409
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Importance of Variety and Regional Identity on the Dextrin-Reducing Enzymatic Activity of Cascade and Mosaic® Hops Grown in Washington and Oregon

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 12 Jan 2024, Accepted 23 Mar 2024, Published online: 15 Apr 2024

Literature cited

  • Lewis, M. J.; Young, T. W. Brewing; Springer: New York, NY, 2001. DOI: 10.1007/978-1-4615-0729-1.
  • Brown, H. T.; Morris, G. Ha. On Certain Functions of Hops Used in the Dry-Hopping of Beers. Brewer’s Guardian 1893, 23, 107–109.
  • Janicki, J.; Kotasthane, W. V.; Parker, A.; Walker, T. K. THE DIASTATIC ACTIVITY OF HOPS, TOGETHER WITH A NOTE ON MALTASE IN HOPS. J. Inst. Brew. 1941, 47(1), 24–36. DOI: 10.1002/j.2050-0416.1941.tb06070.x.
  • Kirkendall, J. A.; Mitchell, C. A.; Chadwick, L. R. The Freshening Power of Centennial Hops. J. Am. Soc. Brew. Chem. 2018, 76(3), 178–184. DOI: 10.1080/03610470.2018.1469081/SUPPL_FILE/UJBC_A_1469081_SM5495.TXT.
  • Cottrell, M. T. A Search for Diastatic Enzymes Endogenous to Humulus lupulus and Produced by Microbes Associated with Pellet Hops Driving “Hop Creep” of Dry Hopped Beer. J. Am. Soc. Brew. Chem. 2022, 81(3), 435–447. DOI: 10.1080/03610470.2022.2084327.
  • Kirkpatrick, K. R.; Shellhammer, T. H. A Cultivar-Based Screening of Hops for Dextrin Degrading Enzymatic Potential. J. Am. Soc. Brew. Chem. 2019, 76(4), 247–256. DOI: 10.1080/03610470.2018.1546091.
  • Rubottom, L. N.; Lafontaine, S. R.; Hauser, D. G.; Pereira, C.; Shellhammer, T. H. Hop Kilning Temperature Sensitivity of Dextrin-Reducing Enzymes in Hops. J. Am. Soc. Brew. Chem. 2022, 80(1), 75–83. DOI: 10.1080/03610470.2021.1903290.
  • Kirkpatrick, K. R.; Shellhammer, T. H. Evidence of Dextrin Hydrolyzing Enzymes in Cascade Hops (Humulus lupulus). J. Agric. Food Chem. 2018, 66(34), 9121–9126. DOI: 10.1021/acs.jafc.8b03563.
  • Hatanaka, H.; Mitsunaga, H.; Fukusaki, E. Inhibition of Saccharomyces cerevisiae Growth by Simultaneous Uptake of Glucose and Maltose. J. Biosci. Bioeng. 2018, 125(1), 52–58. DOI: 10.1016/J.JBIOSC.2017.07.013.
  • D’Amore, T.; Russell, I.; Stewart, G. G. Sugar Utilization by Yeast During Fermentation. J. Ind. Microbiol. 1989, 4(4), 315–323. DOI: 10.1007/BF01577355.
  • Zheng, X.; D'Amore, T.; Russell, I.; Stewart, G. G. Factors Influencing Maltotriose Utilization During Brewery Wort Fermentations. J. Am. Soc. Brew. Chem. 1994, 52(2), 41–47. DOI: 10.1094/ASBCJ-52-0041.
  • Bruner, J.; Marcus, A.; Fox, G. Dry-Hop Creep Potential of Various Saccharomyces Yeast Species and Strains. Fermentation 2021, 7(2), 66. DOI: 10.3390/FERMENTATION7020066/S1.
  • Bruner, J.; Marcus, A.; Fox, G. Changes in Diacetyl and Amino Acid Concentration during the Fermentation of Dry-Hopped Beer: A Look at Twelve Saccharomyces Species and Strains. J. Am. Soc. Brew. Chem. 2022, 81(2), 242–254. DOI: 10.1080/03610470.2022.2078946.
  • Stokholm, A.; Shellhammer, T. H. Hop Creep - Technical Brief. Technical summary prepared for the Brewers Association Educational Publications. 2020. 2 pages. https://www.brewersassociation.org/educational-publications/hop-creep-technical-brief/
  • National Beer Sales & Production Data - Brewers Association. https://www.brewersassociation.org/statistics-and-data/national-beer-stats/ (accessed May 23, 2022).
  • Oladokun, O.; James, S.; Cowley, T.; Smart, K.; Hort, J.; Cook, D.; Dry, H. The Effects of Temperature and Hop Variety on the Bittering Profiles and Properties of Resultant Beers. BrewingScience 2017, 70(11–12), 187–196. DOI: 10.23763/BRSC17-18OLADOKUN.
  • Werrie, P. Y.; Deckers, S.; Fauconnier, M. L. Brief Insight into the Underestimated Role of Hop Amylases on Beer Aroma Profiles. J. Am. Soc. Brew. Chem. 2021, 80(1), 66–74. DOI: 10.1080/03610470.2021.1937453.
  • Forster, A.; Gahr, A. A Comparison of the Analytical and Brewing Characteristics of Cascade and Comet Hop Varieties as Grown in Yakima (USA) and Hallertau (Germany). BrewingScience 2014, 67(11–12), 137–148. DOI: 10.23763/BrSc14-31forster.
  • Rodolfi, M.; Chiancone, B.; Liberatore, C. M.; Fabbri, A.; Cirlini, M.; Ganino, T. Changes in Chemical Profile of Cascade Hop Cones According to the Growing Area. J. Sci. Food Agric. 2019, 99(13), 6011–6019. DOI: 10.1002/JSFA.9876.
  • Kishimoto, T.; Kobayashi, M.; Yako, N.; Iida, A.; Wanikawa, A. Comparison of 4-Mercapto-4-Methylpentan-2-One Contents in Hop Cultivars from Different Growing Regions. J. Agric. Food Chem. 2008, 56(3), 1051–1057. DOI: 10.1021/JF072173E.
  • Féchir, M.; Weaver, G.; Roy, C.; Shellhammer, T. H. Exploring the Regional Identity of Cascade and Mosaic® Hops Grown at Different Locations in Oregon and Washington. J. Am. Soc. Brew. Chem. 2022, 81(3), 480–492. DOI: 10.1080/03610470.2022.2089010.
  • Stokholm, A.; Van Simaeys, K.; Gallagher, A.; Weaver, G.; Shellhammer, T. H. Investigating the Effect of Farm Management, Soil, and Climate on Hop Diastatic Potential. J. Am. Soc. Brew. Chem. 2021, 80(4), 389–400. DOI: 10.1080/03610470.2021.1977902.
  • Van Simaeys, K. R.; Féchir, M.; Gallagher, A.; Stokholm, A.; Weaver, G.; Shellhammer, T. H. Examining Chemical and Sensory Differences of New American Aroma Hops Grown in the Willamette Valley, Oregon. J. Am. Soc. Brew. Chem. 2021, 80(4), 370–378. DOI: 10.1080/03610470.2021.1968271.
  • Lafontaine, S.; Varnum, S.; Roland, A.; Delpech, S.; Dagan, L.; Vollmer, D.; Kishimoto, T.; Shellhammer, T. Impact of Harvest Maturity on the Aroma Characteristics and Chemistry of Cascade Hops Used for Dry-Hopping. Food Chem. 2019, 278, 228–239. DOI: 10.1016/J.FOODCHEM.2018.10.148.
  • Sharp, D. C.; Townsend, M. S.; Qian, Y.; Shellhammer, T. H. Effect of Harvest Maturity on the Chemical Composition of Cascade and Willamette Hops. J. Am. Soc. Brew. Chem. 2018, 72(4), 231–238. DOI: 10.1094/ASBCJ-2014-1002-01.
  • Lafontaine, S.; Caffrey, A.; Dailey, J.; Varnum, S.; Hale, A.; Eichler, B.; Dennenlöhr, J.; Schubert, C.; Knoke, L.; Lerno, L.; et al. Evaluation of Variety, Maturity, and Farm on the Concentrations of Monoterpene Diglycosides and Hop Volatile/Nonvolatile Composition in Five Humulus lupulus Cultivars. J. Agric. Food Chem. 2021, 69(15), 4356–4370. DOI: 10.1021/acs.jafc.0c07146.
  • Féchir, M.; Gallagher, A.; Weaver, G.; Roy, C.; Shellhammer, T. H. Environmental and Technological Impact Factors on the Regional Identity of Cascade and Mosaic® Hops Grown in the Pacific Northwest. J. Sci. Food Agric. 2023, 103(12), 5802–5810. https://doi.org/10.1002/jsfa.12655
  • Prism Climate Group; Northwest Alliance for Computational Science and Engineering. Oregon State University; USDA Risk Management Agency. PRISM Database. https://prism.oregonstate.edu/ (accessed December 22, 2022).
  • ProjectTeam, P. The POWER Project. NASA Prediction of Worldwide Energy Resources. https://power.larc.nasa.gov/ (accessed December 22, 2022).