201
Views
0
CrossRef citations to date
0
Altmetric
Review

The impact of pregnancy and associated hormones on the pharmacokinetics of Δ9-tetrahydrocannabinol

&
Pages 73-93 | Received 24 Oct 2023, Accepted 19 Jan 2024, Published online: 04 Mar 2024

References

  • Crocq MA. History of cannabis and the endocannabinoid system. Dialogues Clin Neurosci. 2020;22(3):223–228. doi: 10.31887/DCNS.2020.22.3/mcrocq
  • Mechoulam R, Edery H. Chapter 2: structure-activity relationships in the Cannabinoid series. In: Mechoulam R, editor. Marijuana: chemistrry, pharmacology, metabolism, and clinical effects. (NY): Academic Press Inc; 1973. p. 101–136.
  • Mechoulam R, Gaoni Y. A total synthesis of dl-Δ 1 -tetrahydrocannabinol, the active constituent of hashish 1. J Am Chem Soc. 1965;87(14):3273–3275. Available from: https://pubs.acs.org/sharingguidelines
  • AbbVie Inc. MARINOL (dronabinol) capsules, for oral use, CIII [Internet]. North Chicago (IL); 2017. Available from: www.fda.gov/medwatch
  • Azofeifa A, Mattson ME, Schauer G, et al. National Estimates of Marijuana Use and Related Indicators — National Survey on Drug Use and Health, United States, 2002–2014. 2016.
  • Center for Behavioral Health Statistics S. Results from the 2015 National survey on drug use and health: detailed tables.
  • Center for Behavioral Health Statistics and Quality. Behavioral health trends in the United States: Results from the 2014 National Survey on Drug Use and Health (HHS Publication No. SMA 15-4927, NSDUH Series H-50). 2015. https://www.samhsa.gov/data/sites/default/files/NSDUH-FRR1-2014/NSDUH-FRR1-2014.pdf
  • Report: state medical cannabis laws [internet]. National Conference of State Legislatures. 2023 [cited 2023 Jun 30]. Available from: https://www.ncsl.org/health/state-medical-cannabis-laws#:~:text=As%20of%20Feb.,medical%20use%20of%20cannabis%20products
  • ElSohly MA, Mehmedic Z, Foster S, et al. Changes in cannabis potency over the last 2 decades (1995–2014): analysis of Current data in the United States. Biol Psychiatry. 2016;79(7):613–619. doi: 10.1016/j.biopsych.2016.01.004
  • Steigerwald S, Wong PO, Khorasani A, et al. The form and content of cannabis products in the United States. J Gen Intern Med. 2018;33(9):1426–1428. doi: 10.1007/s11606-018-4480-0
  • Medical Association A Cannabinoid dose and label accuracy in edible medical cannabis products [internet]. 2015. Available from: https://jamanetwork.com/
  • Schlienz NJ, Spindle TR, Cone EJ, et al. Pharmacodynamic dose effects of oral cannabis ingestion in healthy adults who infrequently use cannabis. Drug Alcohol Depend. 2020;211:211. doi: 10.1016/j.drugalcdep.2020.107969
  • Volkow ND, Han B, Compton, WM, et al. Self-reported Medical and Nonmedical Cannabis Use Among Pregnant Women in the United States. JAMA. 2019;322(2):167–169. doi: 10.1001/jama.2019.7982”101
  • Passey ME, Sanson-Fisher RW, D’Este CA, et al. Alcohol and cannabis use during pregnancy: clustering of risks. Drug Alc Dep. 2014 Jan 1;134:44–50. doi: 10.1016/j.drugalcdep.2013.09.008
  • Cannabis (marijuana) research report can marijuana use during and after pregnancy harm the baby? [internet]. National Institute on drug abuse. 2023 [cited 2023 Jun 30]. Available from: https://nida.nih.gov/publications/research-reports/marijuana/can-marijuana-use-during-pregnancy-harm-baby
  • Chang JC, Tarr JA, Holland CL, et al. Beliefs and attitudes regarding prenatal marijuana use: perspectives of pregnant women who report use. Drug Alcohol Depend. 2019;196:14–20. doi: 10.1016/j.drugalcdep.2018.11.028
  • Mark K, Gryczynski J, Axenfeld E, et al. Pregnant women’s Current and intended cannabis use in relation to their views toward legalization and knowledge of potential harm. J Addict Med. 2017;11(3):211–216. doi: 10.1097/ADM.0000000000000299
  • Young-Wolff KC, Sarovar V, Tucker L-Y, et al. Association of Nausea and vomiting in pregnancy with prenatal marijuana use. JAMA Intern Med. 2018;178(10):1423–1424. doi: 10.1001/jamainternmed.2018.3581
  • Bayrampour H, Zahradnik M, Lisonkova S, et al. Women’s perspectives about cannabis use during pregnancy and the postpartum period: an integrative review. Prev Med [Internet]. 2019;119:17–23. doi: 10.1016/j.ypmed.2018.12.002
  • Ko JY, Farr SL, Tong VT, et al. Prevalence and patterns of marijuana use among pregnant and nonpregnant women of reproductive age. Am J Obstet Gynecol. 2015;213(2):.e201.1–.e201.10. doi: 10.1016/j.ajog.2015.03.021
  • Holland CL, Nkumsah MA, Morrison P, et al. “Anything above marijuana takes priority”: obstetric providers’ attitudes and counseling strategies regarding perinatal marijuana use. Patient Educ Couns. 2016;99(9):1446–1451. doi: 10.1016/j.pec.2016.06.003
  • Cook JL, Blake JM. Cannabis: implications for pregnancy, fetal development, and longer-term health outcomes. J Obstet Gynaecol Canada [Internet]. 2018;40(9):1204–1207. doi: https://doi.org/10.1016/j.jogc.2018.06.004
  • Lemberger L, Martz R, Rodda B. Comparative pharmacology of Δ9-tetrahydrocannabinol and its metabolite, 11-OH-Δ9-tetrahydrocannabinol. J Clin Investig. 1973;52(10):2411–2417. doi: 10.1172/JCI107431
  • Zagzoog A, Cabecinha A, Abramovici H, et al. Modulation of type 1 cannabinoid receptor activity by cannabinoid by-products from cannabis sativa and non-cannabis phytomolecules. Front Pharmacol. 2022;13. doi: 10.3389/fphar.2022.956030
  • Pertwee RG. The diverse CB 1 and CB 2 receptor pharmacology of three plant cannabinoids: Δ 9-tetrahydrocannabinol, cannabidiol and Δ 9-tetrahydrocannabivarin. Br J Pharmacol. 2008;153(2):199–215. doi: 10.1038/sj.bjp.0707442
  • Grant KS, Petroff R, Isoherranen N, et al. Cannabis use during pregnancy: pharmacokinetics and effects on child development. Pharmacol Ther. 2018;182:133–151. doi: 10.1016/j.pharmthera.2017.08.014
  • Stella N. Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia. 2010;58(9):1017–1030. doi: 10.1002/glia.20983
  • Blanton HL, Barnes RC, McHann MC, et al. Sex differences and the endocannabinoid system in pain. Pharmacol Biochem Behav. 2021;202:202. doi: 10.1016/j.pbb.2021.173107
  • McKinney MK, Cravatt BE. Structure and function of fatty acid amide hydrolase. Annu Rev Biochem. 2005;74(1):411–432. doi: 10.1146/annurev.biochem.74.082803.133450
  • Cravatt BF, Demarest K, Patricelli MP, et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A [Internet]. 2001;98(16):9371–9376. doi: 10.1073/pnas.161191698
  • Dinh TP, Carpenter D, Leslie FM, Freund TF, et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA. 2002;99(16):10819–24. doi: 10.1073/pnas/152334899
  • Maccarrone M, De Felici M, Bari M, et al. Down-regulation of anandamide hydrolase in mouse uterus by sex hormones. Eur J Biochem. 2000;267(10):2991–2997. doi: 10.1046/j.1432-1327.2000.01316.x
  • Rodriguez De Fonseca F, Cebeira M, Ramos JA, et al. Cannabinoid receptors in rat brain areas: sexual differences, fluctuations during estrous cycle and changes after gonadectomy and sex steroid replacement. Life Sci. 1993;54(3):159–170. doi: 10.1016/0024-3205(94)00585-0
  • González S, Bisogno T, Wenger T, et al. Sex steroid influence on cannabinoid CB1 receptor mRNA and endocannabinoid levels in the anterior pituitary gland. Biochem Biophys Res Commun. 2000;270(1):260–266. doi: 10.1006/bbrc.2000.2406
  • Craft RM, Kandasamy R, Davis SM. Sex differences in anti-allodynic, anti-hyperalgesic and anti-edema effects of Δ9-tetrahydrocannabinol in the rat. Pain. 2013;154(9):1709–1717. doi: 10.1016/j.pain.2013.05.017
  • Tseng AH, Craft RM. Sex differences in antinociceptive and motoric effects of cannabinoids. Eur J Pharmacol [Internet]. 2001;430(1):41–47. doi: 10.1016/S0014-2999(01)01267-5
  • Smoker MP, Mackie K, Lapish CC, et al. Self-administration of edible Δ9-tetrahydrocannabinol and associated behavioral effects in mice. Drug Alcohol Depend. 2019;199:106–115. doi: 10.1016/j.drugalcdep.2019.02.020
  • Parks C, Jones BC, Moore BM, et al. Sex and strain variation in initial sensitivity and rapid tolerance to Δ9–tetrahydrocannabinol. Cannabis Cannabinoid Res. 2020;5(3):231–245. doi: 10.1089/can.2019.0047
  • Boehnke KF, Gangopadhyay S, Clauw DJ, et al. Qualifying conditions of medical cannabis license holders in the United States. Health Aff. 2019;38(2):295–302. doi: 10.1377/hlthaff.2018.05266
  • Matheson J, Sproule B, Di Ciano P, et al. Sex differences in the acute effects of smoked cannabis: evidence from a human laboratory study of young adults. Psychopharmacol (Berl). 2020;237(2):305–316. doi: 10.1007/s00213-019-05369-y
  • Pabon E, de Wit H. Effects of oral delta-9-tetrahydrocannabinol in women during the follicular phase of the menstrual cycle. Cannabis Cannabinoid Res. 2023;8(6):1117–1125. doi: 10.1089/can.2022.0045
  • Sun X, Dey SK. Endocannabinoid signaling in female reproduction. ACS Chem Neurosci. 2012;3(5):349–355. doi: 10.1021/cn300014e
  • Correa F, Wolfson ML, Valchi P, et al. Endocannabinoid system and pregnancy. Reproduction. 2016;152(6):R191–R200. doi: 10.1530/REP-16-0167
  • Ezechukwu HC, Diya CA, Shrestha N, et al. Role for endocannabinoids in early pregnancy: recent advances and the effects of cannabis use. Am J Physiol Endocrinol Metab [Internet]. 2020;319(3):E557–E561. doi: 10.1152/ajpendo.00210.2020
  • Kozakiewicz ML, Grotegut CA, Howlett AC, Endocannabinoid system in pregnancy maintenance and labor: a mini-review. Front Endocrinol. 2021;12: Frontiers Media S.A. 10.3389/fendo.2021.699951
  • Schneider M. Cannabis use in pregnancy and early life and its consequences: animal models. Eur Arch Psychiatry Clin Neurosci. 2009;259(7):383–393. doi: 10.1007/s00406-009-0026-0
  • Fride E, Gobshtis N, Dahan H, et al. Chapter 6 the endocannabinoid system during development: emphasis on perinatal events and delayed effects. Vitam Horm. 2009;81:139–158.
  • Habayeb OMH, Taylor AH, Evans MD, et al. Plasma levels of the endocannabinoid anandamide in women—A potential role in pregnancy maintenance and labor? J Clin Endocrinol Metab. 2004;89(11):5482–5487. doi: 10.1210/jc.2004-0681
  • Fonseca BM, Correia-da-Silva G, Taylor AH, et al. The endocannabinoid 2-arachidonoylglycerol (2-AG) and metabolizing enzymes during rat fetoplacental development: a role in uterine remodelling. Int J Biochem Cell Biol. 2010;42(11):1884–1892. doi: 10.1016/j.biocel.2010.08.006
  • Maia J, Fonseca BM, Teixeira N, et al. The fundamental role of the endocannabinoid system in endometrium and placenta: implications in pathophysiological aspects of uterine and pregnancy disorders. Hum Reprod Update. 2020;26(4):586–602. doi: 10.1093/humupd/dmaa005
  • Bazyar H, Nasiri K, Ghanbari P, et al. Circulating endocannabinoid levels in pregnant women with gestational diabetes mellitus: a case–control study. BMC Endocr Disord. 2022;22(1):22. doi: 10.1186/s12902-022-01182-5
  • Olyaei AMYF, Campbell LR, Roberts VHJ, et al. Animal models evaluating the impact of prenatal exposure to tobacco and marijuana. Clin Obstet Gynecol. 2022;65(2):334–346. doi: 10.1097/GRF.0000000000000693
  • Marijuana Use During Pregnancy And Lactation. The American College of Obstetricians and Gynecologists; 2017. p. 205–209. Available from: www.acog.org/About-ACOG/ACOG-Departments/
  • Wu C-S, Jew CP, Lu H-C. Lasting impacts of prenatal cannabis exposure and the role of endogenous cannabinoids in the developing brain. Future Neurol. 2011;6(4):459–480. doi: 10.2217/fnl.11.27
  • Grewen K, Salzwedel AP, Gao W. Functional connectivity disruption in neonates with prenatal marijuana exposure. Front Hum Neurosci. 2015;9. doi: 10.3389/fnhum.2015.00601
  • Fried PA, Watkinson B, Gray R. Differential effects on cognitive functioning in 9- to 12-year olds prenatally exposed to cigarettes and marihuana. Neurotoxicol Teratol. 1998;20(3):293–306. doi: 10.1016/S0892-0362(97)00091-3
  • Goldschmidt L, Day NL, Richardson GA. Effects of prenatal marijuana exposure on child behavior problems at age 10. Neurotoxicol Teratol. 2000;22(3):325–336. doi: 10.1016/S0892-0362(00)00066-0
  • El MH, Hudziak JJ, Tiemeier H, et al. Intrauterine cannabis exposure leads to more aggressive behavior and attention problems in 18-month-old girls. Drug Alcohol Depend. 2011;118(2–3):470–474. doi: 10.1016/j.drugalcdep.2011.03.004
  • Leech SL, Richardson GA, Goldschmidt L, et al. Prenatal substance exposure: effects on attention and impulsivity of 6-year-olds. Neurotoxicol Teratol. 1999;21(2):109–118. doi: 10.1016/S0892-0362(98)00042-7
  • Huang W, Czuba LC, Manuzak JA, et al. Objective identification of cannabis use levels in clinical populations is critical for detecting pharmacological outcomes. Cannabis Cannabinoid Res. 2021;1–13. doi: 10.1089/can.2020.0027
  • Hjorthøj CR, Hjorthøj AR, Nordentoft M. Validity of timeline follow-back for self-reported use of cannabis and other illicit substances — systematic review and meta-analysis. Add Behav. 2012;37(3):225–233. doi: 10.1016/j.addbeh.2011.11.025
  • Clark CB, Zyambo CM, Li Y, et al. The impact of non-concordant self-report of substance use in clinical trials research. Add Behav. 2016;58:74–79. doi: 10.1016/j.addbeh.2016.02.023
  • Khalili P, Nadimi AE, Baradaran HR, et al. Validity of self-reported substance use: research setting versus primary health care setting. Subst Abuse Treat Prev Policy. 2021;16(1). doi: 10.1186/s13011-021-00398-3
  • Harrison L The validity of self-reported drug use in survey research: an overview and critique of research methods.
  • Ko JY, Tong VT, Bombard JM, et al. Marijuana use during and after pregnancy and association of prenatal use on birth outcomes: a population-based study. Drug Alcohol Depend. 2018;187:72–78. doi: 10.1016/j.drugalcdep.2018.02.017
  • Warshak CR, Regan J, Moore B, et al. Association between marijuana use and adverse obstetrical and neonatal outcomes. J Perinatol. 2015;35(12):991–995. doi: 10.1038/jp.2015.120
  • Verrico CD, Liu S, Bitler EJ, et al. Delay- and dose-dependent effects of Δ9-tetrahydrocannabinol administration on spatial and object working memory tasks in adolescent rhesus monkeys. Neuropsychopharmacology. 2012;37(6):1357–1366. doi: 10.1038/npp.2011.321
  • Manuzak JA, Gott TM, Kirkwood JS, et al. Heavy cannabis use associated with reduction in activated and inflammatory immune cell frequencies in antiretroviral therapy–treated human immunodeficiency virus–infected individuals. Clinl Infect Dis. 2018;66(12):1872–1882. doi: 10.1093/cid/cix1116
  • Newmeyer MN, Swortwood MJ, Barnes AJ, et al. Free and glucuronide whole blood cannabinoids’ pharmacokinetics after controlled smoked, vaporized, and oral cannabis administration in frequent and occasional cannabis users: identification of recent cannabis intake. Clin Chem. 2016;62(12):1579–1592. doi: 10.1373/clinchem.2016.263475
  • Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet. 2003;42(4):327–360. doi: 10.2165/00003088-200342040-00003
  • Watanabe K, Yamaori S, Funahashi T, et al. Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes. Life Sci. 2007;80(15):1415–1419. doi: 10.1016/j.lfs.2006.12.032
  • Matsunaga T, Iwawaki Y, Watanabe K, et al. Metabolism of Δ9-tetrahydrocannabinol by cytochrome P450 isozymes purified from hepatic microsomes of monkeys. Life Sci. 1995;56(23–24):2089–2095. doi: 10.1016/0024-3205(95)00193-A
  • Sachse-Seeboth C, Pfeil J, Sehrt D, et al. Interindividual variation in the pharmacokinetics of Δ9- tetrahydrocannabinol as related to genetic polymorphisms in CYP2C9. Clin Pharmacol Ther. 2009;85(3):273–276. doi: 10.1038/clpt.2008.213
  • Patilea-Vrana GI, Unadkat JD. Quantifying hepatic enzyme kinetics of (-)-∆9-tetrahydrocannabinol (THC) and its psychoactive metabolite, 11-OH-THC, through in vitro modeling. Drug Metab Dispos. 2019;47(7):743–752. doi: 10.1124/dmd.119.086470
  • Naef M, Russmann S, Petersen-Felix S, et al. Development and pharmacokinetic characterization of pulmonal and intravenous delta-9-tetrahydrocannabinol (THC) in humans. J Pharm Sci. 2004;93(5):1176–1184. doi: 10.1002/jps.20037
  • Metz TD, McMillin GA, Silver RM, et al. Quantification of prenatal marijuana use: evaluation of the correlation between self-report, serum, urine and umbilical cord assays among women delivering at two urban Colorado hospitals. Addiction. 2022;117(1):172–181. doi: 10.1111/add.15606
  • Narimatsu S, Watanabe K, Matsunaga T, et al. Cytochrome P-450 isozymes in metabolic activation of delta 9-tetrahydrocannabinol by rat liver microsomes. Drug Metab Dispos. 1990;18(6):943–948.
  • Beers JL, Authement AK, Isoherranen N, et al. Cytosolic enzymes generate cannabinoid metabolites 7-carboxycannabidiol and 11-nor-9-carboxytetrahydrocannabinol. ACS Med Chem Lett. 2023;14(5):614–620. doi: 10.1021/acsmedchemlett.3c00017
  • Mazur A, Lichti CF, Prather PL, et al. Characterization of human hepatic and extrahepatic UDP- glucuronosyltransferase enzymes involved in the metabolism of classic cannabinoids. Drug Metab Dispos. 2009;37(7):1496–1504. doi: 10.1124/dmd.109.026898
  • Wall ME, Sadler BM, Brine D, et al. Metabolism, disposition, and kinetics of delta-9-tetrahydrocannabinol in men and women. Clin Pharmacol Ther. 1983;34(3):352–363. doi: 10.1038/clpt.1983.179
  • Fabritius M, Staub C, Mangin P, et al. Distribution of free and conjugated cannabinoids in human bile samples. Forensic Sci Int. 2012;223(1–3):114–118. doi: 10.1016/j.forsciint.2012.08.013
  • National Center for Biotechnology Information. PubChem compound summary for CID 16078, dronabinol [internet]. PubChem. [cited 2023 Sep 27]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Dronabinol
  • National Center for Biotechnology Information. PubChem compound summary for CID 644022, 11-hydroxytetrahydrocannabinol [internet]. PubChem. [cited 2023 Sep 27]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/11-Hydroxytetrahydrocannabinol
  • National Center for Biotechnology Information. PubChem compound summary for CID 108207, 11-nor-9-carboxy-delta-9-tetrahydrocannabinol [internet]. PubChem. [cited 2023 Sep 27]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/11-Nor-9-carboxy-delta-9-tetrahydrocannabinol
  • Thomas BF, Compton DR, Martin BA. Characterization of the lipophilicity of natural and synthetic analogs of L\9-tetrahydrocannabinol and its relationship to pharmacological potency. J Pharmacol Toxicol. 1990;255:624–630.
  • O’Neil MJ. The Merck Index - an encyclopedia of chemicals, drugs, and biologicals. 15th ed. Cambridge (UK): Royal Society of Chemistry; 2013.
  • ChemAxon. Chemicalize was used for prediction of pKa of 11-OH-THC and 11-COOH-THC [internet]. 2023 [cited 2023 Oct 21]. Available from: https://chemicalize.com/
  • Lemberger L, Crabtree RE, Rowe HM. 11-Hydroxy-Δ9-tetrahydrocannabinol: pharmacology, disposition, and metabolism of a major metabolite of marihuana in man. Sci (1979). 1972;177(4043):62–64. doi: 10.1126/science.177.4043.62
  • Glaz-Sandberg A, Dietz L, Nguyen H, et al. Pharmacokinetics of 11-nor-9-carboxy-Δ9- tetrahydrocannabinol (CTHC) after intravenous administration of CTHC in healthy human subjects. Clin Pharmacol Ther. 2007;82(1):63–69. doi: 10.1038/sj.clpt.6100199
  • Giroud C, Menetrey A, Augsburger M, et al. Δ9-THC, 11-OH-Δ9-THC and Δ9-THCCOOH plasma or serum to whole blood concentrations distribution ratios in blood samples taken from living and dead people. Forensic Sci Int. 2001;123(2–3):159–164. doi: 10.1016/S0379-0738(01)00538-2
  • Skopp G, Ètsch LP, Mauden M, et al. Partition coefficient, blood to plasma ratio, protein binding and short-term stability of 11-nor-Δ9-carboxy tetrahydrocannabinol glucuronide. Forensic Sci Int. 2002;126(1):17–23. doi: 10.1016/S0379-0738(02)00023-3
  • Lindgren J-E, Ohlsson A, Agurell S, et al. Clinical effects and plasma levels of a 9-tetrahydrocannabinol (A 9-THC) in heavy and light users of cannabis. Psychopharmacology. 1981;74(3):208–212. doi: 10.1007/BF00427095
  • Morrison PD, Zois V, McKeown DA, et al. The acute effects of synthetic intravenous Δ9-tetrahydrocannabinol on psychosis, mood and cognitive functioning. Psychol Med. 2009;39(10):1607–1616. doi: 10.1017/S0033291709005522
  • Barkus E, Morrison PD, Vuletic D, et al. Does intravenous Δ9-tetrahydrocannabinol increase dopamine release? A SPET study. J Psychopharmacol. 2011;25(11):1462–1468. doi: 10.1177/0269881110382465
  • Ohlsson A, Lindgren J‐E, Wahlen A, et al. Plasma delta‐9‐tetrahydrocannabinol concentrations and clinical effects after oral and intravenous administration and smoking. Clin Pharmacol Ther. 1980;28(3):409–416. doi: 10.1038/clpt.1980.181
  • Kelly P, Jones RT. Metabolism of tetrahydrocannabinol in frequent and infrequent marijuana users. J Anal Toxicol. 1992;16(4):228–35. doi: 10.1093/jat/16.4.228
  • Hunt AC, Jones RT. Tolerance and disposition of tetrahydrocannabinol in man. J Pharmacol Exp Ther. 1980;215(1):35–44.
  • Lemberger L, Weiss JL, Watanabe AM, et al. Delta-9-tetrahydrocannabinol temporal correlation of the psychological effects and blood levels after various routes of administration. N Engl J Med. 1972;286(13):685–688. doi: 10.1056/NEJM197203302861303
  • Wall ME, Sadler BM, Brine D, et al. Metabolism, disposition, and kinetics of delta-9-tetrahydrocannabinol in men and women.
  • Ohlsson A, Lindgren J-E, Wahlen A, et al. Single dose kinetics of deuterium labelled Δ1-tetrahydrocannabinol in heavy and light cannabis users. Biol Mass Spectrom. 1982;9(1):6–10. doi: 10.1002/bms.1200090103
  • Wall ME, Perez-Reyes M. The metabolism of Δ 9 -tetrahydrocannabinol and related cannabinoids in man. J Clin Pharmacol. 1981;21(S1):178S–189S. doi: 10.1002/j.1552-4604.1981.tb02594.x
  • Lemberger L, Silberstein SD, Axelrod J, et al. Marihuana: studies on the disposition and metabolism of delta-9-tetrahydrocannabinol in man. Science. 1970;170(3964):1320–1322. doi: 10.1126/science.170.3964.1320
  • Lemberger L, Tamarkin NR, Axelrod J, et al. Delta-9-Tetrahydrocannabinol: Metabolism and Disposition in Long-Term Marihuana Smokers. Science. 1971;173(3991):72–74. doi: 10.1126/science.173.3991.72
  • Garrett ER, Hunt CA. Pharmacokinetics of Δ9-tetrahydrocannabinol in dogs. J Pharm Sci. 1977;66(3):395–407. doi: 10.1002/jps.2600660322
  • Patilea-Vrana GI, Unadkat JD. Development and verification of a linked Δ 9 -THC/11-OH-THC physiologically based pharmacokinetic model in healthy, nonpregnant population and extrapolation to pregnant women. Drug Metab Dispos. 2021;49(7):509. doi: 10.1124/dmd.120.000322
  • Klausner H, Wilcox H, Dingell J. The use of zonal ultracentrifugation in the investigation of the binding of delta9-tetrahydrocannabinol by plasma lipoproteins. Drug Metab Dispos. 1975;3(4):314–319.
  • Yabut KCB, Isoherranen N. Impact of intracellular lipid binding proteins on endogenous and xenobiotic ligand metabolism and disposition. Drug Metab Dispos. 2023;51(6):700–717. doi: 10.1124/dmd.122.001010
  • Elmes MW, Kaczocha M, Berger WT, et al. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). J Biol Chem. 2015;290(14):8711–8721. doi: 10.1074/jbc.M114.618447
  • Spiro AS, Wong A, Boucher AA, et al. Enhanced brain disposition and effects of Δ 9-tetrahydrocannabinol in P-glycoprotein and breast cancer resistance protein knockout mice. PLoS One. 2012;7(4):e35937. doi: 10.1371/journal.pone.0035937
  • Bonhomme-Faivre L, Benyamina A, Reynaud M, et al. PRECLINICAL STUDY: disposition of Δ 9 tetrahydrocannabinol in CF1 mice deficient in mdr1a P-glycoprotein. Addict Biol. 2008;13(3–4):295–300. doi: 10.1111/j.1369-1600.2008.00096.x
  • Chen X, Unadkat JD, Mao Q. Maternal and fetal exposure to (-)-Δ9-tetrahydrocannabinol and its major metabolites in pregnant mice is differentially impacted by P-glycoprotein and breast cancer resistance protein. Drug Metab Dispos. 2023;51(3):269–275. doi: 10.1124/dmd.122.001110
  • Chen X, Unadkat JD, Mao Q. Tetrahydrocannabinol and its major metabolites are not (or are poor) substrates or inhibitors of human P-Glycoprotein [ATP-binding cassette (ABC) B1] and breast cancer resistance protein (ABCG2). Drug Metab Dispos. 2021;49(10):910–918. doi: 10.1124/dmd.121.000505
  • Brunet B, Doucet C, Venisse N, et al. Validation of large white pig as an animal model for the study of cannabinoids metabolism: application to the study of THC distribution in tissues. Forensic Sci Int. 2006;161(2–3):169–174. doi: 10.1016/j.forsciint.2006.04.018
  • Kudo K, Nagata T, Kimura K, et al. Sensitive determination of Δ9-tetrahydrocannabinol in human tissues by GC-MS. J Anal Toxicol. 1995;19(2):87–90. doi: 10.1093/jat/19.2.87
  • Saenz SR, Lewis RJ, Angier MK, et al. Postmortem fluid and tissue concentrations of THC, 11-OH-THC and THC-COOH†. J Anal Toxicol. 2017;41(6):508–516. doi: 10.1093/jat/bkx033
  • Kreuz DS, Axelrod J. Delta-9-Tetrahydrocannabinol: Localization in Body Fat. Science (1979). 1973;179(4071):391–393. doi: 10.1126/science.179.4071.391
  • Huestis MA. Human cannabinoid pharmacokinetics. Chem Biodivers. 2007;4(8):1770–1804. doi: 10.1002/cbdv.200790152
  • Stott C, White L, Wright S, et al. A phase I, open-label, randomized, crossover study in three parallel groups to evaluate the effect of rifampicin, ketoconazole, and omeprazole on the pharmacokinetics of THC/CBD oromucosal spray in healthy volunteers. Springerplus. 2013;2(1):1–15. doi: 10.1186/2193-1801-2-236
  • Huestis MA, Henningfield JE, Conet EJ. Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana*. J Anal Toxicol. 1992;16(5):276–282.
  • Lunn S, Diaz P, O’Hearn S, et al. Human pharmacokinetic parameters of orally administered Δ9-tetrahydrocannabinol capsules are altered by fed versus fasted conditions and sex differences. Cannabis Cannabinoid Res [Internet]. [cited 2023 May 9];4. Available from: https://pubmed.ncbi.nlm.nih.gov/31872060/
  • Huestis MA, Henningfield JE, Conet EJ. Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana*. J Anal Toxicol. 1992;16(5):276–282. doi: 10.1093/jat/16.5.276
  • Agurell S, Leander K. Stability, transfer and absorption of cannabinoid constituents of cannabis (hashish) during smoking. Acta Pharm Suec. 1971;8(4):391–402.
  • Anttila S, Tuominen P, Hirvonen A, et al. CYP1A1 levels in lung tissue of tobacco smokers and polymorphisms of CYP1A1 and aromatic hydrocarbon receptor. Pharmaco. 2001;11(6): 501–509. doi: 10.1097/00008571-200108000-00005
  • Parikh N, Kramer WG, Khurana V, et al. Bioavailability study of dronabinol oral solution versus dronabinol capsules in healthy volunteers. Clin Pharmacol. 2016;8:155–162. doi: 10.2147/CPAA.S115679
  • Oh DA, Parikh N, Khurana V, et al. Effect of food on the pharmacokinetics of dronabinol oral solution versus dronabinol capsules in healthy volunteers. Clin Pharmacol. 2017;9:9–17. doi: 10.2147/CPAA.S119676
  • Kumar AR, Patilea-Vrana GI, Anoshchenko O, et al. Characterizing and quantifying extrahepatic metabolism of (−)-Δ 9 -tetrahydrocannabinol (THC) and its psychoactive metabolite, (±)-11-hydroxy-Δ 9 -THC (11-OH-THC). Drug Metab Dispos. 2022;50(6):734–740. doi: 10.1124/dmd.122.000868
  • Spindle TR, Cone EJ, Herrmann ES, et al. Pharmacokinetics of cannabis brownies: a controlled examination of Δ9-tetrahydrocannabinol and metabolites in blood and oral fluid of healthy adult males and females. J Anal Toxicol. 2020;44(7):661–671. doi: 10.1093/jat/bkaa067
  • Nadulski T, Pragst F, Weinberg G, et al. Randomized, Double-Blind, placebo-controlled study about the effects of cannabidiol (CBD) on the pharmacokinetics of D 9-tetrahydrocannabinol (THC) after oral application of THC verses standardized cannabis extract. Ther Drug Monit. 2005;27(6):799–810. doi: 10.1097/01.ftd.0000177223.19294.5c
  • Martignoni M, Groothuis GMM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2(6):875–894. doi: 10.1517/17425255.2.6.875
  • Wiley JL, Burston JJ. Sex differences in delta 9-tetrahydrocannabinol metabolism and in vivo pharmacology following acute and repeated dosing in adolescent rats. Neurosci Lett. 2014;576:51–55. doi: 10.1016/j.neulet.2014.05.057
  • Craft RM, Haas AE, Wiley JL, et al. Gonadal hormone modulation of ∆9-tetrahydrocannabinol-induced antinociception and metabolism in female versus male rats. Pharmacol Biochem Behav. 2017;152:36–43. doi: 10.1016/j.pbb.2016.09.006
  • Narimatsu S, Watanabe K, Matsunaga T, et al. Cytochrome P-450 isozymes involved in the oxidative metabolism of delta9-tetrahydrocannabinol by liver microsomes of adult female rats. Drug Metab Dispos. 1991;20:79–83.
  • Narimatsu S, Watanabe K, Yamamoto I, et al. Sex difference in the oxidative metabolism of Δ9-tetrahydrocannabinol in the rat. Biochem Pharmacol. 1991;41(8):1187–1194. doi: 10.1016/0006-2952(91)90657-Q
  • Watanabe K, Matsunaga T, Narimatsu S, et al. Sex difference in hepatic microsomal aldehyde oxygenase activity in different strains of mice. Res Commun Chem Pathol Pharmacol. 1992;78(3):373–376.
  • Jeong H. Altered drug metabolism during pregnancy: Hormonal regulation of drug-metabolizing enzymes. Expert Opin Drug Metab Toxicol. 2010;6(6):689–699. doi: 10.1517/17425251003677755
  • Isoherranen N, Thummel KE. Drug metabolism and transport during pregnancy: how does drug disposition change during pregnancy and what are the mechanisms that cause such changes? Drug Metab Dispos. 2013;41(2):256–262. doi: 10.1124/dmd.112.050245
  • Balhara A, Kumar AR, Unadkat JD. Predicting human fetal drug exposure through maternal-fetal PBPK modeling and in vitro or ex vivo studies. J Clin Pharmacol. 2022;62(S1):S94–S114. doi: 10.1002/jcph.2117
  • Abduljalil K, Furness P, Johnson TN, et al. Anatomical, physiological and metabolic changes with gestational age during normal pregnancy a database for parameters required in physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2012;51(6):365–396. doi: 10.2165/11597440-000000000-00000
  • Anderson GD. Pregnancy-induced changes in pharmacokinetics a mechanistic-based approach. Clin Pharmacokinet. 2005;44(10):989–1008. doi: 10.2165/00003088-200544100-00001
  • Anderson GD. Using pharmacokinetics to predict the effects of pregnancy and maternal–infant transfer of drugs during lactation. Expert Opin Drug Metab Toxicol. 2006;2(6):947–960. doi: 10.1517/17425255.2.6.947
  • Fuglsang J, Skjærbæk C, Espelund U, et al. Ghrelin and its relationship to growth hormones during normal pregnancy. Clin Endocrinol (Oxf). 2005;62(5):554–559. doi: 10.1111/j.1365-2265.2005.02257.x
  • Dehkhoda F, Lee CMM, Medina J, et al. The growth hormone receptor: mechanism of receptor activation, cell signaling, and physiological aspects. Front Endocrinol. 2018;9. Frontiers Media S.A.
  • Soldin OP, Guo T, Weiderpass E, et al. Steroid hormone levels in pregnancy and 1 year postpartum using isotope dilution tandem mass spectrometry. Fertil Steril. 2005;84(3):701–710. doi: 10.1016/j.fertnstert.2005.02.045
  • Sever R, Glass CK. Signaling by nuclear receptors. Cold Spring Harb Perspect Biol. 2013;5(3):a016709–a016709. doi: 10.1101/cshperspect.a016709
  • Jung C, Ho JT, Torpy DJ, et al. A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. J Clin Endocrinol Metab. 2011;96(5):1533–1540. doi: 10.1210/jc.2010-2395
  • Kerlan V, Nahoult K, Le MartelotS M-T, et al. Longitudinal study of maternal plasma bioavailable testosterone and androstanediol glucuronide levels during pregnancy. Clin Endocrinol (Oxf). 1994;40(2):263–267. doi: 10.1111/j.1365-2265.1994.tb02478.x
  • Choi SY, Koh KH, Jeong H. Isoform-specific regulation of cytochromes P450 expression by estradiol and progesterone. Drug Metab Dispos. 2013;41(2):263–269. doi: 10.1124/dmd.112.046276
  • Gerbal-Chaloin S, Daujat M, Pascussi JM, et al. Transcriptional regulation of CYP2C9 gene. Role of glucocorticoid receptor and constitutive androstane receptor. J Biol Chem. 2002;277(1):209–217. doi: 10.1074/jbc.M107228200
  • Papageorgiou I, Grepper S, Unadkat JD. Induction of hepatic CYP3A enzymes by pregnancy-related hormones: studies in human hepatocytes and hepatic cell lines. Drug Metab Dispos. 2013;41(2):281–290. doi: 10.1124/dmd.112.049015
  • Liddle C, Goodwin BJ, George J, et al. Separate and interactive regulation of Cytochrome P450 3A4 by Triiodothyronine, dexamethasone, and growth hormone in cultured Hepatocytes*. J Clin Endocrinol Metab. 1998;83(7):2411–2416. Available from: https://academic.oup.com/jcem/article/83/7/2411/2865468
  • Zhang Z, Farooq M, Prasad B, et al. Prediction of gestational age–dependent induction of in vivo Hepatic CYP3A activity based on HepaRG cells and human hepatocytes. Drug Metab Dispos. 2015;43(6):836–842. doi: 10.1124/dmd.114.062984
  • Jeong H, Choi S, Song JW, et al. Regulation of UDP-glucuronosyltransferase (UGT) 1A1 by progesterone and its impact on labetalol elimination. Xenobiotica. 2008;38(1):62–75. doi: 10.1080/00498250701744633
  • Khatri R, Fallon JK, Sykes C, et al. Pregnancy-related hormones increase UGT1A1-mediated labetalol metabolism in human hepatocytes. Front Pharmacol. 2021;12:12. doi: 10.3389/fphar.2021.655320
  • Cho S-J, Ning M, Zhang Y, et al. 17β-Estradiol up-regulates UDP-glucuronosyltransferase 1A9 expression via estrogen receptor α. Acta Pharm Sin B. 2016;6(5):504–509. doi: 10.1016/j.apsb.2016.04.005
  • Robson SC, Hunter S, Boys RJ, et al. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Physiol Hear Circ Physiol [Internet]. 1989;256(4):H1060–H1065. Available from: www.physiology.org/journal/ajpheart
  • van Oppen ACC, van der Tweel I, Alsbach GPJ, et al. A longitudinal study of maternal hemodynamics during normal pregnancy. Obstet & Gynecol. 1996;88(1):40–46. doi: 10.1016/0029-7844(96)00069-5
  • Easterling TR, Benedetti TJ, Schmucker BC, et al. Maternal hemodynamics in normal and preeclamptic pregnancies: a longitudinal study. Obstet & Gynecol. 1990;76(6):1061–1069.
  • Nakai A, Sekiya I, Oya A, et al. Assessment of the hepatic arterial and portal venous blood flows during pregnancy with doppler ultrasonography. Arch Gynecol Obstet. 2002;266(1):25–29. doi: 10.1007/PL00007495
  • Dempsey D, Iii PJ, Benowitz NL. Accelerated metabolism of nicotine and cotinine in pregnant smokers. J Pharmacol Exp Ther [Internet]. 2002;301(2):594–598. Available from: http://jpet.aspetjournals.org
  • Gerdin E, Salmonson T, Lindberg B, et al. Maternal kinetics of morphine during labour. J Perinat Med. 1990;18(6):479–487. doi: 10.1515/jpme.1990.18.6.479
  • Dean M, Stock B, Patterson RJ, Levy G. Serum protein binding of drugs during and after pregnancy in humans. Clin Pharmacol Ther. 1980;20(2):253–261. doi: 10.1038/clpt.1980.158
  • Wild R, Feingold KR Effect of pregnancy on lipid metabolism and lipoprotein levels [internet]. Endotext. 2023 [cited 2023 Oct 21]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK498654/#:~:text=After%20delivery%2C%20lipid%20and%20lipoprotein,insulin%20resistance%20in%20the%20mother
  • Desoye G, Schweditsch M, Pfeiffer KP, et al. Correlation of hormones with lipid and lipoprotein levels during normal pregnancy and postpartum. J Clin Endocrinol Metab [Internet]. 1987;64(4):704–712. Available from: https://academic.oup.com/jcem/article/64/4/704/2653747
  • Rasmussen KM, Yaktine AL. In: Rasmussed, Yaktine, editors. Weight gain during pregnancy: reexamining the guideline. Washington DC: National Academies Press (US); 2009. doi: 10.17226/12584
  • Thomson AM, Billewicz WZ. Clinical significance of weight trends during pregnancy. Br Med J. 1957;1(5013):243–247. doi: 10.1136/bmj.1.5013.243
  • Kopp-Hoolihan LE, van Loan MD, Wong WW, et al. Longitudinal assessment of energy balance in well-nourished, pregnant women. Am J Clin Nutr. 1999;69(4):697–704. doi: 10.1093/ajcn/69.4.697
  • Kern F, Everson GT, DeMark B, et al. Biliary lipids, bile acids, and gallbladder function in the human female. Effects of pregnancy and the ovulatory cycle. J Clin Investig. 1981;68(5):1229–1242. doi: 10.1172/JCI110369
  • Hahm JS, Park JY, Song SC, et al. Gallbladder motility change in late pregnancy and after delivery. Korean J Intern Med. 1997;12(1):16–20. doi: 10.3904/kjim.1997.12.1.16
  • Davison JM, Dunlop W, Ezimokhai M. 24-hour creatinine clearance during the third trimester of normal pregnancy. Br J Obstet Gynaecol. 1980;87(2):106–109. doi: 10.1111/j.1471-0528.1980.tb04501.x
  • Dunlop W. Serial changes in renal haemodynamics during normal human pregnancy. Br J Obstet Gynaecol. 1981;88(1):1–9. doi: 10.1111/j.1471-0528.1981.tb00929.x
  • Dickinson RG, Hooper WD, Wood B, et al. The effect of pregnancy in humans on the pharmacokinetics of stable isotope labelled phenytoin. Br J Clin Pharmacol. 1989;28(1):17–27. doi: 10.1111/j.1365-2125.1989.tb03501.x
  • Lander CM, Smith MT, Chalk JB, et al. Bioavailability and pharmacokinetics of phenytoin during pregnancy. Eur J Clin Pharmacol. 1984;27(1):105–110. doi: 10.1007/BF02395215
  • Tomson T, Lindbom U, Ekqvist B, et al. Disposition of carbamazepine and phenytoin in pregnancy. Epilepsia. 1994;35(1):131–135. doi: 10.1111/j.1528-1157.1994.tb02922.x
  • Tomson T, Lindbom U, Ekqvist B, et al. Epilepsy and pregnancy: a pro- spective study of seizure control in relation to free and total plasma concentrations of carba- mazepine and phenytoin. Epilepsia. 1994;35(1):122–130. doi: 10.1111/j.1528-1157.1994.tb02921.x
  • Ke AB, Nallani SC, Zhao P, et al. Expansion of a PBPK model to predict disposition in pregnant women of drugs cleared via multiple CYP enzymes, including CYP2B6, CYP2C9 and CYP2C19. Br J Clin Pharmacol. 2014;77(3):554–570. doi: 10.1111/bcp.12207
  • Hebert MF, Ma X, Naraharisetti SB, et al. Are we optimizing gestational diabetes treatment with glyburide? The pharmacologic basis for better clinical practice. Clin Pharmacol Ther. 2009;85(6):607–614. doi: 10.1038/clpt.2009.5
  • Hebert MF, Easterling TR, Kirby B, et al. Effects of pregnancy on CYP3A and P-glycoprotein activities as measured by disposition of midazolam and digoxin: a University of Washington specialized center of research study. Clin Pharmacol Ther. 2008;84(2):248–253. doi: 10.1038/clpt.2008.1
  • Ke AB, Nallani SC, Zhao P, et al. A PBPK model to predict disposition of CYP3A-metabolized drugs in pregnant women: verification and discerning the site of CYP3A induction. CPT Pharmacometrics Syst Pharmacol. 2012;1(9):1. doi: 10.1038/psp.2012.2
  • Tracy TS, Venkataramanan R, Glover DD, et al. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A activity) during pregnancy. Am J Obstet Gynecol. 2005;192(2):633–639. doi: 10.1016/j.ajog.2004.08.030
  • Fischer JH, Sarto GE, Hardman J, et al. Influence of gestational age and body weight on the pharmacokinetics of labetalol in pregnancy. Clin Pharmacokinet. 2014;53(4):373–383. doi: 10.1007/s40262-013-0123-0
  • Watts DH, Brown ZA, Tartaglione T, Burchett SK, et al. Pharmacokinetic disposition of zidovudine during pregnancy. J Infect Dis. 1991;163(2):226–232. doi: 10.1093/infdis/163.2.226
  • Öhman I, Luef G, Tomson T. Effects of pregnancy and contraception on lamotrigine disposition: new insights through analysis of lamotrigine metabolites. Seizure. 2008;17(2):199–202. doi: 10.1016/j.seizure.2007.11.017
  • Franco V, Mazzucchelli I, Gatti G, et al. Changes in lamotrigine pharmacokinetics during pregnancy and the puerperium. Ther Drug Monit. 2008;30(4):544–547. doi: 10.1097/FTD.0b013e318178e2a9
  • Fotopoulou C, Kretz R, Bauer S, et al. Prospectively assessed changes in lamotrigine-concentration in women with epilepsy during pregnancy, lactation and the neonatal period. Epilepsy Res. 2009;85(1):60–64. doi: 10.1016/j.eplepsyres.2009.02.011
  • Tran TA, Leppik IE, Sathanandan ST, et al. Lamotrigine Clearance During Pregnancy. Neurology. 2002;59(2):251–255. doi: 10.1212/WNL.59.2.251
  • De Haan G-J, Edelbroek P, Segers J, et al. Gestation-induced changes in lamotrigine pharmacokinetics: a monotherapy study. Neurology [Internet]. 2004;63(3):571–573. doi: 10.1212/01.WNL.0000133213.10244.FD
  • Pennell P, Newport D, Stowe Z, et al. The impact of pregnancy and childbirth on the metabolism of lamotrigine. Neurology [Internet]. 2004;62(2):292–295. doi: 10.1212/01.WNL.0000103286.47129.F8
  • Jana S, Paliwal J. Molecular mechanisms of cytochrome P450 induction: potential for drug-drug interactions. Curr Protein Pept Sci. 2007;8(6):619–628. doi: 10.2174/138920307783018668
  • Tompkins LM, Wallace AD. Mechanisms of cytochrome P450 induction. J Biochem Mol Toxicol. 2007;21(4):176–181. doi: 10.1002/jbt.20180
  • Huang L, Bi H, Liu Y, Wang Y, et al. CAR-mediated up-regulation of CYP3A4 expression in LS174T cells by Chinese herbal compounds. Drug Metab Pharmacokinet. 2011;26(4):331–40. doi: 10.2133/dmpk.dmpk-10-rg-115
  • Zhou J, Zhang J, Xie W. Xenobiotic nuclear receptor-mediated regulation of UDP-Glucuronosyl-transferases. Curr Drug Metab. 2005;6(4):289–298. doi: 10.2174/1389200054633853
  • Xu C, Yong-Tao Li C, Tony Kong A-N. Induction of phase I, II and III drug metabolism/transport by Xenobiotics. Arch Pharm Res [Internet]. 2005;28(3):249–268. Available from: http://apr.psk.or.kr
  • Mwinyi J, Cavaco I, Yurdakok B, et al. The ligands of estrogen receptor α regulate cytochrome P4502C9 (CYP2C9) expression. J Pharmacol Exp Ther. 2011;338(1):302–309. doi: 10.1124/jpet.110.175075
  • McCune JS, Hawke RL, LeCluyse EL, et al. In vivo and in vitro induction of human cytochrome P4503A4 by dexamethasone. Clin Pharmacol Ther. 2000;68(4):356–366. doi: 10.1067/mcp.2000.110215
  • Pascussi JM, Drocourt L, Gerbal-Chaloin S, et al. Dual effect of dexamethasone on CYP3A4 gene expression in human hepatocytes. Sequential role of glucocorticoid receptor and pregnane X receptor. Eur J Biochem. 2001;268(24):6346–6358. doi: 10.1046/j.0014-2956.2001.02540.x
  • Gerbal-Chaloin S, Pascussi J-M, Pichard-Garcia L, et al. Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab Dispos. 2001;29(3):242–251.
  • Pascussi J-M, Drocourt L, Fabre J-M, et al. Dexamethasone induces pregnane X receptor and retinoid X receptor-α expression in human hepatocytes: synergistic increase of CYP3A4 induction by pregnane X receptor activators. Mol Pharmacol [Internet]. 2000;58(2):361–372. Available from: http://www.molpharm.org
  • Pascussi J-M, Gerbal-Chaloin S, Fabre J-M, et al. Dexamethasone enhances constitutive androstane receptor expression in human hepatocytes: consequences on Cytochrome P450 gene regulation. Mol Pharmacol [Internet]. 2000;58(6):1441–1450. Available from. doi: 10.1124/mol.58.6.1441
  • El-Sankary W, Plant NJ, Gibson GG, et al. Short communication regulation of the CYP3A4 gene by hydrocortisone and Xenobiotics: role of the glucocorticoid and pregnane X receptors. Drug Metab Dispos. 2000;28(5):493–496.
  • Ferguson SS, Chen Y, LeCluyse EL, et al. Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4α. Mol Pharmacol. 2005;68(3):747–757. doi: 10.1124/mol.105.013169
  • Shi Z, Yang W, Goldstein JA, et al. Med25 is required for estrogen receptor alpha (ERα)-mediated regulation of human CYP2C9 expression. Biochem Pharmacol. 2014;90(4):425–431. doi: 10.1016/j.bcp.2014.06.016
  • Alshabi A, Shaik IH, Zhao Y, et al. A cocktail probe approach to evaluate the effect of hormones on the expression and activity of CYP enzymes in human hepatocytes with conditions simulating late stage of pregnancy. Eur J Clin Pharmacol. 2023;79(6):815–827. doi: 10.1007/s00228-023-03489-1
  • Kawamoto T, Kakizaki S, Yoshinari K, et al. Estrogen activation of the nuclear orphan receptor CAR (constitutive active receptor) in induction of the mouse Cyp2b10 gene [internet]. 2000. Available from: https://academic.oup.com/mend/article/14/11/1897/2751103
  • Margaillan G, Rouleau M, Klein K, et al. Multiplexed targeted quantitative proteomics predicts hepatic glucuronidation potential. Drug Metab Dispos. 2015;43(9):1331–1335. doi: 10.1124/dmd.115.065391
  • Chen H, Yang K, Choi S, et al. Up-regulation of UDP-glucuronosyltransferase (UGT) 1A4 by 17β-estradiol: a potential mechanism of increased lamotrigine elimination in pregnancy. Drug Metab Dispos. 2009;37(9):1841–1847. doi: 10.1124/dmd.109.026609
  • Awasthi R, An G, Donovan MD, et al. Relating observed psychoactive effects to the plasma concentrations of delta-9-tetrahydrocannabinol and its active metabolite: an effect-compartment modeling approach. J Pharm Sci. 2018;107(2):745–755. doi: 10.1016/j.xphs.2017.09.009
  • Singla S, Block R. Effect compartment model for the evaluation of tolerance to psychological highness following smoking marijuana. J Clin Pharmacol. 2022;62(12):1539–1547. doi: 10.1002/jcph.2109
  • Chiang CWN, Barnett G. Marijuana effect and delta-9-tetrahydrocannabinol plasma level. Clin Pharmacol Ther. 1984;36(2):234–238. doi: 10.1038/clpt.1984.168
  • Gray TR, Lagasse LL, Smith LM, et al. Identification of prenatal amphetamines exposure by maternal interview and meconium toxicology in the infant development, environment and lifestyle (IDEAL) study. Ther Drug Monit [Internet]. 2009;31(6):769–775. doi: 10.1097/FTD.0b013e3181bb438e
  • Gray TR, Eiden RD, Leonard KE, et al. Identifying prenatal cannabis exposure and effects of concurrent tobacco exposure on neonatal growth. Clin Chem. 2010;56(9):1442–1450. doi: 10.1373/clinchem.2010.147876
  • Bailey JR, Cunny HC, Paule MG, et al. Fetal disposition of delta 9-tetrahydrocannabinol (THC) during late pregnancy in the rhesus monkey. Toxicol Appl Pharmacol. 1987;90(2):315–321. doi: 10.1016/0041-008X(87)90338-3
  • Sheagren JN. Human placental transfer of cannabinoids. New English J Med. 1984;797:311.
  • Kumar AR, Sheikh ED, Monson JW, et al. Understanding the mechanism and extent of transplacental transfer of (−)-∆ 9 -tetrahydrocannabinol (THC) in the perfused human placenta to predict in vivo fetal THC exposure. Clin Pharmacol Ther. 2023;114(2):446–458. doi: 10.1002/cpt.2964

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.