Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 27, 2024 - Issue 1
376
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Açai pulp improves cognition and insulin sensitivity in obese mice

ORCID Icon, , , , , , , & show all

References

  • Kothari V, Luo Y, Tornabene T, O’Neill AM, Greene MW, Geetha T, Babu JR. High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochim Biophys Acta. 2017;1863:499–508.
  • Spencer SJ, Korosi A, Layé S, Shukitt-Hale B, Barrientos RM. Food for thought: how nutrition impacts cognition and emotion. npj Sci Food. 2017;1:7.
  • Kim B, Feldman EL. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp Mol Med. 2015;47:e149.
  • Kaytor MD, Orr HT. The GSK3β signaling cascade and neurodegenerative disease. Curr Opin Neurobiol. 2002;12:275–8.
  • Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA. 2004;101:3100–5.
  • Schubert M, Brazil DP, Burks DJ, a Kushner J, Ye J, Flint CL, et al. Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci. 2003;23:7084–92.
  • Russo B, Picconi F, Malandrucco I, Frontoni S. Flavonoids and insulin-resistance: from molecular evidences to clinical trials. Int J Mol Sci. 2019;20:2061.
  • Rendeiro C, Rhodes JS, Spencer JPE. The mechanisms of action of flavonoids in the brain: direct versus indirect effects. Neurochem Int. 2015;89:126–39.
  • Gutierres JM, Carvalho FB, Schetinger MRC, Marisco P, Agostinho P, Rodrigues M, et al. Anthocyanins restore behavioral and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer’s type. Life Sci. 2014;96:7–17.
  • Qin L, Zhang J, Qin M. Protective effect of cyanidin 3-O-glucoside on beta-amyloid peptide-induced cognitive impairment in rats. Neurosci Lett. 2013;534:285–8.
  • De Oliveira PRB, Da Costa CA, De Bem GF, Cordeiro VSC, Santos IB, De Carvalho LCRM, et al. PLoS One 10(12). 2015;10. DOI:10.1371/journal.pone.0143721
  • Dias MMdS, Martino HSD, Noratto G, Roque-Andrade A, Stringheta PC, Talcott S, et al. Development and Evaluation of Antimicrobial and Modulatory Activity of Inclusion Complex of Euterpe oleracea Mart Oil and β-Cyclodextrin or HP-β-Cyclodextrin. Food Funct. 2015;6:3249–56.
  • Carey AN, Miller MG, Fisher DR, Bielinski DF, Gilman CK, Poulose SM, Shukitt-Hale B. Dietary supplementation with the polyphenol-rich açaí pulps (Euterpe oleracea Mart. And Euterpe precatoria Mart.) improves cognition in aged rats and attenuates inflammatory signaling in BV-2 microglial cells. Nutr Neurosci. 2017;20:238–45.
  • AOAC. Official methods of analysis of AOAC International; 2012.
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.
  • Prior RL. Fruits and vegetables in the prevention of cellular oxidative damage. Am J Clin Nutr. 2003;78:570S–578S.
  • Degenhardt A, Knapp H, Winterhalter P. Separation and purification of anthocyanins by high-speed countercurrent chromatography and screening for antioxidant activity. J Agric Food Chem. 2000;48:338–43.
  • Kammerer D, Carle R, Schieber A. Quantification of anthocyanins in black carrot extracts (Daucus carota ssp. sativus var. atrorubens Alef.) and evaluation of their color properties. Eur Food Res Technol. 2004;219:479–86.
  • Higby WK. A simplified method for determination of some aspects of the carotenoid distribution in natural and carotene-fortified orange juice. J Food Sci. 1962;27:42–9.
  • Hartman L, Lago RCA. Rapid preparation of fatty acid methyl esters from lipids. Lab Pr. 1973;22(475-476):494.
  • AOCS 5th ed. Off Methods Recomm Pract Am Oil Chem Soc.2009. p. 3–4
  • Swain T, Hillis WE. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J Sci Food Agric. 1959;10:63–8.
  • Wrolstad RE. Color and pigment analyses in fruit products. Corvallis: Oregon State University; 1976.
  • Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64:555–9.
  • Ou B, Chang T, Huang D, Prior RL. Determination of total antioxidant capacity by oxygen radical absorbance capacity (ORAC) using fluorescein as the fluorescence probe: First action. J AOAC Int. 2013;96:1372–6.
  • Dávalos A, Gómez-Cordovés C, Bartolomé B. Extending applicability of the oxygen radical absorbance capacity (ORAC–fluorescein) assay. J Agric Food Chem. 2004;52:48–54.
  • do S M, Rufino M, Alves RE, de Brito ES, Pérez-Jiménez J, Saura-Calixto F, Mancini-Filho J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010;121:996–1002.
  • Reeves PG, Nielsen FH, Fahey GC. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993;123:1939–51.
  • Batista ÂG, Soares ES, Mendonça MCP, da Silva JK, Dionísio AP, Sartori CR, et al. Jaboticaba berry peel intake prevents insulin-resistance-induced tau phosphorylation in mice. Mol Nutr Food Res. 2017;61. DOI:10.1002/mnfr.201600952
  • Batista ÂG, Lenquiste SA, Cazarin CBB, da Silva JK, Luiz-Ferreira A, Bogusz S, et al. Intake of jaboticaba peel attenuates oxidative stress in tissues and reduces circulating saturated lipids of rats with high-fat diet-induced obesity. J Funct Foods. 2014;6:450–61.
  • Poulose SM, Bielinski DF, Carey A, Schauss AG, Shukitt-Hale B. Modulation of oxidative stress, inflammation, autophagy and expression of Nrf2 in hippocampus and frontal cortex of rats fed with açaí-enriched diets. Nutr Neurosci. 2017;20:305–15.
  • Carey AN, Lyons AM, Shay CF, Dunton O, McLaughlin JP. Endogenous opioid activation mediates stress-induced deficits in learning and memory. J Neurosci. 2009;29:4293–300.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
  • Beydoun MA, Beydoun HA, Wang Y. Obesity and central obesity as risk factors for incident dementia and its subtypes: a systematic review and meta-analysis. Obes Rev. 2008;9:204–18.
  • Leboucher A, Laurent C, Fernandez-Gomez F-J, Burnouf S, Troquier L, Eddarkaoui S, et al. Detrimental effects of diet-induced obesity on τ pathology are independent of insulin resistance in τ transgenic mice. Diabetes. 2013;62:1681–8.
  • Pacheco-Palencia LA, Duncan CE, Talcott ST. Phytochemical composition and thermal stability of two commercial açai species, Euterpe oleracea and Euterpe precatoria. Food Chem. 2009;115:1199–205.
  • Schauss AG, Wu X, Prior RL, Ou B, Patel D, Huang D, Kababick JP. Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart. (acai). J Agric Food Chem. 2006;54:8598–603.
  • Medina NdS, Berilli PB, Batista ÂG, Maróstica Júnior MR. Current evidence on cognitive improvement and neuroprotection promoted by anthocyanins. Curr Opin Food Sci. 2019;26:71–78. DOI:10.1016/j.cofs.2019.03.008.
  • Olivas-Aguirre FJ, Rodrigo-García J, Martínez-Ruiz NDR, Cárdenas-Robles AI, Mendoza-Díaz SO, Álvarez-Parrilla E, et al. Cyanidin-3-O-glucoside: Physical-Chemistry, Foodomics and Health Effects. Molecules. 2016;21(9). DOI:10.3390/molecules21091264.
  • Luo R, Tran K, Levine RA, Nickols SM, Monroe DM, Sabaa-Srur AUO, et al. Distinguishing Components in Brazilian Açaí ( Euterpe oleraceae Mart .) and in Products Obtained in the USA by Using NMR. Nat Prod Journale. 2012;2:86–94.
  • Smith RE, Eaker J, Tran K, Goerger M, Wycoff W, Sabaa-Srur AUO, et al. Insoluble Solids in Brazilian and Floridian Açaí (Euterpe oleraceae Mart.). Nat Prod Journale. 2012;2:95–8.
  • Liu Y, Li D, Zhang Y, Sun R, Xia M. Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction. AJP Endocrinol Metab. 2014;306:E975–E988.
  • Guerra JFdC, Maciel PS, de Abreu ICME, Pereira RR, Silva M, Cardoso LdM, et al. Dietary açai attenuates hepatic steatosis via adiponectin-mediated effects on lipid metabolism in high-fat diet mice. J Funct Foods. 2015;14:192–202.
  • Paniagua González JA, Gallego De La Sacristana A, Romero I, Vidal-Puig A, Latre JM, Sanchez E, et al. Monounsaturated fat-rich diet prevents central body fat distribution and decreases postprandial adiponectin expression induced by a carbohydrate-rich diet in insulin-resistant subjects. Diabetes Care. 2007;30:1717–23.
  • Spagnuolo C, Napolitano M, Tedesco I, Moccia S, Milito A, Luigi Russo G. Neuroprotective Role of Natural Polyphenols. Curr Top Med Chem. 2016;16(17). DOI:10.2174/1568026616666160204122449.
  • Carey AN, Gildawie KR, Rovnak A, Thangthaeng N, Fisher DR, Shukitt-Hale B. Blueberry supplementation attenuates microglia activation and increases neuroplasticity in mice consuming a high fat diet. Nutr Neurosci. 2017;22(4):253–263.
  • Wei J, Zhang G, Zhang X, Xu D, Gao J, Fan J, et al. Anthocyanins from black chokeberry (aroniamelanocarpa elliot) delayed aging-related degenerative changes of brain. J Agric Food Chem. 2017;65:5973–84.
  • Greco SJ, Sarkar S, Casadesus G, Zhu X, Smith MA, Ashford JW, et al. Leptin inhibits glycogen synthase kinase-3β to prevent tau phosphorylation in neuronal cells. Neurosci Lett. 2009;455:191–4.
  • Ali T, Kim MJ, Rehman SU, Ahmad A, Kim MO. Anthocyanin-Loaded PEG-Gold Nanoparticles Enhanced the Neuroprotection of Anthocyanins in an Aβ1-42 Mouse Model of Alzheimer's Disease. Mol Neurobiol. 2017;54(8):6490–6506. DOI:10.1007/s12035-016-0136-4.
  • García-Font N, Hayour H, Belfaitah A, Pedraz J, Moraleda I, Iriepa I, et al. Potent anticholinesterasic and neuroprotective pyranotacrines as inhibitors of beta-amyloid aggregation, oxidative stress and tau-phosphorylation for Alzheimer’s disease. Eur J Med Chem. 2016;118:178–92.
  • Liang Z, Zhang B, Su WW, Williams PG, Li QX. C-glycosylflavones alleviate tau phosphorylation and amyloid neurotoxicity through GSK3β inhibition. ACS Chem Neurosci. 2016;7:912–23.
  • Sawmiller D, Habib A, Li S, Darlington D, Hou H, Tian J, et al. Diosmin reduces cerebral Aβ levels, tau hyperphosphorylation, neuroinflammation, and cognitive impairment in the 3xTg-AD mice. J Neuroimmunol. 2016;299:98–106.
  • Song Y-X, Miao J-Y, Qiang M, He R-Q, Wang X-M, Li W-W. Icariin protects SH-SY5Y cells from formaldehyde-induced injury through suppression of tau phosphorylation. Chin J Integr Med. 2016;22:430–7.
  • Praticò D, Delanty N. Oxidative injury in diseases of the central nervous system: focus on Alzheimer's disease. Am J Med. 2000;109(7)):577–585. DOI:10.1016/S0002-9343(00)00547-7.
  • Padurariu M, Ciobica A, Lefter R, Serban IL, Stefanescu C, Chirita R. The oxidative stress hypothesis in Alzheimer's disease. Psychiatr Danub. 2013;25:401–9.
  • Veberic R, Slatnar A, Bizjak J, Stampar F, Mikulic-Petkovsek M. Anthocyanin composition of different wild and cultivated berry species. LWT – Food Sci Technol. 2015;60:509–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.