341
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Land use change from paddy rice to sugarcane under long-term no-till conditions: increase P balance, soil organic matter and sugarcane productivity

, , & ORCID Icon
Pages 1-17 | Received 30 Sep 2023, Accepted 08 Mar 2024, Published online: 28 Mar 2024

References

  • Adelana A, Aduramigba-Modupe V, Oke A, Are K, Ojo O, Adeyolanu O. 2022. Soil quality assessment under different long-term rice-based cropping systems in a tropical dry savanna ecology of northern Nigeria. Acta Ecol Sin. 42(4):312–321. doi: 10.1016/j.chnaes.2021.12.004.
  • Arruda MR, Slingerland M, Santos JZL, Giller KE. 2019. Agricultural land use change and associated driving forces over the past 180 years in two municipalities of the Brazilian Cerrado. GeoJournal. 84(3):555–570. doi: 10.1007/s10708-018-9875-2.
  • Ba LT, Van KL, Elsacker SV, Cornelis WM. 2016. Effect of cropping system on physical properties of clay soil under intensive rice cultivation. Land Degrad Dev. 27(4):973–982. doi: 10.1002/ldr.2321.
  • Bergh DD. 1995. Problems with repeated measures analysis: Demonstration with a study of the diversification and performance relationship. Acad Manage J. 38(6):1692–1708. doi: 10.2307/256850.
  • Black CA. 1965. Methods of soil analysis: part I, physical and mineralogical properties. Madison (Wisconsin): American Society of Agronomy.
  • Blackburn F. 1984. Sugar cane. Tropical agricultural services. New York: Published in the USA by Longman inc.
  • Bordonal RD, Lal R, Ronquim CC, de Figueiredo EB, Carvalho JLN, Maldonado W, DMBP M, Scala NL. 2017. Changes in quantity and quality of soil carbon due to the land use conversion to sugarcane (Saccharum officinarum) plantation in southern Brazil. Agric Ecosyst Environ. 24:54–65. doi: 10.1016/j.agee.2017.02.016.
  • Bray RA, Kurtz LT. 1945. Determination of total organic and available form of phosphorus in soil. Soil Sci. 59(1):39–45. doi: 10.1097/00010694-194501000-00006.
  • Bremner JM. 1965. Inorganic forms of nitrogen. In: Black C., editor. Methods of soil analysis Part 2, Agronomy monograph No. 9. Madison: ASA and SSSA; p. 1179–1237.
  • Butphu S, Rasche F, Cadisch G, Kaewpradit W. 2020. Eucalyptus biochar application enhances Ca uptake of upland rice, soil available P, exchangeable K, yield, and N use efficiency of sugarcane in a crop rotation system. J Plant Nutr Soil Sci. 183(1):58–68. doi: 10.1002/jpln.201900171.
  • Cao B, Qu C, Guo Y, Liu C, Liang Z, Jiao Y, Shi J, Tian X. 2022. Long-term nitrogen and straw application improves wheat production and soil organic carbon sequestration. J Soil Sci Plant Nutr. 22(3):3364–3376. doi: 10.1007/s42729-022-00892-y.
  • Chen L, Qi X, Zhang X, Q LI, Zhang Y. 2011. Effect of agricultural land use changes on soil nutrient use efficiency in an agricultural Area, Beijing, China. Chin Geogr Sci. 21(4):392–402. doi: 10.1007/s11769-011-0481-1.
  • Cherubin MR, Franco ALC, Cerri CEP, Karlen DL, Pavinato PS, Rodrigues M, Davies CA, Cerri CC. 2016. Phosphorus pools responses to land-use change for sugarcane expansion in weathered Brazilian soils. Geoderma. 265:27–38. doi: 10.1016/j.geoderma.2015.11.017.
  • Cherubin MR, Franco ALC, Cerri CEP, Oliveira DMS, Davies CD, Cerri CC. 2015. Sugarcane expansion in Brazilian tropical soils-Effects of land use change on soil chemical attributes. Agric Ecosyst Environ. 211:173–184. doi: 10.1016/j.agee.2015.06.006.
  • Chi L, Mendoza-Vega J, Huerta E, Álvarez-Solís J D. 2017. Effect of long-term sugarcane (Saccharum Spp.) cultivation on chemical and physical properties of soils in Belize. Commun Soil Sci Plant Anal. 48(7):741–755. doi: 10.1080/00103624.2016.1254794.
  • Coulibaly SFM, Aubert M, Brunet N, Bureau F, Legras M, Chauvat M. 2022. Short-term dynamic responses of soil properties and soil fauna under contrasting tillage systems. Soil Till Res. 215:105191. doi: 10.1016/j.still.2021.105191.
  • Enaruvbe GO, Osewole AO, Mamudu OP, Rodrigo-Comino J. 2020. Impacts of land-use changes on soil fertility in Okomu Forest Reserve, Southern Nigeria. Land Degrad Dev. 32(6):2130–2142. doi: 10.1002/ldr.3869.
  • FAO. 2005. The importance of soil organic matter Key to drought-resistant soil and sustained food and production. Rome.
  • FAOSTAT. 2022. Production: Crops and livestock products. [accessed 2024 February 8]. https://www.fao.org/faostat/en/#data/QCL.
  • Geissen V, Sánchez-Hernández R, Kampichler C, Ramos-Reyes R, Sepulveda-Lozada A, Ochoa-Goana S, de Jong BHJ, Huerta-Lwanga E, Hernández-Daumas S, de Jong BHJ. 2009. Effects of land-use change on some properties of tropical soils — an example from Southeast Mexico. Geoderma. 151(3–4):87–97. doi: 10.1016/j.geoderma.2009.03.011.
  • Gopalasundaram P, Bhaskaran A, Rakkiyappan P. 2012. Integrated nutrient management in sugarcane. Sugar Tech. 14(1):3–20. doi: 10.1007/s12355-011-0097-x.
  • Guarenghi MM, Garofalo DFT, Seabra JEA, Moreira MMR, Novaes RML, Ramos NP, Nogueira SF, de Andrade CA. 2023. Land use change net removals associated with sugarcane in Brazil. Land. 12(3):584. doi: 10.3390/land12030584.
  • Guo X, Chen L, Zheng R, Zhang K, Qiu Y, Yue H. 2019. Differences in soil nitrogen availability and transformation in relation to land use in the Napahai Wetland, Southwest China. J Soil Sci Plant Nutr. 19(1):92–97. doi: 10.1007/s42729-019-0013-0.
  • Hairiah K, Van Noordwijk M, Cadisch G. 2000. Crop yield, C and N balance of three types of cropping systems on an Ultisol in Northern Lampung. Neth J Agri Sci. 48(1):3–17. doi: 10.1016/S1573-5214(00)80001-9.
  • Han T, Huang J, Liu K, Fan H, Shi X, Chen J, Jiang X, Liu G, Liu S, Zhang L, et al. 2021. Soil potassium regulation by changes in potassium balance and iron and aluminum oxides in paddy soils subjected to long-term fertilization regimes. Soil Till Res. 214:105168. doi: 10.1016/j.still.2021.105168.
  • Horneck DA, Sullivan DM, Owen JS, Hart JM. 2011. Soil test interpretation guide. EC 1478. Corvallis: Oregon State University.
  • Houghton RA. 1994. The worldwide extent of land-use change. BioScience. 44(5):305–313. doi: 10.2307/1312380.
  • Houghton RA, Skole DL, Lefkowitz DS. 1991. Changes in the landscape of Latin America between 1850 and 1985 II. Net release of CO2 to the atmosphere. For Ecol Manag. 38(3–4):173–199. doi: 10.1016/0378-1127(91)90141-H.
  • Jackson ML. 1958. Soil chemical analysis. Englewood Cliffs: Prentice-Hall.
  • Jayaraman S, Sinha NK, Mohanty M, Hati KM, Chaudhary RS, Shukla AK, Shirale AO, Neenu S, Naorem AK, Rashmi I, et al. 2021. Conservation tillage, residue management and crop rotation effects on soil major and micro-nutrients in Semi-arid Vertisols of India. J Soil Sci Plant Nutr. 21(1):523–535. doi: 10.1007/s42729-020-00380-1.
  • Joris HAW, Vitti AC, Ferraz‑Almeida R, Otto R, Cantarella H. 2020. Long‑term N fertilization reduces uptake of N from fertilizer and increases the uptake of N from soil. Sci Rep. 10(1):18834. doi: 10.1038/s41598-020-75971-0.
  • Kilmer VJ, Mullins J. 1954. Improved stirring and pipetting apparatus for mechanical analysis for soil. Soil Sci. 77(6):437–441. doi: 10.1097/00010694-195406000-00004.
  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen AJ, Bruce W, Coomes OT, Dirzo R, Fischer G, Folke C, et al. 2001. The causes of land-use and land- cover change: moving beyond the myths. Glob Environ Change. 11(4):261–269. doi: 10.1016/S0959-3780(01)00007-3.
  • Land Development Department. 2009. Land use in Thailand 2008/2009; [accessed 2021 September 12]. http://www1.ldd.go.th/web_OLP/result/landuse2551-2552.htm.
  • Land Development Department. 2019. Land use in Thailand 2017/2018; [accessed 2021 September 12]. http://www1.ldd.go.th/web_OLP/result/luse_result60-61.htm.
  • Liao YL, Zheng SX, Nie J, Xie J, Lu YH, Qin XB. 2013. Long-term effect of fertilizer and rice straw on mineral composition and potassium adsorption in a reddish paddy soil. J Integr Agric. 12(4):694–710. doi: 10.1016/S2095-3119(13)60288-9.
  • Liu E, Teclemariam SG, Yan C, Yu J, Gu R, Liu S, He W, Liu Q. 2014. Long-term effects of no-tillage management practice on soil organic carbon and its fractions in the northern China. Geoderma. 213:379–384. doi: 10.1016/j.geoderma.2013.08.021.
  • Li X, Zhang H, Sun M, Xu N, Sun G, Zhao M. 2020. Land use change from upland to paddy field in Mollisols drives soil aggregation and associated microbial communities. Appl Soil Ecol. 146:1033512. doi: 10.1016/j.apsoil.2019.09.001.
  • Lousier JD, Parkinson D. 1978. Chemical element dynamics in decomposing leaf litter. Can J Bot. 56(21):2795–2812. doi: 10.1139/b78-335.
  • Lu Y, Chen Z, Kang T, Zhang X, Bellarby J, Zhou J. 2016. Land-use changes from arable crop to kiwi-orchard increased nutrient surpluses and accumulation in soils. Agric Ecosyst Environ. 223:270–277. doi: 10.1016/j.agee.2016.03.019.
  • Mehmood K, Li J, Jiang J, Masud MM, Xu RK. 2017. Effect of low energy-consuming biochars in combination with nitrate fertilizer on soil acidity amelioration and maize growth. J Soils Sediments. 17(3):790–799. doi: 10.1007/s11368-015-1219-y.
  • Moritsuka N, Nishikawa T, Yamamoto S, Matsui N, Inoue H, Li KZ, Inamura T. 2013. Changes in soil physicochemical properties following land use change from paddy fields to greenhouse and upland fields in the southeastern basin of Dianchi lake, Yunnan Province, China. Pedosphere. 2(2):3169–3176. doi: 10.1016/S1002-0160(13)60004-1.
  • Naklang K, Harnpichitvitaya D, Amarante ST, Wade LJ, Haefele SM. 2006. Internal efficiency, nutrient uptake, and the relation to field water resources in rainfed lowland rice of northeast Thailand. Plant Soil. 286(1–2):193–208. doi: 10.1007/s11104-006-9037-z.
  • OECD/FAO. 2019. OECD-FAO agricultural outlook 2019-2028. Rome: OECD Publishing, Paris/Food and Agriculture Organization of the United Nations.
  • Office of Agricultural Economics. 2019. Land use in Thailand 2019; [accessed 2021 September 12]. https://www.oae.go.th/assets/portals/1/files/socio/LandUtilization2562.pdf.
  • Otto R, Trivelin PCO, Franco HCJ, Faroni CE, Cesar A. 2009. Root system distribution of sugar cane as related to nitrogen fertilization, evaluated by two methods: monolith and probes. Rev Bras Ciênc Solo. 33(3):601–612. doi: 10.1590/S0100-06832009000300013.
  • Pang Z, Tayyab M, Kong C, Liu Q, Liu Y, Hu C, Huang J, Weng P, Islam W, Lin W, et al. 2021. Continuous sugarcane planting negatively impacts soil microbial community structure, soil fertility, and sugarcane agronomic parameters. Microorganisms. 9(10):2008. doi: 10.3390/microorganisms9102008.
  • Peech M. 1965. Hydrogen-Ion Activity. In: Black C., editor. Methods of soil analysis part 2.
  • Phiwdaeng N, Kaewpradit W, Blagodatsky S, Rasche F. 2023. Temporal soil carbon and nitrogen accumulation after land use change from paddy rice to upland sugarcanecropping in Thailand. Geoderma Reg. 33:e00656. doi: 10.1016/j.geodrs.2023.e00656.
  • Phukongchai W, Kaewpradit W. 2022. Sugarcane straw management by inoculation of microbial consortia and its impact on short-term N source and amelioration of ratoon sugarcane yield. Arch Agron Soil Sci. 69(12):2267–2285. doi: 10.1080/03650340.2022.2146101.
  • Pratt PF, Gabbe MJ. 1964. Division s-2- soil chemistry: correlations of phosphorus availability by chemical tests with inorganic phosphorus fractions. USA: American society of agronomy; pp. 914–926.
  • Qaswar M, Jing H, Ahmed W, Dongchu L, Shujun L, Lu Z, Cai A, Lisheng L, Yongmei X, Jusheng G, et al. 2020. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Till Res. 198:104569. doi: 10.1016/j.still.2019.104569.
  • Rann V, Anusontpornperm S, Thanachit S, Sreewongchai T. 2016. Response of KDML105 and RD41 rice varieties grown on a Typic Natrustalf to granulated pig manure and chemical fertilizers. Agr Nat Resour. 50(2):104–113. doi: 10.1016/j.anres.2015.12.001.
  • R Core Team. 2019. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing.
  • Saha P, Miah M, Hossain A, Rahman F, Saleque M. 2010. Contribution of rice straw to potassium supply in rice-fallow-rice cropping pattern. Bangladesh J Agric Res. 34(4):633–643. doi: 10.3329/bjar.v34i4.5839.
  • Sattolo TMS, Mariano E, Boschiero BN, Otto R. 2017. Soil carbon and nitrogen dynamics as affected by land use change and successive nitrogen fertilization of sugarcane. Agric Ecosyst Environ. 247:63–74. doi: 10.1016/j.agee.2017.06.005.
  • Singh P, Benbi DK, Verma G. 2021. Nutrient management impacts on nutrient use efficiency and energy, carbon, and net ecosystem economic budget of a rice–wheat cropping system in Northwestern India. J Soil Sci Plant Nutr. 21(1):559–577. doi: 10.1007/s42729-020-00383-y.
  • Smith DM, Inman-Bamber NG, Thorburn PJ. 2005. Growth and function of the sugarcane root system. Field Crops Res. 92:169–183. doi: 10.1016/j.fcr.2005.01.017.
  • Soil Survey Staff. 2010. Keys to soil taxonomy. 11th Edn ed. Washington, D.C: USDA-Natural Resources Conservation Service.
  • Sun M, Li T, Li D, Zhao Y, Gao F, Sun L, Li X. 2021. Conversion of land use from upland to paddy field changes soil bacterial community structure in mollisols of Northeast China. Microb Ecol. 81(4):1018–1028. doi: 10.1007/s00248-020-01632-4.
  • Tecator. 1984. Determination of ammonia nitrogen (ASN 65-32/84) or nitrate nitrogen (ASN 65-31/84) in soil samples extractable by 2 M KCl using flow injection analysis. Application notes. Ho¨ganas, Sweden: Tecator.
  • Tellen VA, Yerima BPK. 2018. Effects of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environ Syst Res. 7(1):3. doi: 10.1186/s40068-018-0106-0.
  • Thawaro N, Toomsan B, Kaewpradit W. 2017. Sweet sorghum and upland rice: alternative preceding crops to Ameliorate Ethanol production and soil sustainability within the sugarcane cropping system. Sugar Tech. 19(1):64–71. doi: 10.1007/s12355-016-0437-y.
  • Vale DW, Prado RM, Cantarella H, Fonseca IM, Avalhães CC, Correia MAR, Barbosa MP. 2013. Ammonium and nitrate in soil and ratoon sugarcane grown in function of nitrogen on Oxisol. J Plant Nutr. 36(2):201–213. doi: 10.1080/01904167.2012.739241.
  • Vityakon P. 2011. Soil organic matter and soil quality in Northeast Thailand. Department of plant science and agricultural resources, faculty of agriculture. Khon Kaen, Thailand: Khon Kaen University; p. 142.
  • Wakeel A, Gul M, Sanaullah M. 2013. Potassium dynamics in three alluvial soils differing in clay contents. Emir J Food Agric. 25(1):39–44. doi: 10.9755/ejfa.v25i1.15395.
  • Walkley A, Black CA. 1934. An examination of degtjareff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Sci. 37(1):29–35. doi: 10.1097/00010694-193401000-00003.
  • Whitbread A, Blair G, Konboon Y, Lefroy R, Naklang K. 2003. Managing crop residues, fertilizers and leaf litters to improve soil C, nutrient balances, and the grain yield of rice and wheat cropping systems in Thailand and Australia. Agric Ecosyst Environ. 100(2–3):251–263. doi: 10.1016/S0167-8809(03)00189-0.
  • Yadav RL, Prasad SR, Singh R, Srivastava VK. 1994. Recycling sugarcane trash to conserve soil organic carbon for sustaining yields of successive ratoon crops in sugarcane. Bioresour Technol. 49(3):231–235. doi: 10.1016/0960-8524(94)90045-0.
  • Yanai J, Nakata S, Funakawa S, Nawata E, Katawatin R, Kosaki T. 2010. Effect of NPK application on the growth, yield and nutrient uptake by sugarcane on a sandy soil in Northeast Thailand. Trop Agric Dev. 54:113–118.
  • Yi K, Li X, Chen D, Yang S, Liu Y, Tang X, Ling G, Zhao Z. 2022. Shallower root spatial distribution induced by phosphorus deficiency contributes to topsoil foraging and low phosphorus adaption in sugarcane (Saccharum officinarum L). Front Plant Sci. 12:797635. doi: 10.3389/fpls.2021.797635.