59
Views
0
CrossRef citations to date
0
Altmetric
Review

Investigational farnesoid X receptor agonists for the treatment of primary biliary cholangitis

&
Received 20 Jan 2024, Accepted 24 Apr 2024, Published online: 07 May 2024

References

  • Addison T, Gull W. On a certain affection of the skin-vitiligoidea-α-plana β-tuberosa. Guys Hosp Rept. 1851;7:G265–277.
  • Rubin E, Schaffner F, Popper H. Primary biliary cirrhosis. Chronic non-suppurative destructive cholangitis. Am J Pathol. 1965 Mar;46(3):387–407.
  • Selmi C, Mayo MJ, Bach N, et al. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology. 2004 Aug;127:(2):485–492.
  • Cheung AC, LaRusso NF, Gores GJ, et al. Epigenetics in the primary biliary cholangitis and primary sclerosing cholangitis. Semin Liver Dis. 2017 May;37:(2):159–174.
  • Arenas F, HervíHervíAs I, Sáez E, et al. Promoter hypermethylation of the AE2/SLC4A2 gene in PBC. JHEP Rep. 2019 Jun;1:(3):145–153.
  • Lammert C, Nguyen DL, Juran BD, et al. Questionnaire based assessment of risk factors for primary biliary cirrhosis. Dig Liver Dis. 2013 Jul;45:(7):589–594.
  • Christensen E, Neuberger J, Crowe J, et al. Beneficial effect of azathioprine and prediction of prognosis in primary biliary cirrhosis. Final results of an international trial. Gastroenterology. 1985 Nov;89:(5):1084–1091.
  • Roll J, Boyer JL, Barry D, et al. The prognostic importance of clinical and histologic features in asymptomatic and symptomatic primary biliary cirrhosis. N Engl J Med. 1983 Jan;308:(1):1–7.
  • Combes B, Carithers RL Jr, Maddrey WC, et al. A randomized, double-blind, placebo-controlled trial of ursodeoxycholic acid in primary biliary cirrhosis. Hepatology. 1995 Sep;22:(3):759–766.
  • Lindor KD, Therneau TM, Jorgensen RA, et al. Effects of ursodeoxycholic acid on survival in patients with primary biliary cirrhosis. Gastroenterology. 1996 May;110:(5):1515–1518.
  • Corpechot C, Carrat F, Bonnand AM, et al. The effect of ursodeoxycholic acid therapy on liver fibrosis progression in primary biliary cirrhosis. Hepatology. 2000 Dec;32:(6):1196–1199.
  • Poupon RE, Lindor KD, Parés A, et al. Combined analysis of the effect of treatment with ursodeoxycholic acid on histologic progression in primary biliary cirrhosis. J Hepatol. 2003 Jul;39:(1):12–16.
  • Parés A, Caballería L, Rodés J. Excellent long-term survival in patients with primary biliary cirrhosis and biochemical response to ursodeoxycholic acid. Gastroenterology. 2006 Mar;130(3):715–720. doi: 10.1053/j.gastro.2005.12.029
  • Lammers WJ, Hirschfield GM, Corpechot C, et al.; Global PBC Study Group. Development and validation of a scoring system to predict outcomes of patients with primary biliary cirrhosis receiving ursodeoxycholic acid therapy. Gastroenterology. 2015 Dec:149(7):1804–1812.e4.
  • Kuiper EM, Hansen BE, de Vries RA, et al. Dutch PBC Study Group. Improved prognosis of patients with primary biliary cirrhosis that have a biochemical response to ursodeoxycholic acid. Gastroenterology. 2009 Apr;136(4):1281–1287. doi: 10.1053/j.gastro.2009.01.003
  • Koulentaki M, Ioannidou D, Stefanidou M, et al. Dermatological manifestations in primary biliary cirrhosis patients: a case control study. Am J Gastroenterol. 2006 Mar;101:(3):541–546.
  • Hegade VS, Mells GF, Fisher H, et al. UK-PBC consortium. Pruritus Is Common and undertreated in patients with primary biliary cholangitis in the United Kingdom. Clin Gastroenterol Hepatol. 2019 Jun;17:(7):1379–1387.e3.
  • Battezzati PM, Podda M, Bianchi FB, et al. Ursodeoxycholic acid for symptomatic primary biliary cirrhosis. Preliminary analysis of a double-blind multicenter trial. Italian multicenter group for the study of UDCA in PBC. J Hepatol. 1993 Mar;17:(3):332–338.
  • Pellicciari R, Fiorucci S, Camaioni E, et al. 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem. 2002 Aug;45:(17):3569–3572.
  • Nevens F, Andreone P, Mazzella G, et al. POISE Study Group; A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med. 2016 Aug;18;3757:631–643. doi: 10.1056/NEJMoa1509840
  • Gulamhusein AF, Hirschfield GM. Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol. 2020 Feb;17(2):93–110. doi: 10.1038/s41575-019-0226-7
  • Prieto J, Banales JM, Medina JF. Primary biliary cholangitis: pathogenic mechanisms. Curr Opin Gastroenterol. Mar 2021;37(2):91–98. doi: 10.1097/MOG.0000000000000703
  • Mattner J, Savage PB, Leung P, et al. Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe. 2008 May;3:(5):304–315.
  • Wang JJ, Yang GX, Zhang WC, et al. Escherichia coli infection induces autoimmune cholangitis and anti-mitochondrial antibodies in non-obese diabetic (NOD).B6 (Idd10/Idd18) mice. Clin Exp Immunol. Feb 2014;175(2):192–201. doi: 10.1111/cei.12224
  • Begovich AB, Klitz W, Moonsamy PV, et al. Genes within the HLA class II region confer both predisposition and resistance to primary biliary cirrhosis. Tissue Antigens. 1994 Feb;43:(2):71–77.
  • Onishi S, Sakamaki T, Maeda T, et al. DNA typing of HLA class II genes; DRB1*0803 increases the susceptibility of Japanese to primary biliary cirrhosis. J Hepatol. 1994 Dec;21:(6):1053–1060.
  • Yasunami M, Nakamura H, Tokunaga K, et al. Principal contribution of HLA-DQ alleles, DQB1*06: 04 and DQB1*03: 01, to disease resistance against primary biliary cholangitis in a Japanese population. Sci Rep. 2017 Sep;7:(1):11093.
  • Shimoda S, Nakamura M, Ishibashi H, et al. HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J Exp Med. 1995 May;181:(5):1835–1845.
  • Hirschfield GM, Liu X, Xu C, et al. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med. 2009 Jun;360(24):2544–2555. Erratum in: N Engl J Med. 360(26):2797-8. doi: 10.1056/NEJMoa0810440
  • Colucci G, Schaffner F, Paronetto F. In situ characterization of the cell-surface antigens of the mononuclear cell infiltrate and bile duct epithelium in primary biliary cirrhosis. Clin Immunol Immunopathol. 1986 Oct;41(1):35–42. doi: 10.1016/0090-1229(86)90049-8
  • Shimoda S, Van de Water J, Ansari A, et al. Identification and precursor frequency analysis of a common T cell epitope motif in mitochondrial autoantigens in primary biliary cirrhosis. J Clin Invest. 1998 Nov;102:(10):1831–1840.
  • Kita H, Matsumura S, He XS, et al. Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest. 2002 May;109:(9):1231–1240.
  • Yang CY, Ma X, Tsuneyama K, et al. IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy. Hepatology. 2014 May;59:(5):1944–1953.
  • Locke GR 3rd, Therneau TM, Ludwig J, et al. Time course of histological progression in primary biliary cirrhosis. Hepatology. 1996 Jan;23:(1):52–56.
  • Kumagi T, Guindi M, Fischer SE, et al. Baseline ductopenia and treatment response predict long-term histological progression in primary biliary cirrhosis. Am J Gastroenterol. 2010 Oct;105:(10):2186–2194.
  • Svegliati-Baroni G, Ridolfi F, Hannivoort R, et al. Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor. Gastroenterology. 2005 Apr;128:(4):1042–1055.
  • Dranoff JA, Wells RG. Portal fibroblasts: underappreciated mediators of biliary fibrosis. Hepatology. 2010 Apr;51(4):1438–1444. doi: 10.1002/hep.23405
  • Paradis V, Kollinger M, Fabre M, et al. In situ detection of lipid peroxidation by-products in chronic liver diseases. Hepatology. 1997 Jul;26:(1):135–142.
  • Parola M, Pinzani M, Casini A, et al. Stimulation of lipid peroxidation or 4-hydroxynonenal treatment increases procollagen alpha 1 (I) gene expression in human liver fat-storing cells. Biochem Biophys Res Commun. 1993 Aug;194:(3):1044–1050.
  • Bloch K, Berg BN, Rittenberg D. The biological conversion of cholesterol to cholic acid. J Biol Chem. 1943;149(2):511–517. doi: 10.1016/S0021-9258(18)72197-2
  • Bjorkhem I, Danielsson H, Wikvall K. Cytochrome P-450-dependent hydroxylations in biosynthesis and metabolism of bile acids. Biochem Soc Trans. 1975;3(6):825–828. doi: 10.1042/bst0030825
  • Stieger B, Meier Y, Meier PJ. The bile salt export pump. Pflugers Arch - Eur J Physiol. 2007 Feb;453(5):611–620. doi: 10.1007/s00424-006-0152-8
  • Banales JM, Arenas F, Rodríguez-Ortigosa CM, et al. Bicarbonate-rich choleresis induced by secretin in normal rat is taurocholate-dependent and involves AE2 anion exchanger. Hepatology. 2006 Feb;43:(2):266–275.
  • Santa Cruz V, Dugas TR, Kanz MF. Mitochondrial dysfunction occurs before transport or tight junction deficits in biliary epithelial cells exposed to bile from methylenedianiline-treated rats. Toxicol Sci. 2005 Mar;84(1):129–138. doi: 10.1093/toxsci/kfi061. Erratum in: Toxicol Sci. 84(2): 418. Apr 2005.
  • Sakisaka S, Kawaguchi T, Taniguchi E, et al. Alterations in tight junctions differ between primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology. 2001 Jun;33:(6):1460–1468.
  • Dotan M, Fried S, Har-Zahav A, et al. Periductal bile acid exposure causes cholangiocyte injury and fibrosis. PLOS ONE. 2022 Mar;17:(3):e0265418.
  • Salas JT, Banales JM, Sarvide S, et al. Ae2a,b-deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis. Gastroenterology. 2008 May;134:(5):1482–1493.
  • Banales JM, Sáez E, Uriz M, et al. Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology. 2012 Aug;56:(2):687–697.
  • Forman BM, Goode E, Chen J, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 1995 Jun;81(5):687–693. doi: 10.1016/0092-8674(95)90530-8
  • Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999 May;284:(5418):1365–1368.
  • Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science. 1999 May;284:(5418):1362–1365.
  • Wang H, Chen J, Hollister K, et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999 May;3:(5):543–553.
  • Rausch M, Samodelov SL, Visentin M, et al. The farnesoid X receptor as a master regulator of hepatotoxicity. Int J Mol Sci. 2022 Nov;23:(22):13967.
  • Zhao A, Yu J, Lew JL, et al. Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets. DNA Cell Biol. 2004 Aug;23:(8):519–526.
  • Nishimaki-Mogami T, Une M, Fujino T, et al. Identification of intermediates in the bile acid synthetic pathway as ligands for the farnesoid X receptor. J Lipid Res. 2004 Aug;45:(8):1538–1545.
  • Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004 May;113:(10):1408–1418.
  • Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005 Oct;2:(4):217–225.
  • Kim I, Ahn SH, Inagaki T, et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res. 2007 Dec;48:(12):2664–2672.
  • Triantis V, Saeland E, Bijl N, et al. Glycosylation of fibroblast growth factor receptor 4 is a key regulator of fibroblast growth factor 19-mediated down-regulation of cytochrome P450 7A1. Hepatology. 2010 Aug;52:(2):656–666.
  • Ananthanarayanan M, Balasubramanian N, Makishima M, et al. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem. 2001 Aug;276:(31):28857–28865.
  • Denson LA, Sturm E, Echevarria W, et al. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology. 2001 Jul;121:(1):140–147.
  • Meyer Zu Schwabedissen HE, Böttcher K, Chaudhry A, et al. Liver X receptor α and farnesoid X receptor are major transcriptional regulators of OATP1B1. Hepatology. 2010 Nov;52:(5):1797–1807.
  • Grober J, Zaghini I, Fujii H, et al. Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer. J Biol Chem. 1999 Oct;274:(42):29749–29754.
  • Lee H, Zhang Y, Lee FY, et al. FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J Lipid Res. 2006 Jan;47:(1):201–214.
  • Li H, Chen F, Shang Q, et al. FXR-activating ligands inhibit rabbit ASBT expression via FXR-SHP-FTF cascade. Am J Physiol Gastrointest Liver Physiol. 2005 Jan;288:(1):G60–6.
  • Fiorucci S, Antonelli E, Rizzo G, et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology. 2004 Nov;127:(5):1497–1512.
  • Li Y, Chau MD, Wang G, et al. [Abstract]. EDP-305, a novel and selective farnesoid X receptor agonist, exhibits high potency and efficacy in vitro and in vivo. Hepatology. 2016;64(Supplement S1):767.
  • Chau M, Li Y, Roqueta-Rivera M, et al. Characterization of EDP-305, a highly potent and selective farnesoid X receptor agonist, for the treatment of non-alcoholic steatohepatitis. Sponsored by Enanta Pharmaceuticals. Int J Gastroenterol. 2019;3(1):4–16. doi: 10.11648/j.ijg.20190301.12
  • Maloney PR, Parks DJ, Haffner CD, et al. Identification of a chemical tool for the orphan nuclear receptor FXR. J Med Chem. 2000 Aug;43:(16):2971–2974.
  • Liles JT, Karnik S, Hambruch E, et al. PS066: FXR agonism by GS-9674 decreases steatosis and fibrosis in a murine model of NASH. The International Liver Congress™, EASL - European Association for the Study of the Liver (EASL); Barcelona, Spain. Apr 2016.
  • Tully DC, Rucker PV, Chianelli D, et al. Discovery of tropifexor (LJN452), a Highly Potent Non-bile Acid FXR Agonist for the treatment of cholestatic liver diseases and nonalcoholic steatohepatitis (NASH). J Med Chem. 2017 Dec;60:(24):9960–9973.
  • He H, Wu JJ. Human safety, tolerability, pharmacokinetics, and Pharmacodynamics of ASC42, a novel farnesoid X receptor agonist. Drugs R D. 2023 Dec;23(4):453–464. doi: 10.1007/s40268-023-00444-4
  • GSRS. Content current as of 12/16/23, GSRS website, nih. [cited 2023 Jan 2]. Available from: https://gsrs.ncats.nih.gov/ginas/app/beta/substances/US5Q3KD5RD
  • Sepe V, Renga B, Festa C, et al. Modification on ursodeoxycholic acid (UDCA) scaffold. discovery of bile acid derivatives as selective agonists of cell-surface G-protein coupled bile acid receptor 1 (GP-BAR1). J Med Chem. 2014 Sep;57:(18):7687–7701.
  • Global PBC Study Group, Lammers WJ, van Buuren HR, et al. Levels of alkaline phosphatase and bilirubin are surrogate end points of outcomes of patients with primary biliary cirrhosis: an international follow-up study. Gastroenterology. 2014 Dec;147(6):1338–49.e5. doi: 10.1053/j.gastro.2014.08.029
  • Hirschfield GM, Mason A, Luketic V, et al. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology. 2015 Apr;148:(4):751–61.e8.
  • GLOBAL PBC Study Group and the members of the UK-PBC Consortium, Murillo Perez CF, Fisher H, et al. Greater transplant-free survival in patients receiving obeticholic acid for primary biliary cholangitis in a clinical trial setting compared to real-world external controls. Gastroenterology. 2022 Dec;163(6):1630–1642.e3. doi: 10.1053/j.gastro.2022.08.054
  • A phase 4, double-blind, randomized, placebo-controlled, multicenter study evaluating the effect of obeticholic acid on clinical outcomes in patients with primary biliary cholangitis. Sponsored by intercept pharmaceuticals. ClinicalTrials.gov identifier: NCT02308111. [ Published 2023 Mar 9; cited 2024 Jan 11]. Available from: https://clinicaltrials.gov/study/NCT02308111
  • FDA drug safety podcast, content current as of 01/11/2022, Food and drug administration website, US government, [cited 2023 Dec 1]. Available from: https://www.fda.gov/drugs/fda-drug-safety-podcasts/due-risk-serious-liver-injury-fda-restricts-use-obeticholic-acid-ocaliva-primary-biliary-cholangitis
  • Alemi F, Kwon E, Poole DP, et al. The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Invest. 2013 Apr;123(4):1513–1530. doi: 10.1172/JCI64551
  • Farrar CT, Wei L, Choi J-K, et al. [Abstract]. The novel farnesoid X receptor (FXR) agonist, EDP-305, reduces fibrosis progression in bile duct ligated rats. Hepatology. 2016;64(Supplement S1):323A.
  • Kowdley KV, Bonder A, Michael A, et al. [Abstract]. Final data of the phase 2a INTREPID study with EDP-305, a non-bile acid farnesoid X receptor (FXR) agonist. Sponsored by Enanta Pharmaceuticals. Hepatology. 2020;72(Supplement S1):746A. Clinicaltrials.gov identifier: NCT03394924.
  • Sepe V, Distrutti E, Fiorucci S, et al. Farnesoid X receptor modulators 2014-present: a patent review. Expert Opin Ther Pat. 2018 May;28(5):351–364. doi: 10.1080/13543776.2018.1459569
  • French D, Liles JT, Liu H, et al. [Abstract]. Pharmacodynamic effects of the non-steroidal farnesoid X receptor (FXR) agonist GS-9674 in high fat, high cholesterol diet fed cynomolgus monkeys. Hepatology. 2016;64(Supplement S1):71A.
  • Djedjos CS, Kirby B, Billin A, et al. [Abstract]. Pharmacodynamic effects of the oral, non-steroidal farnesoid X receptor agonist GS-9674 in healthy volunteers. Hepatology. 2016;64(Supplement S1):543A.
  • Kowdley KV, Minuk GY, Pagadala MR, et al. [Abstract]. The nonsteroidal farnesoid X receptor (FXR) agonist cilofexor improves liver biochemistry in patients with primary biliary cholangitis (pbc): a phase 2, randomized, placebo-controlled trial. Hepatology. 2019;70(Supplement S1):31a.
  • Trauner M, Gulamhusein A, Hameed B, et al. The nonsteroidal farnesoid X receptor agonist cilofexor (GS-9674) improves markers of Cholestasis and liver injury in patients with primary sclerosing cholangitis. Sponsored by Gilead Sciences. Hepatology. 2019 Sep;70(3):788–801. Clinicaltrials.gov identifier: NCT02943460. doi: 10.1002/hep.30509
  • Laffitte B, Young K, Joseph S, et al. [Abstract]. A novel, highly potent, non-bile acid FXR agonist for the treatment of NASH and cholestasis. Hepatol Int. 2016;10(Supplement S1):S97.
  • Badman MK, Chen J, Desai S, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the novel non-bile acid FXR agonist tropifexor (LJN452) in healthy volunteers. Clin Pharmacol Drug Dev. Apr 2020;9(3):395–410. doi: 10.1002/cpdd.762
  • Schramm C, Wedemeyer H, Mason A, et al. Farnesoid X receptor agonist tropifexor attenuates cholestasis in a randomised trial in patients with primary biliary cholangitis. Sponsored by Novartis. JHEP Rep. 2022 Jul;4(11):100544. Clinicaltrials.gov identifier: NCT02516605. doi: 10.1016/j.jhepr.2022.100544
  • Novartis clinical trial results CLJN452X2201, content current date: unavailable, clinical trial results website. [cited 2023 Dec 12]. Available from: https://www.novctrd.com/ctrdweb/patientsummary/patientsummaries?patientSummaryId=322
  • He H, Wu JJ. Human safety, tolerability, pharmacokinetics, and Pharmacodynamics of ASC42, a novel farnesoid X receptor agonist. Sponsored by Gannex Pharma. Drugs R D. 2023 Dec;23(4):453–464. Clinicaltrials.gov identifier: NCT04679129. doi: 10.1007/s40268-023-00444-4
  • Study to evaluate the safety and efficacy of ASC42 tablets in subjects with primary biliary cholangitis. ClinicalTrials.gov identifier: NCT05190523. [ Published 2023 Feb 23; cited 2024 Jan 9]. Available from: https://clinicaltrials.gov/study/NCT05190523
  • A phase I, randomized, double-blind, placebo-controlled, single ascending does/Multiple ascending does study of CS0159 to evaluate the safety, tolerability, pharmacokinetics, and food effect in healthy subjects. Sponsored by Cascade Pharmaceuticals. ClinicalTrials.gov identifier: NCT05624294. [ Published 2023 May 3; cited 2024 Jan 9]. Available from: https://clinicaltrials.gov/study/NCT05624294
  • A phase II study to evaluate safety, tolerability and efficacy, of CS0159 in patients subjects with PBC (primary biliary cholangitis), multicenter, randomized 12-week, double-blind, placebo-controlled, and 40-weeks Open study. Sponsored by Cascade Pharmaceuticals. ClinicalTrials.gov identifier: NCT05896124. [ Published 2023 Sep 1; cited 2024 Jan 9]. Available from: https://clinicaltrials.gov/study/NCT05896124
  • Xu J, Zhang H, Chen H, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of a novel farnesoid X receptor (FXR) agonist-TQA3526 in healthy Chinese volunteers: a double-blind, randomized, placebo-controlled, dose-escalation, food effect phase I study. Sponsored by Chia Tai Tianqing Pharmaceutical Group Co. Ltd. Ann Med. 2023;55(2):2264850.
  • A phase IIa, randomized, double-blind, placebo-controlled study of TQA3526 in the treatment of naive or Previously treated PBC patients. ClinicalTrials.gov identifier: NCT04278820. [ Published 2020 Feb 20; cited 2024 Jan 9]. Available from: https://clinicaltrials.gov/study/NCT04278820
  • Sohal A, Kowdley KV. Primary biliary cholangitis: promising emerging innovative therapies and their impact on GLOBE scores. Hepat Med. 2023 Jun;15:63–77. doi: 10.2147/HMER.S361077

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.