340
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design and hydrodynamic analysis of controllable soft-body extension-driven flippers inspired by swimming frog flippers

, , , &
Article: 2342504 | Received 18 Dec 2023, Accepted 08 Apr 2024, Published online: 24 Apr 2024

References

  • Abdelsalam, S. I., Abbas, W., Megahed, A. M., & Said, A. A. M. (2023). A comparative study on the rheological properties of upper convected Maxwell fluid along a permeable stretched sheet. Heliyon, 9(12), e22740. https://doi.org/10.1016/j.heliyon.2023.e22740
  • Baines, R., Fish, F., & Kramer-Bottiglio R. (2021). Amphibious robotic propulsive mechanisms: Current technologies and open challenges. Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems, 2021, 41–69. https://doi.org/10.1007/978-3-030-50476-2_3
  • Baines, R., Patiballa, S. K., Booth, J., Ramirez, L., Sipple, T., Garcia, A., Fish, F., & Kramer-Bottiglio, R. (2022). Multi-environment robotic transitions through adaptive morphogenesis. Nature, 610(7931), 283–289. https://doi.org/10.1038/s41586-022-05188-w
  • Bhatti, M. M., Vafai, K., & Abdelsalam, A. I. (2023). The role of nanofluids in renewable energy engineering. Nanomaterials, 13(19), 2671. https://doi.org/10.3390/nano13192671
  • Cai, W., Tao, C., Wang, Y., Wu, T., Xu, C., & Zhang, G. (2023). Applications of autonomous underwater vehicle in submarine hydrothermal fields: A review. Robot, 45(4), 483–495.
  • Chen, G., Tu, J., Ti, X., Wang, Z., & Hu, H. (2021). Hydrodynamic model of the beaver-like bendable webbed foot and paddling characteristics under different flow velocities. Ocean Engineering, 234, 109179. https://doi.org/10.1016/j.oceaneng.2021.109179
  • Dong, H., Wu, Z., Chen, D., Tan, M., & Yu, J. (2020). Development of a whale-shark-inspired gliding robotic fish with high maneuverability. IEEE/ASME Transactions on Mechatronics, 25(6), 2824–2834. https://doi.org/10.1109/TMECH.2020.2994451
  • Esposito, C. J., Tangorra, J. L., Flammang, B. E., & Lauder, G. V. (2012). A robotic fish caudal fin: Effects of stiffness and motor program on locomotor performance. Journal of Experimental Biology, 215(1), 56–67. https://doi.org/10.1242/jeb.062711
  • Fan, J., Du, Q., Dong, Z., Zhao, J., & Xu, T. (2022). Design of the Jump mechanism for a biomimetic robotic frog. Biomimetics, 7(4), 142. https://doi.org/10.3390/biomimetics7040142
  • Fu, S., Wei, F., Yin, C., Yin, C., Yao, L., & Wang, Y. (2021). Biomimetic soft micro-swimmers: From actuation mechanisms to applications. Biomedical microdevices, 23(1), 6. https://doi.org/10.1007/s10544-021-00546-3
  • Gul, J. Z., Kim, K. H., Lim, J. H., Doh, Y. H., & Choi, K. H. (2017). FSI modeling of frog inspired soft robot embedded with ALD encapsulated flex sensor for underwater synchronous swim. In: IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), IEEE, pp. 255–259.
  • Kabanov, A., Kramar, V., & Ermakov, I. (2021). Design and modeling of an experimental ROV with six degrees of freedom. Drones, 5(4), 113. https://doi.org/10.3390/drones5040113
  • Keithly, D., Whitehead, J., Voinea, A., Horna, D., Hollenberg, S., Peck, M., Pikul, J., Robert, F., & Shepherd, R. F. (2018). A cephalopod-inspired combustion powered hydro-jet engine using soft actuators. Extreme Mechanics Letters, 20, 1–8. https://doi.org/10.1016/j.eml.2017.11.007
  • Ko, J., Kim, C., Lim, D., Song, Y., Lee, S., Yeom, B., Huh, J., Han, S., Kang, D., Koh, J., & Cho, J. (2022). High-performance electrified hydrogel actuators based on wrinkled nanomembrane electrodes for untethered insect-scale soft aquabots. Science Robotics, 7(7), eabo6463. https://doi.org/10.1126/scirobotics.abo6463
  • Li, Q., Chen, T., Chen, Y., & Wang, Z. (2023). An underwater bionic crab soft robot with multidirectional controllable motion ability. Ocean Engineering, 278, 114412. https://doi.org/10.1016/j.oceaneng.2023.114412
  • Lin, D., Yang, F., Gong, D., & Li, R. (2023). Bio-inspired magnetic-driven folded diaphragm for biomimetic robot. Nature Communications, 14(1), 163. https://doi.org/10.1038/s41467-023-35905-6
  • Liu, J., Yu, F., He, B., & Yan, T. (2022a). Hydrodynamic numerical simulation and prediction of bionic fish based on computational fluid dynamics and multilayer perceptron. Engineering Applications of Computational Fluid Mechanics, 16(1), 858–878. https://doi.org/10.1080/19942060.2022.2052355
  • Liu, Y., Li, H., Deng, S., Wang, S., Liu, S., & Wang, Z. (2022b). Biomimetic robotic sea lion Foreflippers: Design, modeling, and experimentation. IEEE/ASME Transactions on Mechatronics, 27(6), 5679–5689. https://doi.org/10.1109/TMECH.2022.3187014
  • Lu, C., Sun, J., & Qi, S. (2016). Dynamics and simulation analysis of the bionic frog robot in takeoff phase. Applied Science and Technology, 43(1), 51–55 + 80.
  • Nwafor, C. J., Girerd, C., Laurent, G. J., Morimoto, T. K., & Rabenorosoa, K. (2023). Design and fabrication of concentric tube robots: A Survey. IEEE Transactions on Robotics, 39(4), 2510–2528. https://doi.org/10.1109/TRO.2023.3255512
  • Pan, Y., Fan, J., Liu, G., Liu, Y., & Zhao, J. (2024). Design and kinematic analysis of a rope-driven linkage frog-like swimming robot with multidirectional controllable motion. Ocean Engineering, 291, 1–15.
  • Pan, Y., Fan, J., Ma, W., Gao, F., Liu, G., & Zhao, J. (2023). Design and motion analysis of a frog-like jumping robot based on a soft body detonation drive. Materials & Design, 232, 1–15.
  • Shen, Y., Harada, N., Katagiri, S., & Tanaka, H. (2021). Biomimetic realization of a Robotic Penguin Wing: Design and thrust characteristics. IEEE/ASME Transactions on Mechatronics, 26(5), 2350–2361. https://doi.org/10.1109/TMECH.2020.3038224
  • Shimizu, M., Ishii, D., Aonuma, H., & Hosoda, K. (2017). Swimming frog cyborg which generates efficient hydrodynamic propulsion with webbed foot. IEEE International Conference on Cyborg and Bionic Systems (CBS), Beijing, China, pp. 73–76.
  • Shin, J., Jamil, B., Moon, H., Koo, J. C., Choi, H. R., & Rodrigue, H. (2022). Thermo-pneumatic artificial muscle: Air-based thermo-pneumatic artificial muscles for pumpless pneumatic actuation. Soft Robotics, 11(2), 187–370.
  • Su, X., Pan, Q., Wang, H., & Ren, Z. (2021). Research progresses of robots with active deformable materials. Robot, 43(1), 112–128.
  • Sun, T., Chen, G., Yang, S., Wang, Y., Wang, Y., Tan, H., & Zhang, L. (2021). Design and optimization of a bio-inspired hull shape for AUV by surrogate model technology. Engineering Applications of Computational Fluid Mechanics, 15(1), 1057–1074. https://doi.org/10.1080/19942060.2021.1940287
  • Wang, S., Fan, J., Pan, Y., Liu, G., & Liu, Y. (2024). Design and analysis of adaptive flipper with origami structure for frog-inspired swimming robot. IEEE Robotics and Automation Letters, 9(2), 1262–1269. https://doi.org/10.1109/LRA.2023.3333674
  • Wang, Y., Deng, J., Li, T., Liu, K., Liu, H., & Ma, S. (2021). Review of research on 3D printing manufacturing technology of soft robots. Journal of Mechanical Engineering, 57(15), 186–198. https://doi.org/10.3901/JME.2021.15.186
  • Wei, W., Tao, T., Si, L., Wang, G., & Yan, Q. (2023). Design and optimization of bionic Nautilus volute for a hydrodynamic retarder. Engineering Applications of Computational Fluid Mechanics, 17(1), 2273391. https://doi.org/10.1080/19942060.2023.2273391
  • Xia, P., You, H., Ye, Y., & Du, J. (2023). ROV teleoperation via human body motion mapping: Design and experiment. Computers in Industry, 150, 103959. https://doi.org/10.1016/j.compind.2023.103959
  • Yan, Z., Yang, H., Zhang, W., Lin, F., Gong, Q., & Zhang, Y. (2022). Bionic fish tail design and trajectory tracking control. Ocean Engineering, 257, 111659. https://doi.org/10.1016/j.oceaneng.2022.111659
  • Zhang, K., Zhang, S., Chen, H., & Yu, C. (2023a). Research on underwater gait generation of the amphibious. Mechanical Science and Technology for Aerospace Engineering, 1–6.
  • Zhang, Y., Kong, D., Shi, Y., Cai, M., Yu, Q., Li, S., Wang, K., & Liu, C. (2023b). Recent progress on underwater soft robots: Adhesion, grabbing, actuating, and sensing. Frontiers in Bioengineering and Biotechnology, 11, 1196922. https://doi.org/10.3389/fbioe.2023.1196922
  • Zhao, W., Zhang, Y., Lim, K. L., Luo, J., & Wang, N. (2022). Development and performance analysis of pneumatic soft-bodied bionic flipper. Advanced Engineering Materials, 24(8), 2101566. https://doi.org/10.1002/adem.202101566
  • Zhu, Q., & Bi, X. (2017). Effects of stiffness distribution and spanwise deformation on the dynamics of a ray-supported caudal fin. Bioinspiration & Biomimetics, 12(2), 026011. https://doi.org/10.1088/1748-3190/aa5d3f