2,176
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Chemical modifications of artificial restriction DNA cutter (ARCUT) to promote its in vivo and in vitro applications

Article: e1112457 | Received 01 Sep 2015, Accepted 15 Oct 2015, Published online: 17 Mar 2016

References

  • Chandra M, Sachdeva A, Silverman SK. DNA-catalyzed sequence-specific hydrolysis of DNA. Nat Chem Biol 2009; 5:718-20; PMID:19684594; http://dx.doi.org/10.1038/nchembio.201
  • Aiba Y, Sumaoka J, Komiyama M. Artificial DNA cutters for DNA manipulation and genome engineering. Chem Soc Rev 2011; 40:5657-68; PMID:21566825; http://dx.doi.org/10.1039/c1cs15039a
  • Mancin F, Scrimin P, Tecilla P. Progress in artificial metallonucleases. Chem Commun 2012; 48:5545-59; PMID:22543403; http://dx.doi.org/10.1039/c2cc30952a
  • Komiyama M, Aiba Y, Yamamoto Y, Sumaoka J. Artificial restriction DNA cutter for site-selective scission of double-stranded DNA with tunable scission site and specificity. Nat Protoc 2008; 3:655-62; PMID:18388948; http://dx.doi.org/10.1038/nprot.2008.7
  • Katada H, Komiyama M. Artificial restriction DNA cutters as new tools for gene manipulation. ChemBioChem 2009; 10:1279-88; PMID:19396851; http://dx.doi.org/10.1002/cbic.200900040
  • Komiyama M, Aiba Y, Ishizuka T, Sumaoka J. Solid-phase synthesis of pseudo-complementary peptide nucleic acids. Nat Protoc 2008; 3:646-54; PMID:18388947; http://dx.doi.org/10.1038/nprot.2008.6
  • Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE. PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 1993; 365:566-8; PMID:7692304; http://dx.doi.org/10.1038/365566a0
  • Lohse J, Dahl O, Nielsen PE. Double duplex invasion by peptide nucleic acid: A general principle for sequence-specific targeting of double-stranded DNA. Proc Natl Acad Sci USA 1999; 96:11804-8; PMID:10518531; http://dx.doi.org/10.1073/pnas.96.21.11804
  • Haaima G, Hansen HF, Christensen L, Dahl O, Nielsen PE. Increased DNA binding and sequence discrimination of PNA oligomers containing 2,6-diaminopurine. Nucl Acids Res 1997; 25:4639-43; PMID:9358176; http://dx.doi.org/10.1093/nar/25.22.4639
  • Izvolsky KI, Demidov VV, Nielsen PE, Frank-Kamenetskii MD. Sequence-specific protection of duplex DNA against restriction and methylation enzymes by pseudocomplementary PNAs. Biochemistry 2000; 39:10908-13; PMID:10978178; http://dx.doi.org/10.1021/bi000675e
  • Protozanova E, Demidov VV, Nielsen PE, Frank-Kamenetskii MD. Pseudocomplementary PNAs as selective modifiers of protein activity on duplex DNA: the case of type IIs restriction enzymes. Nucl Acids Res 2003; 31:3929-35; PMID:12853608; http://dx.doi.org/10.1093/nar/gkg450
  • Kuhn H, Cherny DI, Demidov VV, Frank-Kamenetskii MD. Inducing and modulating anisotropic DNA bends by pseudocomplementary peptide nucleic acids. Proc Natl Acad Sci USA 2004; 101:7548-53; PMID:15136738[http://dx.doi.org/10.1073/pnas.0308756101
  • Kitamura Y, Komiyama M. Preferential hydrolysis of gap and bulge sites in DNA by Ce(IV)/EDTA complex. Nucl Acids Res 2002; 30: e102; PMID:12364619; http://dx.doi.org/10.1093/nar/gnf101
  • Ito K, Katada H, Shigi N, Komiyama M. Site-selective scission of human genome by artificial restriction DNA cutter. Chem Commun 2009; 6542-4; PMID:19865643; http://dx.doi.org/10.1039/b911208a
  • Ishizuka T, Xu Y, Komiyama M. A chemistry-based method to detect individual telomere lengths at a single chromosome terminus. J Am Chem Soc 2013;135:14-7; PMID:23252341; http://dx.doi.org/10.1021/ja308481c
  • Katada H, Chen HJ, Shigi N, Komiyama M. Homologous recombination in human cells using artificial restriction DNA cutter. Chem Commun 2009; 6545-7; PMID:19865644; http://dx.doi.org/10.1039/b912030k
  • Katada H, Komiyama M. Artificial Restriction DNA Cutters to Promote Homologous Recombination in Human Cells. Curr Gene Ther 2011; 11:38-45; PMID:21182465; http://dx.doi.org/10.2174/156652311794520094
  • Ito K, Shigi N, Komiyama M. Artificial restriction DNA cutter for site-selective gene insertion in human cells. Chem Commun 2013; 49:6764-6; PMID:23778429; http://dx.doi.org/10.1039/c3cc43261k
  • Nielsen PE. Sequence-selective targeting of duplex DNA by peptide nucleic acids. Curr Opin Mol Ther 2010; 12:184-91; PMID:20373262
  • Onyshchenko MI, Gaynutdinov TI, Englund EA, Appella DH, Neumann RD, Panyutin IG. Quadruplex formation is necessary for stable PNA invasion into duplex DNA of BCL2 promoter region. Nucl Acids Res 2011; 39:7114-23; PMID:21593130; http://dx.doi.org/10.1093/nar/gkr259
  • Xu Y, Suzuki Y, Lönnberg T, Komiyama M. Human telomeric DNA sequence-specific cleaving by G-quadruplex formation. J Am Chem Soc 2009; 131:2871-4; PMID:19209856; http://dx.doi.org/10.1021/ja807313x
  • Hu J, Corey DR. Inhibiting gene expression with peptide nucleic acid (PNA)-peptide conjugates that target chromosomal DNA. Biochemistry 2007; 46:7581-9; PMID:17536840; http://dx.doi.org/10.1021/bi700230a
  • Bentin T, Hansen GI, Nielsen PE. Structural diversity of target-specific homopyrimidine peptide nucleic acid-dsDNA complexes. Nucl Acids Res 2006; 34:5790-9; PMID:17053099; http://dx.doi.org/10.1093/nar/gkl736
  • Rogers FA, Vasquez KM, Egholm M, Glazer PM. Site-directed recombination via bifunctional PNA–DNA conjugates. Proc Natl Acad Sci USA 2002; 99:16695-700; PMID:12461167; http://dx.doi.org/10.1073/pnas.262556899
  • Vickers TA, Griffith MC, Ramasamy K, Risen LM, Freier SM. Inhibition of NF-κB specific transcriptional activation by PNA strand invasion. Nucl Acids Res 1995; 23:3003-8; PMID:7659524; http://dx.doi.org/10.1093/nar/23.15.3003
  • Demidov VV, Yavnilovich MV, Belotserkovskii BP, Frank-Kamenetskii MD, Nielsen PE. Kinetics and mechanism of polyamide (“peptide”) nucleic acid binding to duplex DNA. Proc Natl Acad Sci USA 1995; 92:2637-41; PMID:7708697; http://dx.doi.org/10.1073/pnas.92.7.2637
  • Boffa LC, Carpaneto EM, Allfrey VG. Isolation of active genes containing CAG repeats by DNA strand invasion by a peptide nucleic acid. Proc Natl Acad Sci USA 1995; 92:1901-5; PMID:7892196; http://dx.doi.org/10.1073/pnas.92.6.1901
  • Ackermann D, Famulok M. Pseudo-complementary PNA actuators as reversible switches in dynamic DNA nanotechnology. Nucl Acids Res 2013; 41:4729-39; PMID:23444144; http://dx.doi.org/10.1093/nar/gkt121
  • Demidov VV, Protozanova E, Izvolsky KI, Price C, Nielsen PE, Frank-Kamenetskii MD. Kinetics and mechanism of the DNA double helix invasion by pseudocomplementary peptide nucleic acids. Proc Natl Acad Sci USA 2002; 99:5953-8; PMID:11972051; http://dx.doi.org/10.1073/pnas.092127999
  • Datta B, Armitage BA. Hybridization of PNA to structured DNA targets:  Quadruplex invasion and the overhang effect. J Am Chem Soc 2001; 123:9612-9; PMID:11572682; http://dx.doi.org/10.1021/ja016204c
  • Zhang X, Ishihara T, Corey DR. Strand invasion by mixed base PNAs and a PNA-peptide chimera. Nucl Acids Res 2000; 28:3332-8; PMID:10954602; http://dx.doi.org/10.1093/nar/28.17.3332
  • Ray A, Nordén B. Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J 2000; 14:1041-60; PMID:10834926
  • Peffer NJ, Hanvey JC, Bisi JE, Thomson SA, Hassman CF, Noble SA, Babiss LE. Strand-invasion of duplex DNA by peptide nucleic acid oligomers. Proc Natl Acad Sci USA 1993; 90:10648-52; PMID:8248156; http://dx.doi.org/10.1073/pnas.90.22.10648
  • Ishizuka T, Yoshida J, Yamamoto Y, Sumaoka J, Tedeschi T, Corradini R, Sforza S, Komiyama M. Chiral introduction of positive charges to PNA for double-duplex invasion to versatile sequences. Nucl Acids Res 2008; 36:1464-71; PMID:18203747; http://dx.doi.org/10.1093/nar/gkm1154
  • Ishizuka T, Yang J, Komiyama M, Xu Y. G-rich sequence-specific recognition and scission of human genome by PNA/DNA hybrid G-quadruplex formation. Angew Chem Int Ed 2012; 51:7198-202; PMID:22700182; http://dx.doi.org/10.1002/anie.201201176
  • Yamazaki T, Aiba Y, Yasuda K, Sakai Y, Yamanaka Y, Kuzuya A, Ohya Y, Komiyama M. Clear-cut observation of PNA invasion using nanomechanical DNA origami devices. Chem Commun 2012; 48:11361-3; PMID:23073563; http://dx.doi.org/10.1039/c2cc36358e
  • Aiba Y, Honda Y, Komiyama M. Promotion of double-duplex invasion of peptide nucleic acid through conjugation with nuclear localization signal peptide. Chem Eur J 2015; 21:4021-6; PMID:25640012; http://dx.doi.org/10.1002/chem.201406085
  • Nielsen PE, Christensen L. Strand displacement binding of a duplex-forming homopurine PNA to a homopyrimidine duplex DNA target. J Am Chem Soc 1996; 118:2287-8; PMID:19306309; http://dx.doi.org/10.1021/ja953125q
  • He G, Rapireddy S, Bahal R, Sahu B, Ly DH. Strand invasion of extended, mixed-sequence B-DNA by γPNAs. J Am Chem Soc 2009; 131:12088-90; PMID:19663424; http://dx.doi.org/10.1021/ja900228j
  • Smolina IV, Demidov VV, Soldatenkov VA, Chasovskikh SG, Frank-Kamenetskii MD. End invasion of peptide nucleic acids (PNAs) with mixed-base composition into linear DNA duplexes. Nucl Acids Res 2005; 33:e146; PMID:16204449; http://dx.doi.org/10.1093/nar/gni151
  • Rapireddy S, He G, Roy S, Armitage BA, Ly DH. Strand invasion of mixed-sequence B-DNA by acridine-linked, γ-peptide nucleic acid (γ-PNA). J Am Chem Soc 2007; 129:15596-600; PMID:18027941; http://dx.doi.org/10.1021/ja074886j
  • Chenna V, Rapireddy S, Sahu B, Ausin C, Pedroso E, Ly DH. A simple cytosine to G-clamp nucleobase substitution enables chiral γ-PNAs to invade mixed-sequence double-helical B-form DNA. ChemBioChem 2008; 9:2388-91; PMID:18816545; http://dx.doi.org/10.1002/cbic.200800441
  • Branden LJ, Mohamed AJ, Smith CIE. A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol 1999; 17:784-7; PMID:10429244[http://dx.doi.org/10.1038/11726
  • Cutrona G, Carpaneto EM, Ulivi M, Roncella S, Landt O, Ferrarini M, Boffa LC. Effects in live cells of a c-myc anti-gene PNA linked to a nuclear localization signal. Nat Biotechnol 2000; 18:300-3; PMID:10700145; http://dx.doi.org/10.1038/73745
  • Cogoi S, Codognotto A, Rapozzi V, Meeuwenoord N, van der Marel G, Xodo LE. Transcription inhibition of oncogenic KRAS by a mutation-selective peptide nucleic acid conjugated to the PKKKRKV nuclear localization signal peptide. Biochemistry 2005; 44:10510-9; PMID:16060660; http://dx.doi.org/10.1021/bi0505215
  • Tonelli R, Purgato S, Camerin, C, Fronza R, Bologna F, Alboresi S, Franzoni M, Corradini R, Sforza S, Faccini A, et al. Antigene peptide nucleic acid specifically inhibits MYCN expression in human neuroblastoma cells leading to cell growth inhibition and apoptosis. Mol Cancer Ther 2005; 4:779-86; PMID:15897242; http://dx.doi.org/10.1158/1535-7163.MCT-04-0213
  • Tonelli R, McIntyre A, Camerin C, Walters ZS, Di Leo K, Selfe J, Purgato S, Missiaglia E, Tortori A, Renshaw J, et al. Antitumor activity of sustained N-Myc reduction in rhabdomyosarcomas and transcriptional block by antigene therapy. Clin Cancer Res 2012; 18:796-807; PMID:22065083; http://dx.doi.org/10.1158/1078-0432.CCR-11-1981
  • Faccini A, Tortori A, Tedeschi T, Sforza S, Tonelli R, Pession A, Corradini R, Marchelli R. Circular dichroism study of DNA binding by a potential anticancer peptide nucleic acid targeted against the MYCN oncogene. Chirality 2008; 20:494-500; PMID:17963203; http://dx.doi.org/10.1002/chir.20489
  • Kameshima W, Ishizuka T, Minoshima M, Yamamoto M, Sugiyama H, Xu Y, Komiyama M. Conjugation of peptide nucleic acid with pyrrole–imidazole polyamide to specifically recognize and cleave DNA. Angew Chem Int Ed 2013; 125:13926-9; PMID:24155125; http://dx.doi.org/10.1002/ange.201305489
  • Turner JM, Swalley SE, Baird EE, Dervan PB. Aliphatic/aromatic amino acid pairings for polyamide recognition in the minor groove of DNA. J Am Chem Soc 1998; 120:6219-26; http://dx.doi.org/10.1021/ja980147e
  • Dervan PB, Edelson BS. Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Curr Opin Struct Biol 2003; 13:284-99; PMID:12831879; http://dx.doi.org/10.1016/S0959-440X(03)00081-2
  • Bando T, Sugiyama H. Synthesis and biological properties of sequence-specific DNA-alkylating pyrrole−imidazole polyamides. Acc Chem Res 2006; 39:935-44; PMID:17176032; http://dx.doi.org/10.1021/ar030287f
  • Aiba Y, Honda Y, Han Y, Komiyama M. Introduction of multiphosphonate ligand to peptide nucleic acid for metal ion conjugation. Artificial DNA: PNA & XNA 2012; 3:73-9; PMID:22772037; http://dx.doi.org/10.4161/adna.20727
  • Matsumoto Y, Komiyama M. DNA hydrolysis by rare earth metal ions. Chem Exp 1992; 7:785-8
  • Sumaoka J, Yashiro M, Komiyama M. Remarkably fast hydrolysis of 3′,5′-cyclic adenosine mono-phosphate by cerium(III) hydroxide cluster. Chem Commun 1992; 1707-8; http://dx.doi.org/10.1039/c39920001707
  • Komiyama M, Kodama T, Takeda N, Sumaoka J, Shiiba T, Matsumoto Y, Yashiro M. Catalytically active species for the CeCl3-induced DNA hydrolysis. J Biochem 1994; 115:809-10; PMID:7961589
  • Takasaki BK, Chin J. Cleavage of the phosphate diester backbone of DNA with cerium(III) and molecular oxygen. J Am Chem Soc 1994; 116:1121-2; http://dx.doi.org/10.1021/ja00082a040
  • Komiyama M, Shiiba T, Kodama T, Takeda N, Sumaoka J, Yashiro M. DNA hydrolysis by cerium(IV) does not involve either molecular oxygen or hydrogen peroxide. Chem Lett 1994; 23:1025-8; http://dx.doi.org/10.1246/cl.1994.1025
  • Lönnberg T, Aiba Y, Hamano Y, Miyajima Y, Sumaoka J, Komiyama M. Oxidation of an oligonucleotide-bound Ce(III)/multiphosphonate complex for site-selective DNA scission. Chem Eur J 2010; 16:855-9; PMID:19938010; http://dx.doi.org/10.1002/chem.200902169
  • Aiba Y, Hamano Y, Kameshima W, Araki Y, Wada T, Accetta A, Sforza S, Corradini R, Marchelli R, Komiyama M. Conjugate of peptide nucleic acid and nuclear localization signal as single-molecular activator of target site in double-stranded DNA for site-selective scission. Org Biomol Chem 2013; 11:5233-8; PMID:23820872; http://dx.doi.org/10.1039/c3ob40947c
  • Lahoud G, Timoshchuk V, Lebedev A, Arar K, Hou YM, Gamper H. Properties of pseudo-complementary DNA substituted with weakly pairing analogs of guanine or cytosine. Nucl Acids Res 2008; 36:6999-7008; PMID:18987000; http://dx.doi.org/10.1093/nar/gkn797
  • Hoshika S, Chen F, Leal NA, Benner SA. Artificial genetic systems: Self-avoiding DNA in PCR and multiplexed PCR. Angew Chem Int Ed 2010; 49:5554-7; PMID:20586087; http://dx.doi.org/10.1002/anie.201001977
  • Olsen AG, Dahl O, Petersen AB, Nielsen J, Nielsen PE. A novel pseudo-complementary PNA G-C base pair. Artificial DNA: PNA & XNA 2011; 2:32-6; PMID:21686250; http://dx.doi.org/10.4161/adna.2.1.15554
  • Miyajima Y, Ishizuka T, Yamamoto Y, Sumaoka J, Komiyama M. Origin of high fidelity in target-sequence recognition by PNA-Ce(IV)/EDTA combination as site-selective DNA cutter. J Am Chem Soc 2009; 131:2657-62; PMID:19199631; http://dx.doi.org/10.1021/ja808290e
  • Harvey BJ, Levitus M. Nucleobase-specific enhancement of Cy3 fluorescence. J Fluoresc 2009; 19:443-8; PMID:18972191; http://dx.doi.org/10.1007/s10895-008-0431-1
  • Aiba Y, Yasuda K, Komiyama M. Site-selective scission of double-stranded DNA by combining a triplex-forming bis-PNA and Ce(IV)/EDTA. Chem Lett 2013; 42:1300-2; http://dx.doi.org/10.1246/cl.130650
  • Buske FA, Mattick JS, Bailey TL. Potential in vivo roles of nucleic acid triple-helices. RNA Biol 2011; 8:427-39; PMID:21525785; http://dx.doi.org/10.4161/rna.8.3.14999
  • Mirkin SM. Expandable DNA repeats and human disease. Nature 2007; 447:932-40; PMID:17581576; http://dx.doi.org/10.1038/nature05977
  • Dey I, Rath PC. A novel rat genomic simple repeat DNA with RNA-homology shows triplex (H-DNA)-like structure and tissue-specific RNA expression. Biochem Biophys Res Commun 2005; 327:276-86; PMID:15629459; http://dx.doi.org/10.1016/j.bbrc.2004.12.015
  • Belotserkovskii BP, Liu R, Tornaletti S, Krasilnikova MM, Mirkin SM, Hanawalt PC. Mechanisms and implications of transcription blockage by guanine-rich DNA sequences. Proc Natl Acad Sci USA 2010; 107:12816-21; PMID:20616059; http://dx.doi.org/10.1073/pnas.1007580107
  • Belotserkovskii BP, Neil AJ, Saleh SS, Shin JHS, Mirkin SM, Hanawalt PC. Transcription blockage by homopurine DNA sequences: role of sequence composition and single-strand breaks. Nucl Acids Res 2013; 41:1817-28; PMID:23275544; http://dx.doi.org/10.1093/nar/gks1333
  • Egholm M, Christensen L, Deuholm KL, Buchardt O, Coull J, Nielsen PE. Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucl Acids Res 1995; 23:217-22; PMID:7862524; http://dx.doi.org/10.1093/nar/23.2.217
  • Griffith MC, Risen LM, Greig MJ, Lesnik EA, Sprankle KG, Griffey RH, Kiely JS, Freier SM. Single and bis peptide nucleic acids as triplexing agents: Binding and stoichiometry. J Am Chem Soc 1995; 117:831-2; http://dx.doi.org/10.1021/ja00107a033
  • Sumaoka J, Komiyama M. Molecular crowding facilitates double-duplex invasion of pseudo-complementary peptide nucleic acid in high salt medium. Chem Lett 2014; 43:1581-3; http://dx.doi.org/10.1246/cl.140620
  • Lonkar P, Kim KH, Kuan JY, Chin JY, Rogers FA, Knauert MP, Kole R, Nielsen PE, Glazer PM. Targeted correction of a thalassemia-associated b-globin mutation induced by pseudo-complementary peptide nucleic acids. Nucl Acids Res 2009; 37:3635-44; PMID:19364810; http://dx.doi.org/10.1093/nar/gkp217
  • Fulton AB. How crowded is the cytoplasm? Cell 1982; 30:345-7; PMID:6754085; http://dx.doi.org/10.1016/0092-8674(82)90231-8
  • Zimmerman SB, Trach SO. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 1991; 222:599-620; PMID:1748995; http://dx.doi.org/10.1016/0022-2836(91)90499-V
  • Miyoshi D, Sugimoto N. Molecular crowding effects on structure and stability of DNA. Biochimie 2008; 90:1040-51; PMID:18331845; http://dx.doi.org/10.1016/j.biochi.2008.02.009
  • Markarian MZ, Schlenoff JB. Effect of molecular crowding and ionic strength on the isothermal hybridization of oligonucleotides. J Phys Chem B 2010; 114:10620-7; PMID:20701389; http://dx.doi.org/10.1021/jp103213w
  • Miyoshi D, Nakamura K, Tateishi-Karimata H, Ohmichi T, Sugimoto N. Hydration of Watson−Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions. J Am Chem Soc 2009; 131:3522-31; PMID:19236045; http://dx.doi.org/10.1021/ja805972a
  • Nakano S, Yamaguchi D, Tateishi-Karimata H, Miyoshi D, Sugimoto N. Hydration changes upon DNA folding studied by osmotic stress experiments. Biophys J 2012; 102:2808-17; PMID:22735531; http://dx.doi.org/10.1016/j.bpj.2012.05.019
  • Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 1996; 93:1156-60; PMID:8577732; http://dx.doi.org/10.1073/pnas.93.3.1156
  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010; 186:757-61; PMID:20660643; http://dx.doi.org/10.1534/genetics.110.120717
  • Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucl Acids Res 2011; 39:9283-93; PMID:21813459; http://dx.doi.org/10.1093/nar/gkr597
  • Stoddard BL. Homing endonuclease structure and function. Q Rev Biophys 2005; 38:49-95; PMID:16336743; http://dx.doi.org/10.1017/S0033583505004063
  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339:819-23; PMID:23287718; http://dx.doi.org/10.1126/science.1231143
  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science 2013; 339:823-6; PMID:23287722; http://dx.doi.org/10.1126/science.1232033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.