344
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Reducing Grip Uncertainty During Initial Prosthetic Hand Use Improves Eye-Hand Coordination and Lowers Mental Workload

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 475-485 | Received 05 Jul 2023, Accepted 04 Mar 2024, Published online: 24 Mar 2024

References

  • Ambrose, D., MacKenzie, D. E., Ghanouni, P., & Neyedli, H. F. (2021). Investigating joint attention in a guided interaction between a child with ASD and therapists: A pilot eye-tracking study. British Journal of Occupational Therapy, 84(10), 637–646. https://doi.org/10.1177/0308022620963727
  • Biddiss, E. A., & Chau, T. T. (2007). Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthetics and Orthotics International, 31(3), 236–257. https://doi.org/10.1080/03093640600994581
  • Bosch, T. J., Hanna, T., Fercho, K. A., & Baugh, L. A. (2018). Behavioral performance and visual strategies during skill acquisition using a novel tool use motor learning task. Scientific Reports, 8(1), 13755. https://doi.org/10.1038/s41598-018-32001-4
  • Bouwsema, H., Kyberd, P. J., Hill, W., van der Sluis, C. K., & Bongers, R. M. (2012). Determining skill level in myoelectric prosthesis use with multiple outcome measures. Journal of Rehabilitation Research and Development, 49(9), 1331–1348. https://doi.org/10.1682/JRRD.2011.09.0179
  • Bouwsema, H., van der Sluis, C. K., & Bongers, R. M. (2014). Changes in performance over time while learning to use a myoelectric prosthesis. Journal of Neuroengineering and Rehabilitation, 11(1), 16. (https://doi.org/10.1186/1743-0003-11-16
  • Buckingham, G., Parr, J., Wood, G., Vine, S., Dimitriou, P., & Day, S. (2018). The impact of using an upper-limb prosthesis on the perception of real and illusory weight differences. Psychonomic Bulletin & Review, 25(4), 1507–1516. https://doi.org/10.3758/s13423-017-1425-2
  • Chadwell, A., Kenney, L., Granat, M. H., Thies, S., Head, J., Galpin, A., Baker, R., & Kulkarni, J. (2018). Upper limb activity in myoelectric prosthesis users is biased towards the intact limb and appears unrelated to goal-directed task performance. Scientific Reports, 8(1), 11084. https://doi.org/10.1038/s41598-018-29503-6
  • Chadwell, A., Kenney, L., Thies, S., Galpin, A., & Head, J. (2016). The reality of myoelectric prostheses: Understanding what makes these devices difficult for some users to control. Frontiers in Neurorobotics, 10, 7. https://doi.org/10.3389/fnbot.2016.00007
  • Chadwell, A., Kenney, L., Thies, S., Head, J., Galpin, A., & Baker, R. (2021). Addressing unpredictability may be the key to improving performance with current clinically prescribed myoelectric prostheses. Scientific Reports, 11(1), 3300. https://doi.org/10.1038/s41598-021-82764-6
  • Eysenck, M. W., & Calvo, M. G. (1992). Anxiety and performance: The processing efficiency theory. Cognition & Emotion, 6(6), 409–434. https://doi.org/10.1080/02699939208409696
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146
  • Frykberg, G. E., Grip, H., & Alt Murphy, M. (2021). How many trials are needed in kinematic analysis of reach-to-grasp?—A study of the drinking task in persons with stroke and non-disabled controls. Journal of NeuroEngineering and Rehabilitation, 18(1), 101. https://doi.org/10.1186/s12984-021-00895-3
  • Hebert, J. S., Boser, Q. A., Valevicius, A. M., Tanikawa, H., Lavoie, E. B., Vette, A. H., Pilarski, P. M., & Chapman, C. S. (2019). Quantitative eye gaze and movement differences in visuomotor adaptations to varying task demands among upper-extremity prosthesis users. JAMA Network Open, 2(9), e1911197. https://doi.org/10.1001/jamanetworkopen.2019.11197
  • Jabban, L., Metcalfe, B. W., Raines, J., Zhang, D., & Ainsworth, B. (2022). Experience of adults with upper-limb difference and their views on sensory feedback for prostheses: A mixed methods study. Journal of NeuroEngineering and Rehabilitation, 19(1), 80. https://doi.org/10.1186/s12984-022-01054-y
  • Land, M. F. (2009). Vision, eye movements, and natural behavior. Visual Neuroscience, 26(1), 51–62. https://doi.org/10.1017/S0952523808080899
  • Light, C. M., Chappell, P. H., & Kyberd, P. J. (2002). Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: Normative data, reliability, and validity. Archives of Physical Medicine and Rehabilitation, 83(6), 776–783. https://doi.org/10.1053/apmr.2002.32737
  • Maxwell, J. P., Masters, R. S. W., Kerr, E., & Weedon, E. (2001). The implicit benefit of learning without errors. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 54(4), 1049–1068. https://doi.org/10.1080/713756014
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4
  • Parr, J. V. V., Galpin, A., Uiga, L., Marshall, B., Wright, D. J., Franklin, Z. C., & Wood, G. (2023). A tool for measuring mental workload during prosthesis use: The Prosthesis Task Load Index (PROS-TLX). PLoS One, 18(5), e0285382. https://doi.org/10.1371/journal.pone.0285382
  • Parr, J. V. V., Vine, S. J., Harrison, N. R., & Wood, G. (2018). Examining the spatiotemporal disruption to gaze when using a myoelectric prosthetic hand. Journal of Motor Behavior, 50(4), 416–425. https://doi.org/10.1080/00222895.2017.1363703
  • Parr, J. V. V., Vine, S. J., Wilson, M. R., Harrison, N. R., & Wood, G. (2019). Visual attention, EEG alpha power and T7-Fz connectivity are implicated in prosthetic hand control and can be optimized through gaze training. Journal of NeuroEngineering and Rehabilitation, 16(1), 52. https://doi.org/10.1186/s12984-019-0524-x
  • Parr, J. V. V., Wright, D. J., Uiga, L., Marshall, B., Mohamed, M. O., & Wood, G. (2022). A scoping review of the application of motor learning principles to optimize myoelectric prosthetic hand control. Prosthetics and Orthotics International, 46(3), 274–281. https://doi.org/10.1097/PXR.0000000000000083
  • Poolton, J. M., Masters, R. S. W., & Maxwell, J. P. (2005). The relationship between initial errorless learning conditions and subsequent performance. Human Movement Science, 24(3), 362–378. https://doi.org/10.1016/j.humov.2005.06.006
  • Sailer, U., Flanagan, J. R., & Johansson, R. S. (2005). Eye–hand coordination during learning of a novel visuomotor task. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25(39), 8833–8842. https://doi.org/10.1523/JNEUROSCI.2658-05.2005
  • Salminger, S., Stino, H., Pichler, L. H., Gstoettner, C., Sturma, A., Mayer, J. A., Szivak, M., & Aszmann, O. C. (2022). Current rates of prosthetic usage in upper-limb amputees – have innovations had an impact on device acceptance? Disability and Rehabilitation, 44(14), 3708–3713. https://doi.org/10.1080/09638288.2020.1866684
  • SensoMotoric Instruments (SMI) (2016). IViewETG User Guide Version 2.7.
  • Sinke, M., Chadwell, A., & Smit, G. (2022). State of the art of prosthesis simulators for the upper limb: A narrative review. Annals of Physical and Rehabilitation Medicine, 65(6), 101635. https://doi.org/10.1016/j.rehab.2022.101635
  • Smail, L. C., Neal, C., Wilkins, C., & Packham, T. L. (2021). Comfort and function remain key factors in upper limb prosthetic abandonment: Findings of a scoping review. Disability and Rehabilitation. Assistive Technology, 16(8), 821–830. https://doi.org/10.1080/17483107.2020.1738567
  • Sobuh, M. M. D., Kenney, L. P. J., Galpin, A. J., Thies, S. B., McLaughlin, J., Kulkarni, J., & Kyberd, P. (2014). Visuomotor behaviours when using a myoelectric prosthesis. Journal of NeuroEngineering and Rehabilitation, 11(1), 72. https://doi.org/10.1186/1743-0003-11-72
  • Vine, S. J., Masters, R. S. W., McGrath, J. S., Bright, E., & Wilson, M. R. (2012). Cheating experience: Guiding novices to adopt the gaze strategies of experts expedites the learning of technical laparoscopic skills. Surgery, 152(1), 32–40. https://doi.org/10.1016/j.surg.2012.02.002