Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 27, 2024 - Issue 3
274
Views
5
CrossRef citations to date
0
Altmetric
Review

Natural polyphenols for the management of autism spectrum disorder: a review of efficacy and molecular mechanisms

ORCID Icon & ORCID Icon

References

  • Zeidan J, Fombonne E, Scorah J, Ibrahim A, Durkin MS, Saxena S, et al. Global prevalence of autism: a systematic review update. Autism Res. 2022;15(5):778–790.
  • Tsai C-H, Chen K-L, Li H-J, Chen K-H, Hsu C-W, Lu C-H, et al. The symptoms of autism including social communication deficits and repetitive and restricted behaviors are associated with different emotional and behavioral problems. Scientific Rep. 2020;10(1):1–8.
  • Currenti SA. Understanding and determining the etiology of autism. Cell Mol Neurobiol. 2010;30(2):161–171.
  • Rossignol DA, Frye RE. A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry. 2012;17(4):389–401.
  • Bjørklund G, Meguid NA, El-Bana MA, Tinkov AA, Saad K, Dadar M, et al. Oxidative stress in autism spectrum disorder. Mol Neurobiol. 2020;57(5):2314–2332.
  • Wong GC, Montgomery JM, Taylor MW.. The gut-microbiota-brain axis in autism spectrum disorder. In: Grabruker AM, editor. Autism spectrum disorders [internet]. Brisbane (AU): Exon publications; 2021. p. 95–113.
  • Fieiras C, Chen MH, Liquitay CME, Meza N, Rojas V, Franco JVA, etal Risperidone and aripiprazole for autism spectrum disorder in children: an overview of systematic reviews. BMJ Evid Based Med. 2023;28(1):7–14.
  • Pangrazzi L, Balasco L, Bozzi Y. Natural antioxidants: a novel therapeutic approach to autism spectrum disorders?. Antioxidants (Basel). 2020;9(12):1186.
  • Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10(11):1618.
  • Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us?. Oxid Med Cell Longev, 2016;2016:7432797.
  • Singla RK, Dubey AK, Garg A, Sharma RK, Fiorino M, Ameen SM, et al.. Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int. 2019;102(5):1397–1400.
  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–747.
  • Albarracin SL, Stab B, Casas Z, Sutachan JJ, Samudio I, Gonzalez J, et al. Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci. 2012;15(1):1–9.
  • Khalatbary AR. Natural polyphenols and spinal cord injury. Iran Biomed J. 2014;18(3):120–129.
  • Khalatbary AR. Olive oil phenols and neuroprotection. Nutr Neurosci. 2013;16(6):243–249.
  • Gomez-Pinilla F, Nguyen TT. Natural mood foods: the actions of polyphenols against psychiatric and cognitive disorders. Nutr Neurosci. 2012;15(3):127–133.
  • Xie W, Ge X, Li L, Yao A, Wang X, Li M, et al. Resveratrol ameliorates prenatal progestin exposure-induced autism-like behavior through ERβ activation. Mol Autism. 2018;9(1):1–13.
  • Hendouei F, Sanjari Moghaddam H, Mohammadi MR, Taslimi N, Rezaei F, Akhondzadeh S. Resveratrol as adjunctive therapy in treatment of irritability in children with autism: A double-blind and placebo-controlled randomized trial. J Clin Pharm Therap. 2020;45(2):324–334.
  • Zhong H, Xiao R, Ruan R, Liu H, Li X, Cai Y, et al. Neonatal curcumin treatment restores hippocampal neurogenesis and improves autism-related behaviors in a mouse model of autism. Psychopharmacology. 2020;237(12):3539–3552.
  • Bhandari R, Kuhad A. Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders. Life Sci. 2015;141:156–169.
  • Bertolino B, Crupi R, Impellizzeri D, Bruschetta G, Cordaro M, Siracusa R, et al. Beneficial effects of co-ultramicronized palmitoylethanolamide/luteolin in a mouse model of autism and in a case report of autism. CNS Neurosci Therap. 2017;23(1):87–98.
  • Tsilioni I, Taliou A, Francis K, Theoharides T. Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6. Transl Psychiatry. 2015;5(9):e647–e647.
  • Mehta R, Bhandari R, Kuhad A. Effects of catechin on a rodent model of autism spectrum disorder: implications for the role of nitric oxide in neuroinflammatory pathway. Psychopharmacology. 2021;238(11):3249–3271.
  • Trovò L, Fuchs C, De Rosa R, Barbiero I, Tramarin M, Ciani E, et al. The green tea polyphenol epigallocatechin-3-gallate (EGCG) restores CDKL5-dependent synaptic defects in vitro and in vivo. Neurobiol Dis. 2020;138:104791.
  • Burns J, Yokota T, Ashihara H, Lean ME, Crozier A. Plant foods and herbal sources of resveratrol. J Agricult Food Chem. 2002;50(11):3337–3340.
  • Tellone E, Galtieri A, Russo A, Giardina B, Ficarra S. Resveratrol: a focus on several neurodegenerative diseases. Oxid Med Cell Longev, 2015;2015:392169.
  • Neves R, Lucio M, Lima LC, Reis S. Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr Medic Chem. 2012;19(11):1663–1681.
  • Bambini-Junior V, Zanatta G, Nunes GDF, de Melo GM, Michels M, Fontes-Dutra M, et al. Resveratrol prevents social deficits in animal model of autism induced by valproic acid. Neurosci Lett. 2014;583:176–181.
  • Bakheet SA, Alzahrani MZ, Nadeem A, Ansari MA, Zoheir KM, Attia SM, et al. Resveratrol treatment attenuates chemokine receptor expression in the BTBR T+ tf/J mouse model of autism. Mol Cell Neurosci. 2016;77:1–10.
  • Bakheet SA, Alzahrani MZ, Ansari MA, Nadeem A, Zoheir K, Attia SM, et al. Resveratrol ameliorates dysregulation of Th1, Th2, Th17, and T regulatory cell-related transcription factor signaling in a BTBR T+ tf/J mouse model of autism. Mol Neurobiol. 2017;54(7):5201–5212.
  • Bhandari R, Kuhad A. Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders. Neurochem Intern. 2017;103:8–23.
  • Fontes-Dutra M, Santos-Terra J, Deckmann I, Brum Schwingel G, Della-Flora Nunes G, Hirsch MM, et al. Resveratrol prevents cellular and behavioral sensory alterations in the animal model of autism induced by valproic acid. Front Synaptic Neurosci. 2018;10:9.
  • Ahmad SF, Ansari MA, Nadeem A, Alzahrani MZ, Bakheet SA, Attia SM. Resveratrol improves neuroimmune dysregulation through the inhibition of neuronal toll-like receptors and COX-2 signaling in BTBR T+ Itpr3tf/J mice. Neuromol Med. 2018;20(1):133–146.
  • Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alzahrani MZ, Alshammari MA, et al. Resveratrol attenuates pro-inflammatory cytokines and activation of JAK1-STAT3 in BTBR T+ Itpr3tf/J autistic mice. Eur J Pharmacol. 2018;829:70–78.
  • Juybari KB, Sepehri G, Meymandi MS, Shahrbabaki SSV, Moslemizadeh A, Saeedi N, et al. Sex dependent alterations of resveratrol on social behaviors and nociceptive reactivity in VPA-induced autistic-like model in rats. Neurotoxicol Teratol. 2020;81:106905.
  • Hidema S, Kikuchi S, Takata R, Yanai T, Shimomura K, Horie K, Nishimori K. Single administration of resveratrol improves social behavior in adult mouse models of autism spectrum disorder. Biosci Biotechnol Biochem. 2020;84(11):2207–2214.
  • Deckmann I, Santos-Terra J, Fontes-Dutra M, Körbes-Rockenbach M, Bauer-Negrini G, Schwingel GB, et al. Resveratrol prevents brain edema, blood–brain barrier permeability, and altered aquaporin profile in autism animal model. Intern J Develop Neurosci. 2021;81(7):579–604.
  • Santos-Terra J, Deckmann I, Schwingel GB, Paz AVC, Gama CS, Bambini-Junior V, et al. Resveratrol prevents long-term structural hippocampal alterations and modulates interneuron organization in an animal model of ASD. Brain Res. 2021;1768:147593.
  • Santos-Terra J, Deckmann I, Carello-Collar G, Nunes GD-F, Bauer-Negrini G, Schwingel GB, et al. Resveratrol prevents cytoarchitectural and interneuronal alterations in the valproic acid Rat model of autism. Intern J Mol Sci. 2022;23(8):4075.
  • Esatbeyoglu T, Huebbe P, Ernst IM, Chin D, Wagner AE, Rimbach G. Curcumin—from molecule to biological function. Angew Chem Intern Ed. 2012;51(22):5308–5332.
  • Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci. 2004;74(8):969–985.
  • Bhat A, Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Manthiannem E, Sakharkar MK. Benefits of curcumin in brain disorders. BioFactors. 2019;45(5):666–689.
  • Al-Askar M, Bhat RS, Selim M, Al-Ayadhi L, El-Ansary A. Postnatal treatment using curcumin supplements to amend the damage in VPA-induced rodent models of autism. BMC Compl Altern Med. 2017;17(1):1–11.
  • Jayaprakash P, Isaev D, Shabbir W, Lorke DE, Sadek B, Oz M. Curcumin potentiates α7 nicotinic acetylcholine receptors and alleviates autistic-like social deficits and brain oxidative stress status in mice. Intern J Mol Sci. 2021;22(14):7251.
  • Lin Y, Shi R, Wang X, Shen H-M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targ. 2008;8(7):634–646.
  • Tesio AY, Robledo SN. Analytical determinations of luteolin. BioFactors. 2021;47(2):141–164.
  • Zhou P, Li L-P, Luo S-Q, Jiang H-D, Zeng S. Intestinal absorption of luteolin from peanut hull extract is more efficient than that from individual pure luteolin. J Agricult Food Chem. 2008;56(1):296–300.
  • López-Lázaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem. 2009;9(1):31–59.
  • Parker-Athill E, Luo D, Bailey A, Giunta B, Tian J, Shytle RD, et al. Flavonoids, a prenatal prophylaxis via targeting JAK2/STAT3 signaling to oppose IL-6/MIA associated autism. J Neuroimmunol. 2009;217(1-2):20–27.
  • Asadi S, Theoharides TC. Corticotropin-releasing hormone and extracellular mitochondria augment IgE-stimulated human mast-cell vascular endothelial growth factor release, which is inhibited by luteolin. J Neuroinflam. 2012;9(1):1–6.
  • Zuiki M, Chiyonobu T, Yoshida M, Maeda H, Yamashita S, Kidowaki S, et al. Luteolin attenuates interleukin-6-mediated astrogliosis in human iPSC-derived neural aggregates: a candidate preventive substance for maternal immune activation-induced abnormalities. Neurosci Lett. 2017;653:296–301.
  • Sutherland BA, Rahman RM, Appleton I. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J Nutr Biochem. 2006;17(5):291–306.
  • Kimura M, Umegaki K, Kasuya Y, Sugisawa A, Higuchi M. The relation between single/double or repeated tea catechin ingestions and plasma antioxidant activity in humans. Eur J Clin Nutr. 2002;56(12):1186–1193.
  • Khalatbary AR, Khademi E. The green tea polyphenolic catechin epigallocatechin gallate and neuroprotection. Nutr Neurosci. 2020;23(4):281–294.
  • Weinreb O, Mandel S, Amit T, Youdim MB. Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases. J Nutr Biochem. 2004;15(9):506–516.
  • Banji D, Banji OJ, Abbagoni S, Hayath MS, Kambam S, Chiluka VL. Amelioration of behavioral aberrations and oxidative markers by green tea extract in valproate induced autism in animals. Brain Res. 2011;1410:141–151.
  • Batiha G, Beshbishy A, Mulla Z, Ikram M, El-Hack M, Taha A, Elewa Y. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 2020;9(3):374.
  • Tamtaji OR, Hadinezhad T, Fallah M, Shahmirzadi AR, Taghizadeh M, Behnam M, Asemi Z. The therapeutic potential of quercetin in Parkinson’s disease: insights into its molecular and cellular regulation. Curr Drug Targ. 2020;21(5):509–518.
  • Suganthy N, Devi KP, Nabavi SF, Braidy N, Nabavi SM. Bioactive effects of quercetin in the central nervous system: focusing on the mechanisms of actions. Biomed Pharmacother. 2016;84:892–908.
  • Batiha GE-S, Beshbishy AM, Ikram M, Mulla ZS, El-Hack MEA, Taha AE, et al. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 2020;9(3):374.
  • Tanaka T, Masubuchi Y, Okada R, Nakajima K, Nakamura K, Masuda S, et al. Ameliorating effect of postweaning exposure to antioxidant on disruption of hippocampal neurogenesis induced by developmental hypothyroidism in rats. J Toxicol Sci. 2019;44(5):357–372.
  • de Mattos B, Soares MSP, Spohr L, Pedra NS, Teixeira FC, de Souza AA, et al. Quercetin prevents alterations of behavioral parameters, delta-aminolevulinic dehydratase activity, and oxidative damage in brain of rats in a prenatal model of autism. Intern J Develop Neurosci. 2020;80(4):287–302.
  • Okano H, Takashima K, Takahashi Y, Ojiro R, Tang Q, Ozawa S, et al. Ameliorating effect of continuous alpha-glycosyl isoquercitrin treatment starting from late gestation in a rat autism model induced by postnatal injection of lipopolysaccharides. Chem Biol Interact. 2022;351:109767.
  • Evans JA, Mendonca P, Soliman KF. Neuroprotective effects and therapeutic potential of the citrus flavonoid hesperetin in neurodegenerative diseases. Nutrients. 2022;14(11):2228.
  • Khalaj R, Moghaddam AH, Zare M. Hesperetin and it nanocrystals ameliorate social behavior deficits and oxido-inflammatory stress in rat model of autism. Intern J Develop Neurosci. 2018;69:80–87.
  • Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S. Neuroprotective and cognitive enhancement potentials of baicalin: a review. Brain Sci. 2018;8(6):104.
  • Elesawy RO, El-Deeb OS, Eltokhy AK, Arakeep HM, Ali DA, Elkholy SS, et al. Postnatal baicalin ameliorates behavioral and neurochemical alterations in valproic acid-induced rodent model of autism: The possible implication of sirtuin-1/mitofusin-2/Bcl-2 pathway. Biomed Pharmacother. 2022;150:112960.
  • Srinivasan S, Vinothkumar V, Murali R: Antidiabetic efficacy of citrus fruits with special allusion to flavone glycosides. In Bioactive food as dietary interventions for diabetes (Second Edition). GT: Elsevier; 2019, 335–346.
  • Gerges SH, Wahdan SA, Elsherbiny DA, El-Demerdash E. Pharmacology of diosmin, a citrus flavone glycoside: an updated review. Eur J Drug Metab Pharmacokinet. 2022;47(1):1–18.
  • Houten SM, Wanders RJ. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherited Metab Dis. 2010;33(5):469–477.
  • Barone R, Bastin J, Djouadi F, Singh I, Karim MA, Ammanamanchi A, et al. Mitochondrial fatty acid β-oxidation and resveratrol effect in fibroblasts from patients with autism spectrum disorder. J Personal Med. 2021;11(6):510.
  • Theoharides T, Asadi S, Panagiotidou S. A case series of a luteolin formulation (NeuroProtek®) in children with autism spectrum disorders. vol. 25. London: SAGE Publications Sage UK; 2012, 317–323.
  • Taliou A, Zintzaras E, Lykouras L, Francis K. An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clin Therap. 2013;35(5):592–602.
  • Ekici B. Combination of steroid and flavonoid for the treatment of regressive autism. J Neurosci Rural Pract. 2020;11(01):216–218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.