0655-7; PMID: 20372945
  • Shrivastava-Ranjan P, Rollin PE, Spiropoulou CF. Andes virus disrupts the endothelial cell barrier by induction of vascular endothelial growth factor and downregulation of VE-cadherin. J Virol 2010; 84:11227 - 34; http://dx.doi.org/10.1128/JVI.01405-10; PMID: 20810734
  • Gavrilovskaya IN, Gorbunova EE, Mackow ER. Pathogenic hantaviruses direct the adherence of quiescent platelets to infected endothelial cells. J Virol 2010; 84:4832 - 9; http://dx.doi.org/10.1128/JVI.02405-09; PMID: 20181715
  • Gavrilovskaya IN, Gorbunova EE, Mackow NA, Mackow ER. Hantaviruses direct endothelial cell permeability by sensitizing cells to the vascular permeability factor VEGF, while angiopoietin 1 and sphingosine 1-phosphate inhibit hantavirus-directed permeability. J Virol 2008; 82:5797 - 806; http://dx.doi.org/10.1128/JVI.02397-07; PMID: 18367532
  • Gavrilovskaya I, Gorbunova E, Koster F, Mackow E. Elevated VEGF Levels in Pulmonary Edema Fluid and PBMCs from Patients with Acute Hantavirus Pulmonary Syndrome. Adv Virol 2012; 2012:674360; http://dx.doi.org/10.1155/2012/674360; PMID: 22956954
  • Lampugnani MG, Dejana E. The control of endothelial cell functions by adherens junctions. Novartis Found Symp 2007; 283:4 - 13, discussion 13-7, 238-41; http://dx.doi.org/10.1002/9780470319413.ch2; PMID: 18300410
  • Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, et al. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 2008; 10:923 - 34; http://dx.doi.org/10.1038/ncb1752; PMID: 18604199
  • Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 2009; 16:209 - 21; http://dx.doi.org/10.1016/j.devcel.2009.01.004; PMID: 19217423
  • Gavard J. Breaking the VE-cadherin bonds. FEBS Lett 2009; 583:1 - 6; http://dx.doi.org/10.1016/j.febslet.2008.11.032; PMID: 19059243
  • Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 2006; 8:1223 - 34; http://dx.doi.org/10.1038/ncb1486; PMID: 17060906
  • Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 2008; 121:2115 - 22; http://dx.doi.org/10.1242/jcs.017897; PMID: 18565824
  • Gorbunova E, Gavrilovskaya IN, Mackow ER. Pathogenic hantaviruses Andes virus and Hantaan virus induce adherens junction disassembly by directing vascular endothelial cadherin internalization in human endothelial cells. J Virol 2010; 84:7405 - 11; http://dx.doi.org/10.1128/JVI.00576-10; PMID: 20463083
  • Gorbunova EE, Gavrilovskaya IN, Pepini T, Mackow ER. VEGFR2 and Src kinase inhibitors suppress Andes virus-induced endothelial cell permeability. J Virol 2011; 85:2296 - 303; http://dx.doi.org/10.1128/JVI.02319-10; PMID: 21177802
  • Gavard J, Patel V, Gutkind JS. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell 2008; 14:25 - 36; http://dx.doi.org/10.1016/j.devcel.2007.10.019; PMID: 18194650
  • Rowe RK, Pekosz A. Bidirectional virus secretion and nonciliated cell tropism following Andes virus infection of primary airway epithelial cell cultures. J Virol 2006; 80:1087 - 97; http://dx.doi.org/10.1128/JVI.80.3.1087-1097.2006; PMID: 16414986
  • Spiropoulou CF, Albariño CG, Ksiazek TG, Rollin PE. Andes and Prospect Hill hantaviruses differ in early induction of interferon although both can downregulate interferon signaling. J Virol 2007; 81:2769 - 76; http://dx.doi.org/10.1128/JVI.02402-06; PMID: 17202220
  • Levine JR, Prescott J, Brown KS, Best SM, Ebihara H, Feldmann H. Antagonism of type I interferon responses by new world hantaviruses. J Virol 2010; 84:11790 - 801; http://dx.doi.org/10.1128/JVI.00916-10; PMID: 20844031
  • Temonen M, Lankinen H, Vapalahti O, Ronni T, Julkunen I, Vaheri A. Effect of interferon-alpha and cell differentiation on Puumala virus infection in human monocyte/macrophages. Virology 1995; 206:8 - 15; http://dx.doi.org/10.1016/S0042-6822(95)80014-X; PMID: 7831843
  • Temonen M, Mustonen J, Helin H, Pasternack A, Vaheri A, Holthöfer H. Cytokines, adhesion molecules, and cellular infiltration in nephropathia epidemica kidneys: an immunohistochemical study. Clin Immunol Immunopathol 1996; 78:47 - 55; http://dx.doi.org/10.1006/clin.1996.0007; PMID: 8599883
  • Markotic A, Hensley L, Geisbert T, Spik K, Schmaljohn C. Hantaviruses induce cytopathic effects and apoptosis in continuous human embryonic kidney cells. J Gen Virol 2003; 84:2197 - 202; http://dx.doi.org/10.1099/vir.0.19090-0; PMID: 12867652
  • Cebalo L, Markotić A. Chemokine production predominates in human monocytes infected with Tula virus. Viral Immunol 2007; 20:206 - 13; http://dx.doi.org/10.1089/vim.2006.0039; PMID: 17425435
  • Bambace NM, Levis JE, Holmes CE. The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets 2010; 21:85 - 93; http://dx.doi.org/10.3109/09537100903470298; PMID: 20063989
  • Terajima M, Vapalahti O, Van Epps HL, Vaheri A, Ennis FA. Immune responses to Puumala virus infection and the pathogenesis of nephropathia epidemica. Microbes Infect 2004; 6:238 - 45; http://dx.doi.org/10.1016/j.micinf.2003.10.017; PMID: 15049335
  • Suidan GL, Dickerson JW, Chen Y, McDole JR, Tripathi P, Pirko I, et al. CD8 T cell-initiated vascular endothelial growth factor expression promotes central nervous system vascular permeability under neuroinflammatory conditions. J Immunol 2010; 184:1031 - 40; http://dx.doi.org/10.4049/jimmunol.0902773; PMID: 20008293