779
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments

, ORCID Icon, , &
Pages 11522-11544 | Published online: 30 Jun 2022

References

  • Aizawa, T., A. Yamamoto, and T. Ueno. 2017. Effect of oral theaflavin administration on body weight, fat, and muscle in healthy subjects: A randomized pilot study. Bioscience, Biotechnology, and Biochemistry 81 (2):311–5. doi: 10.1080/09168451.2016.1246170.[Mismatch]
  • Aoki, Y., T. Ozawa, O. Numata, and T. Takemasa. 2019. High-molecular-weight polyphenol-rich fraction of black tea does not prevent atrophy by unloading, but promotes soleus muscle mass recovery from atrophy in mice. Nutrients 11 (9):2131. doi: 10.3390/nu11092131.
  • Arent, S. M., M. Senso, D. L. Golem, and K. H. McKeever. 2010. The effects of theaflavin-enriched black tea extract on muscle soreness, oxidative stress, inflammation, and endocrine responses to acute anaerobic interval training: A randomized, double-blind, crossover study. Journal of the International Society of Sports Nutrition 7 (1):1–10. doi: 10.1186/1550-2783-7-11.
  • Bailey, R. G., H. E. Nursten, and I. McDowell. 1992. Isolation and analysis of a polymeric thearubigin fraction from tea. Journal of the Science of Food and Agriculture 59 (3):365–75. doi: 10.1002/jsfa.2740590314.
  • Basu, S., T. Chaudhuri, S. P. S. Chauhan, A. K. Das Gupta, L. Chaudhury, and J. R. Vedasiromoni. 2005. The Theaflavin fraction is responsible for the facilitatory effect of black tea at the skeletal myoneural junction. Life Sciences 76 (26):3081–8. doi: 10.1016/j.lfs.2004.12.018.
  • Beaudart, C., M. Zaaria, F. Pasleau, J.-Y. Reginster, and O. Bruyère. 2017. Health outcomes of sarcopenia: A systematic review and meta-analysis. PloS One 12 (1):e0169548. doi: 10.1371/journal.pone.0169548.
  • Bonnely, S., A. L. Davis, J. R. Lewis, and C. Astill. 2003. A model oxidation system to study oxidised phenolic compounds present in black tea. Food Chemistry 83 (4):485–92. doi: 10.1016/S0308-8146(03)00129-8.
  • Brown, A. G., W. B. Eyton, A. Holmes, and W. D. Ollis. 1969. The identification of the thearubigins as polymeric proanthocyanidins. Phytochemistry 8 (12):2333–40. doi: 10.1016/S0031-9422(00)88151-0.
  • Burton, L. A., D. Sumukadas, M. D. Witham, A. D. Struthers, and M. E. T. McMurdo. 2013. Effect of spironolactone on physical performance in older people with self-reported physical disability. The American Journal of Medicine 126 (7):590–7. doi: 10.1016/j.amjmed.2012.11.032.
  • Cao, Y., W. Sun, and G. Xu. 2019. Fuzhu Jiangtang granules combined with metformin reduces insulin resistance in skeletal muscle of diabetic rats via PI3K/Akt signaling. Pharmaceutical Biology 57 (1):660–8. doi: 10.1080/13880209.2019.1659831.
  • Cattell, D. J., and H. E. Nursten. 1977. Separation of thearubigins on sephadex LH-20. Phytochemistry 16 (8):1269–72. doi: 10.1016/S0031-9422(00)94372-3.
  • Chang, L., X. Liu, J. Liu, H. Li, Y. Yang, J. Liu, Z. Guo, K. Xiao, C. Zhang, J. Liu, et al. 2014. D-Galactose induces a mitochondrial complex i deficiency in mouse skeletal muscle: Potential benefits of nutrient combination in ameliorating muscle impairment. Journal of Medicinal Food 17 (3):357–64. doi: 10.1089/jmf.2013.2830.
  • Collins, C. A., and T. A. Partridge. 2005. Self-renewal of the adult skeletal muscle satellite cell. Cell Cycle (Georgetown, Tex.) 4 (10):1338–41. doi: 10.4161/cc.4.10.2114.
  • Davies, A., C. Goodsall, Y. Cai, A. Davis, J. Lewis, J. Wilkins, X. Wan, M. N. Clifford, C. Powell, A. Parry, et al. 1999. Black tea dimeric and oligomeric pigments—Structures and formation. Plant Polyphenols 2:697–724. doi: 10.1007/978-1-4615-4139-4_39.
  • Degenhardt, A., U. H. Engelhardt, A.-S. Wendt, and P. Winterhalter. 2000. Isolation of black tea pigments using high-speed countercurrent chromatography and studies on properties of black tea polymers. Journal of Agricultural and Food Chemistry 48 (11):5200–5. doi: 10.1021/jf000757+.
  • Degenhardt, A., U. H. Engelhardt, P. Winterhalter, and Y. Ito. 2001. Centrifugal precipitation chromatography: A novel chromatographic system for fractionation of polymeric pigments from black tea and red wine. Journal of Agricultural and Food Chemistry 49 (4):1730–6. doi: 10.1021/jf0010580.
  • Ding, Y. P., L. Q. Zou, C. Q. Lu, H. R. Tong, and B. C. Chen. 2018. In situ enzymatic synthesis and purification of theaflavin-3,3’-digallate monomer and incorporation into nanoliposome. International Journal of Food Science & Technology 53 (11):2552–9. doi: 10.1111/ijfs.13849.
  • Dodds, R. M., A. Granic, K. Davies, T. B. L. Kirkwood, C. Jagger, and A. A. Sayer. 2017. Prevalence and incidence of sarcopenia in the very old: findings from the Newcastle 85+ study. Journal of Cachexia, Sarcopenia and Muscle 8 (2):229–37. doi: 10.1002/jcsm.12157.
  • Dong, W. M., T. Chao, and J. S. Gong. 2013. Factors influencing the effects of theabrownin in pu-erh tea on scavenging DPPH radicals. Agricultural Science & Technology 14 (2):317–23. doi: 10.16175/j.cnki.1009-4229.2013.02.005.
  • Doma, K., D. Gahreman, A. K. Ramachandran, U. Singh, and J. Connor. 2021. The effect of leaf extract supplementation on exercise-induced muscle damage and muscular performance: A systematic review and meta-analysis. Journal of Sports Sciences 39 (17):1952–68. doi: 10.1080/02640414.2021.1911050.
  • Dreger, H., M. Lorenz, A. Kehrer, G. Baumann, K. Stangl, and V. Stangl. 2008. Characteristics of catechin- and theaflavin-mediated cardioprotection. Experimental Biology and Medicine (Maywood, N.J.) 233 (4):427–33. doi: 10.3181/0710-RM-292.
  • Du, Q., H. Jiang, and Y. Ito. 2001. Separation of theaflavins of black tea. high-speed countercurrent chromatography vs. sephadex LH-20 gel column chromatography. Journal of Liquid Chromatography & Related Technologies 24 (15):2363–9. doi: 10.1081/JLC-100105147.
  • Eguchi, T., C. Kumagai, T. Fujihara, T. Takemasa, T. Ozawa, and O. Numata. 2013. Black tea high-molecular-weight polyphenol stimulates exercise training-induced improvement of endurance capacity in mouse via the link between AMPK and GLUT4. PloS One 8 (7):e69480. doi: 10.1371/journal.pone.0069480.
  • Fu, Y., S. Li, H. Tong, S. Li, and Y. Yan. 2019. WDR13 promotes the differentiation of bovine skeletal muscle-derived satellite cells by affecting PI3K/AKT signaling. Cell Biology International 43 (7):799–808. doi: 10.1002/cbin.11160.
  • Fujihara, T., A. Nakagawa-Izumi, T. Ozawa, and O. Numata. 2007. High-molecular-weight polyphenols from oolong tea and black tea: Purification, some properties, and role in increasing mitochondrial membrane potential. Bioscience, Biotechnology, and Biochemistry 71 (3):711–9. doi: 10.1271/bbb.60562.
  • Gong, J. S., C. X. Peng, T. Chen, B. Gao, and H. J. Zhou. 2010. Effects of theabrownin from Pu-Erh tea on the metabolism of serum lipids in rats: Mechanism of action. Journal of Food Science 75 (6):H182–189. doi: 10.1111/j.1750-3841.2010.01675.x.
  • Gong, J., Q. Zhang, C. Peng, J. Fan, and W. Dong. 2012. Curie-point pyrolysis–gas chromatography–mass spectroscopic analysis of theabrownins from fermented Zijuan tea. Journal of Analytical and Applied Pyrolysis 97:171–80. doi: 10.1016/j.jaap.2012.06.004.
  • Halder, J., and A. N. Bhaduri. 1998. Protective role of black tea against oxidative damage of human red blood cells. Biochemical and Biophysical Research Communications 244 (3):903–7. doi: 10.1006/bbrc.1998.8366.
  • Haslam, E. 2003. Thoughts on thearubigins. Phytochemistry 64 (1):61–73. doi: 10.1016/S0031-9422(03)00355-8.
  • Hazarika, M., S. K. Chakravarty, and P. K. Mahanta. 1984. Studies on thearubigin pigments in black tea manufacturing systems. Journal of the Science of Food and Agriculture 35 (11):1208–18. doi: 10.1002/jsfa.2740351112.
  • He, Y., X. Wang, and X. Zhang. 2013. Study on extracting TB from Liubao Tea with cellulase auxiliary method. Advanced Materials Research 781-784+:1870–4. doi: 10.4028/www.scientific.net/AMR.781-784.1870.
  • Herrlinger, K. A., D. M. Chirouzes, and M. A. Ceddia. 2015. Supplementation with a polyphenolic blend improves post-exercise strength recovery and muscle soreness. Food & Nutrition Research 59:30034. doi: 10.3402/fnr.v59.30034.
  • Horgan, F. G., A. Peñalver Cruz, C. C. Bernal, A. F. Ramal, M. L. P. Almazan, and A. Wilby. 2018. Resistance and tolerance to the brown planthopper, Nilaparvata lugens (Stål), in rice infested at different growth stages across a gradient of nitrogen applications. Field Crops Research 217:53–65. doi: 10.1016/j.fcr.2017.12.008.
  • Huang, F., X. Zheng, X. Ma, R. Jiang, W. Zhou, S. Zhou, Y. Zhang, S. Lei, S. Wang, J. Kuang, et al. 2019. Theabrownin from Pu-Erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nature Communications 10 (1):4971. doi: 10.1038/s41467-019-12896-x.
  • Huang, Y., Y. Wei, J. Xu, and X. We. 2022. A comprehensive review on the prevention and regulation of Alzheimer’s disease by tea and its active ingredients. Critical Reviews in Food Science and Nutrition 1–26. doi: 10.1080/10408398.2022.2081128. PMID: 35647742
  • Kemmler, W., M. Teschler, S. Goisser, M. Bebenek, S. von Stengel, L. C. Bollheimer, C. C. Sieber, and E. Freiberger. 2015. Prevalence of sarcopenia in Germany and the corresponding effect of osteoarthritis in females 70 years and older living in the community: Results of the FORMoSA study. Clinical Interventions in Aging 10:1565–73. doi: 10.2147/CIA.S89585.
  • Kuriyama, S., T. Shimazu, K. Ohmori, N. Kikuchi, N. Nakaya, Y. Nishino, Y. Tsubono, and I. Tsuji. 2006. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: The Ohsaki Study. JAMA 296 (10):1255–65. doi: 10.1001/jama.296.10.1255.
  • Krishnan, R., and G. B. Maru. 2006. Isolation and analyses of polymeric polyphenol fractions from black tea. Food Chemistry 94 (3):331–40. doi: 10.1016/j.foodchem.2004.11.039.
  • Kudo, N., Y. Arai, Y. Suhara, T. Ishii, T. Nakayama, and N. Osakabe. 2015. A single oral Administration of theaflavins increases energy expenditure and the expression of metabolic genes. PloS One 10 (9):e0137809. doi: 10.1371/journal.pone.0137809.
  • Kuhnert, N. 2010. Unraveling the structure of the black tea thearubigins. Archives of Biochemistry and Biophysics 501 (1):37–51. doi: 10.1016/j.abb.2010.04.013.
  • Kuhnert, N., J. W. Drynan, J. Obuchowicz, M. N. Clifford, and M. Witt. 2010. Mass spectrometric characterization of black tea thearubigins leading to an oxidative cascade hypothesis for thearubigin formation. Rapid Communications in Mass Spectrometry : RCM 24 (23):3387–404. doi: 10.1002/rcm.4778.
  • Lea, A. G. H., and D. J. Crispin. 1971. The separation of theaflavins on sephadex LH-20. Journal of Chromatography A 54:133–5. doi: 10.1016/S0021-9673(01)80255-7.
  • Li, B., S. B. Vik, and Y. Tu. 2012. Theaflavins inhibit the ATP synthase and the respiratory chain without increasing superoxide production. The Journal of Nutritional Biochemistry 23 (8):953–60. doi: 10.1016/j.jnutbio.2011.05.001.
  • Li, B. C., J. S. Gao, H. F. Zhang, Z. Li, W. F. Dai, and X. C. Zeng. 2007. Humic acid and pigments of Pu-Erh tea. Humic Acid 1:19–26. doi: 10.3969/j.issn.1671-9212.2007.01.004.
  • Li, D., C. Yang, Y. Chen, J. Tian, L. Liu, Q. Dai, X. Wan, and Z. Xie. 2008. Identification of a PKCε-dependent regulation of myocardial contraction by epicatechin-3-gallate. American Journal of Physiology. Heart and Circulatory Physiology 294 (1):H345–353. doi: 10.1152/ajpheart.00785.2007.
  • Li, P., A. Liu, W. Xiong, H. Lin, W. Xiao, J. Huang, S. Zhang, and Z. Liu. 2020. Catechins enhance skeletal muscle performance. Critical Reviews in Food Science and Nutrition 60 (3):515–28. doi: 10.1080/10408398.2018.1549534.
  • Lin, F. J., X. L. Wei, H. Y. Liu, H. Li, Y. Xia, D. T. Wu, P. Z. Zhang, G. R. Gandhi, H. B. Li, and R. Y. Gan. 2021. State-of-the-art review of dark tea: From chemistry to health benefits. Trends in Food Science & Technology 109:126–38. doi: 10.1016/j.tifs.2021.01.030.
  • Lodovici, M., C. Casalini, C. D. Filippo, E. Copeland, X. Xu, M. Clifford, and P. Dolara. 2000. Inhibition of 1,2-dimethylhydrazine-induced oxidative DNA damage in rat colon mucosa by black tea complex polyphenols. Food and Chemical Toxicology 38 (12):1085–8. doi: 10.1016/S0278-6915(00)00109-5.
  • Lu, H., P. Yue, Y. Wang, and X. Gao. 2016. Study of bioactive components and color properties of dark tea infusion manufactured by Eurotium cristatum using submerged fermentation. Advance Journal of Food Science and Technology 10 (8):591–6. doi: 10.19026/ajfst.10.2189.
  • Łuczaj, W., and E. Skrzydlewska. 2005. Antioxidative properties of black tea. Preventive Medicine 40 (6):910–8. doi: 10.1016/j.ypmed.2004.10.014.
  • Luo, D., X. Chen, X. Zhu, S. Liu, J. Li, J. Xu, J. Zhao, and X. Ji. 2019. Pu-Erh tea relaxes the thoracic aorta of rats by reducing intracellular calcium. Frontiers in Pharmacology 10:1430. doi: 10.3389/fphar.2019.01430.
  • Lv, H., Y. Zhang, J. Shi, and Z. Lin. 2017. Phytochemical profiles and antioxidant activities of chinese dark teas obtained by different processing technologies. Food Research International (Ottawa, Ont.) 100 (Pt 3):486–93. doi: 10.1016/j.foodres.2016.10.024.
  • Ma, H., X. Huang, Q. Li, Y. Guan, F. Yuan, and Y. Zhang. 2011. ATP-dependent potassium channels and mitochondrial permeability transition pores play roles in the cardioprotection of theaflavin in young rat. The Journal of Physiological Sciences 61 (4):337–42. doi: 10.1007/s12576-011-0148-9.
  • McDowell, I., S. Taylor, and C. Gay. 1995. The phenolic pigment composition of black tea liquors—part i: Predicting quality. Journal of the Science of Food and Agriculture 69 (4):467–74. doi: 10.1002/jsfa.2740690411.
  • Melov, S., J. M. Shoffner, A. Kaufman, and D. C. Wallace. 1995. Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Research 23 (20):4122–6. doi: 10.1093/nar/23.20.4122.
  • Menet, M.-C., S. Sang, C. S. Yang, C.-T. Ho, and R. T. Rosen. 2004. Analysis of theaflavins and thearubigins from black tea extract by MALDI-TOF mass spectrometry. Journal of Agricultural and Food Chemistry 52 (9):2455–61. doi: 10.1021/jf035427e.
  • Millin, D., D. Swaine, and P. Dix. 1969. Separation and classification of aqueous infused brown pigments of black tea. Journal of the Science of Food and Agriculture 20 (5):296–302. doi: 10.1002/jsfa.2740200511.
  • Miyata, Y., T. Tanaka, K. Tamaya, T. Matsui, S. Tamaru, and K. Tanaka. 2011. Cholesterol-lowering effect of black tea polyphenols, theaflavins, theasinensin a and thearubigins, in rats fed high fat diet. Food Science and Technology Research 17 (6):585–8. doi: 10.3136/fstr.17.585.
  • Morley, J. E. 1997. Anorexia of aging: Physiologic and pathologic. The American Journal of Clinical Nutrition 66 (4):760–73. doi: 10.1093/ajcn/66.4.760.
  • Nagano, T., K. Hayashibara, M. Ueda-Wakagi, Y. Yamashita, and H. Ashida. 2015. Black tea polyphenols promotes GLUT4 translocation through both PI3K-and AMPK-dependent pathways in skeletal muscle cells. Food Science and Technology Research 21 (3):489–94. doi: 10.3136/fstr.21.489.
  • Narai-Kanayama, A., Y. Uchida, A. Kawashima, and T. Nakayama. 2019. Elimination of hydrogen peroxide enhances tyrosinase-catalyzed synthesis of theaflavins. Process Biochemistry 85:19–28. doi: 10.1016/j.procbio.2019.07.004.
  • Narai-Kanayama, A., Y. Uekusa, F. Kiuchi, and T. Nakayama. 2018. Efficient synthesis of theaflavin 3-gallate by a tyrosinase-catalyzed reaction with (−)-epicatechin and (−)-epigallocatechin gallate in a 1-octanol/buffer biphasic system. Journal of Agricultural and Food Chemistry 66 (51):13464–72. doi: 10.1021/acs.jafc.8b05971.
  • Ngure, F. M., J. K. Wanyoko, S. M. Mahungu, and A. A. Shitandi. 2009. Catechins depletion patterns in relation to theaflavin and thearubigins formation. Food Chemistry 115 (1):8–14. doi: 10.1016/j.foodchem.2008.10.006.
  • Oh, J.-E., Y. J. Lee, Y.-W. Kim, S.-Y. Park, K.-M. Lee, and J.-Y. Kim. 2009. The effect of black tea on biomarkers of metabolic syndrome in high fat diet fed rats. Journal of the Korean Society for Applied Biological Chemistry 52 (2):193–7. doi: 10.3839/jksabc.2009.035.
  • Ozawa, T., M. Kataoka, K. Morikawa, and O. Negishi. 1996. Elucidation of the partial structure of polymeric thearubigins from black tea by chemical degradation. Bioscience, Biotechnology and Biochemistry 60 (12):2023–7. doi: 10.1271/bbb.60.2023.
  • Peng, C., J. Liu, H. Liu, H. Zhou, and J. Gong. 2013. Influence of different fermentation raw materials on pyrolyzates of Pu-Erh tea theabrownin by curie-point pyrolysis-gas chromatography–mass spectroscopy. International Journal of Biological Macromolecules 54:197–203. doi: 10.1016/j.ijbiomac.2012.12.021.
  • Peng, C. X., L. Jian, H. R. Liu, H. J. Zhou, and J. S. Gong. 2013. Influence of different fermentation raw materials on pyrolyzates of Pu-erh tea theabrownin by Curie-point pyrolysis-gas chromatography–mass spectroscopy. International Journal of Biological Macromolecules 54 (1):197–203. doi: 10.1016/j.ijbiomac.2012.12.021.
  • Peng, C. X., Q. P. Wang, H. R. Liu, B. Gao, J. Sheng, and J. S. Gong. 2013. Effects of Zijuan pu-erh tea theabrownin on metabolites in hyperlipidemic rat feces by Py-GC/MS. Journal of Analytical and Applied Pyrolysis 104:226–33. doi: 10.1016/j.jaap.2013.07.011.
  • Powell, C., M. N. Clifford, S. C. Opie, M. A. Ford, A. Robertson, and C. L. Gibson. 1993. Tea cream formation: The contribution of black tea phenolic pigments determined by HPLC. Journal of the Science of Food and Agriculture 63 (1):77–86. doi: 10.1002/jsfa.2740630113.
  • Proestos, C., and M. Komaitis. 2008. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT - Food Science and Technology 41 (4):652–9. doi: 10.1016/j.lwt.2007.04.013.
  • Qu, Z., A. Liu, C. Liu, Q. Tang, L. Zhan, W. Xiao, J. Huang, Z. Liu, and S. Zhang. 2021. Theaflavin promotes mitochondrial abundance and glucose absorption in myotubes by activating the CaMKK2-AMPK signal axis via calcium-ion influx. Journal of Agricultural and Food Chemistry 69 (29):8144–59. doi: 10.1021/acs.jafc.1c02892.
  • Qu, Z., C. Liu, P. Li, W. Xiong, Z. Zeng, A. Liu, W. Xiao, J. Huang, Z. Liu, and S. Zhang. 2020. Theaflavin promotes myogenic differentiation by regulating the cell cycle and surface mechanical properties of C2C12 cells. Journal of Agricultural and Food Chemistry 68 (37):9978–92. doi: 10.1021/acs.jafc.0c03744.
  • Roberts, E. A. H. 1958. The phenolic substances of manufactured tea. II. — Their origin as enzymic oxidation products in fermentation. Journal of the Science of Food and Agriculture 9 (4):212–6. doi: 10.1002/jsfa.2740090405.
  • Roberts, E. A. H., and M. Myers. 1959. The phenolic substances of manufactured tea. VI.–The preparation of theaflavin and of theaflavin gallate. Journal of the Science of Food and Agriculture 10 (3):176–9. doi: 10.1002/jsfa.2740100305.
  • Roberts, E. A. H., and R. F. Smith. 1963. The phenolic substances of manufactured tea. IX.—The Spectrophotometric evaluation of tea liquors. Journal of the Science of Food and Agriculture 14 (10):689–700. doi: 10.1002/jsfa.2740141002.
  • Robertson, A., and D. S. Bendall. 1983. Production and HPLC analysis of black tea theaflavins and thearubigins during in vitro oxidation. Phytochemistry 22 (4):883–7. doi: 10.1016/0031-9422(83)85016-X.
  • Sang, S. M., S. Y. Tian, J. W. Jhoo, H. Wang, R. E. Stark, R. T. Rosen, C. S. Yang, and C. T. Ho. 2003. Chemical studies of the antioxidant mechanism of theaflavins: Radical reaction products of theaflavin 3,3′-digallate with hydrogen peroxide. Tetrahedron Letters 44 (30):5583–7. doi: 10.1016/S0040-4039(03)01382-0.
  • Seo, H., S.-H. Lee, Y. Park, H.-S. Lee, J. S. Hong, C. Y. Lim, D. H. Kim, S.-S. Park, H. J. Suh, and K.-B. Hong. 2021. (−)-Epicatechin-enriched extract from Camellia sinensis improves regulation of muscle mass and function: Results from a randomized controlled trial. Antioxidants 10 (7):1026. doi: 10.3390/antiox10071026.
  • Shan, Z., M. F. Nisar, M. Li, C. Zhang, and C. Wan. 2021. Theaflavin Chemistry and Its Health Benefits. Oxidative Medicine and Cellular Longevity 2021:1–16. doi: 10.1155/2021/6256618.
  • Shen, Z., Q. Chen, T. Jin, M. Wang, H. Ying, J. Lu, M. Wang, W. Zhang, F. Qiu, C. Jin, et al. 2019. Theaflavin 3,3′-digallate reverses the downregulation of connexin 43 and autophagy induced by high glucose via AMPK activation in cardiomyocytes. Journal of Cellular Physiology 234 (10):17999–8016. doi: 10.1002/jcp.28432.
  • Stodt, U. W., J. Stark, and U. H. Engelhardt. 2015. Comparison of three strategies for the isolation of black tea thearubigins with a focus on countercurrent chromatography. Journal of Food Composition and Analysis 43:160–8. doi: 10.1016/j.jfca.2015.07.002.
  • Suzuki, K., N. Hirashima, Y. Fujii, T. Fushimi, A. Yamamoto, T. Ueno, R. Akagi, and N. Osakabe. 2021. Theaflavins decrease skeletal muscle wasting in disuse atrophy induced by hindlimb suspension in mice. Journal of Clinical Biochemistry and Nutrition 68 (3):228–7. doi: 10.3164/jcbn.20-68.
  • Takemoto, M., H. Takemoto, and A. Sakurada. 2014. Synthesis of theaflavins with Camellia sinensis cell culture and inhibition of increase in blood sugar values in high-fat diet mice subjected to sucrose or glucose loading. Tetrahedron Letters 55 (36):5038–540. doi: 10.1016/j.tetlet.2014.07.092.
  • Tan, C., C. X. Peng, B. Gao, and J. S. Gong. 2012. Spectroscopic and structural characteristics of the main components of theabrownin in Pu-Erh tea. Guang pu xue yu guang pu fen xi = Guang pu 32 (4):1051–6. doi: 10.3964/j.issn.1000-0593(2012)04-1051-06.
  • Tanaka, T., C. Mine, K. Inoue, M. Matsuda, and I. Kouno. 2002. Synthesis of theaflavin from epicatechin and epigallocatechin by plant homogenates and role of epicatechin quinone in the synthesis and degradation of theaflavin. Journal of Agricultural and Food Chemistry 50 (7):2142–8. doi: 10.1021/jf011301a.
  • Teng, J., Z. Gong, Y. Deng, L. Chen, Q. Li, Y. Shao, L. Lin, and W. Xiao. 2017. Purification, characterization and enzymatic synthesis of theaflavins of polyphenol oxidase isozymes from tea leaf (Camellia sinensis). LWT 84:263–70. doi: 10.1016/j.lwt.2017.05.065.
  • Tokuda, Y., and H. Mori. 2021. Effect of ingestion of essential amino acids and tea catechins after resistance exercise on the muscle mass, physical performance, and quality of life of healthy older people: A randomized controlled trial. Asia Pacific Journal of Clinical Nutrition 30 (2):213–23. doi: 10.6133/apjcn.202106_30(2).0005.
  • Townsend, J. R., J. R. Stout, A. R. Jajtner, D. D. Church, K. S. Beyer, J. J. Riffe, T. W. D. Muddle, K. L. Herrlinger, D. H. Fukuda, and J. R. Hoffman. 2018. Polyphenol supplementation alters intramuscular apoptotic signaling following acute resistance exercise. Physiological Reports 6 (2):e13552. doi: 10.14814/phy2.13552.
  • Tsai, T. W., C. C. Chang, S. F. Liao, Y. H. Liao, C. W. Hou, J. P. Tsao, and I. S. Cheng. 2017. Effect of green tea extract supplementation on glycogen replenishment in exercised human skeletal muscle. British Journal of Nutrition 117 (10):1343–50. doi: 10.1017/S0007114517001374.
  • van Loon, L. J. C. 2004. Use of intramuscular triacylglycerol as a substrate source during exercise in humans. Journal of Applied Physiology (Bethesda, Md.: 1985) 97 (4):1170–87. doi: 10.1152/japplphysiol.00368.2004.
  • Vuataz, L., and H. Brandenberger. 1961. Plant phenols: III. Separation of fermented and black tea polyphenols by cellulose column chromatography. Journal of Chromatography A 5:17–31. doi: 10.1016/S0021-9673(01)92812-2.
  • Wang, K., Q. Chen, Y. Lin, S. Li, H. Lin, J. Huang, and Z. Liu. 2014. Comparison of phenolic compounds and taste of Chinese black tea. Food Science and Technology Research 20 (3):639–46. doi: 10.3136/fstr.20.639.
  • Wang, Q., J. Gong, Y. Chisti, and S. Sirisansaneeyakul. 2014. Bioconversion of tea polyphenols to bioactive theabrownins by Aspergillus fumigatus. Biotechnology Letters 36 (12):2515–22. doi: 10.1007/s10529-014-1632-0.
  • Wang, Q. P., J. S. Gong, Y. Chisti, and S. Sirisansaneeyakul. 2015. Fungal isolates from a Pu-Erh type tea fermentation and their ability to convert tea polyphenols to theabrownins. Journal of Food Science 80 (4):M809–M817. doi: 10.1111/1750-3841.12831.
  • Wang, W., S. Zhang, L. Lv, and S. Sang. 2018. A new method to prepare and redefine black tea thearubigins. Journal of Chromatography. A 1563:82–8. doi: 10.1016/j.chroma.2018.05.060.
  • Wang, Y., A. Zhao, H. Du, Y. Liu, B. Qi, and X. Yang. 2021. Theabrownin from Fu brick tea exhibits the thermogenic function of adipocytes in high-fat-diet-induced obesity. Journal of Agricultural and Food Chemistry 69 (40):11900–11. doi: 10.1021/acs.jafc.1c04626.
  • Wei, Y., J. Xu, S. Miao, K. Wei, L. Peng, Y. Wang, and X. Wei. 2022. Recent advances in the utilization of tea active ingredients to regulate sleep through neuroendocrine pathway, immune system and intestinal microbiota. Critical Reviews in Food Science and Nutrition :1–2048319. doi: 10.1080/10408398.2022.2048291.
  • Wilting, J., B. Brand-Saberi, R. Huang, Q. Zhi, G. Köntges, C. P. Ordahl, and B. Christ. 1995. Angiogenic potential of the avian somite. Developmental Dynamics: An Official Publication of the American Association of Anatomists 202 (2):165–71. doi: 10.1002/aja.1002020208.
  • Wood, W. M., S. Etemad, M. Yamamoto, and D. J. Goldhamer. 2013. MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development. Developmental Biology 384 (1):114–27. doi: 10.1016/j.ydbio.2013.09.012.
  • Wu, Y. Y., W. Li, X. Yi, E. H. Jin, and Y. Y. Tu. 2011. Evaluation of the antioxidant effects of four main theaflavin derivatives through chemiluminescence and DNA damage analyses. Journal of Zhejiang University. Science. B 12 (9):744–51. doi: 10.1631/jzus.B1100041.
  • Xiao, Y., M. Li, Y. Wu, K. Zhong, and H. Gao. 2020. Structural characteristics and hypolipidemic activity of theabrownins from dark tea fermented by single species PW-1. Biomolecules 10 (2):204. doi: 10.3390/biom10020204.
  • Xie, G., M. Ye, Y. Wang, Y. Ni, M. Su, H. Huang, M. Qiu, A. Zhao, X. Zheng, T. Chen, et al. 2009. Characterization of Pu-Erh tea using chemical and metabolic profiling approaches. Journal of Agricultural and Food Chemistry 57 (8):3046–54. doi: 10.1021/jf804000y.
  • Xu, Y., Y. Jin, Y. Wu, and Y. Tu. 2010. Isolation and purification of four individual theaflavins using semi-preparative high performance liquid chromatography. Journal of Liquid Chromatography & Related Technologies 33 (20):1791–801. doi: 10.1080/10826076.2010.526865.
  • Yanase, E., K. Sawaki, and S. Nakatsuka. 2005. The isolation of a bicyclo[3.2.1] intermediate during formation of benzo­tropolones, a common nucleus found in black tea pigments: Theaflavins. Synlett 2005 (17):2661–3. doi: 10.1055/s-2005-917094.
  • Yang, C., D. Li, and X. Wan. 2008. Combination of HSCCC and Sephadex LH-20 methods: An approach to isolation and purification of the main individual theaflavins from black tea. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 861 (1):140–4. doi: 10.1016/j.jchromb.2007.11.022.
  • Yang, L., Y. Xi, X.-Y. Luo, H. Ni, and H.-H. Li. 2019. Preparation of peroxidase and phenolics using discarded sweet potato old stems. Scientific Reports 9 (1):3769. doi: 10.1038/s41598-019-40568-9.
  • Yang, X. H., L. L. Wang, J. A. Huang, W. U. Wen-Liang, and Z. H. Liu. 2011. Preliminary study on fractions and correlative properties of theabrownin from Pu-Erh Tea. Journal of Tea Science 31 (3):187–94. doi: 10.1097/RLU.0b013e3181f49ac7.
  • Yang, Z., Y. Tu, H. Xia, G. Jie, X. Chen, and P. He. 2007. Suppression of free-radicals and protection against H2O2-induced oxidative damage in HPF-1 cell by oxidized phenolic compounds present in black tea. Food Chemistry 105 (4):1349–56. doi: 10.1016/j.foodchem.2007.05.006.
  • Yassin, G. H., C. Grun, J. H. Koek, K. I. Assaf, and N. Kuhnert. 2014. Investigation of isomeric flavanol structures in black tea thearubigins using ultraperformance liquid chromatography coupled to hybrid quadrupole/ion mobility/time of flight mass spectrometry. Journal of Mass Spectrometry : JMS 49 (11):1086–95. doi: 10.1002/jms.3406.
  • Yassin, G. H., J. H. Koek, and N. Kuhnert. 2014. Identification of trimeric and tetrameric flavan-3-Ol derivatives in the SII black tea thearubigin fraction of black tea using ESI-tandem and MALDI-TOF mass spectrometry. Food Research International 63:317–27. doi: 10.1016/j.foodres.2014.04.010.
  • Yu, W., W. Zha, H. Peng, Q. Wang, S. Zhang, and J. F. Ren. 2019. Trehalose protects against insulin resistance-induced tissue injury and excessive autophagy in skeletal muscles and kidney. Current Pharmaceutical Design 25 (18):2077–85. doi: 10.2174/1381612825666190708221539.
  • Zhao, Y. P., W. L. Yu, D. P. Wang, X. F. Liang, and T. X. Hu. 2003. Chemiluminescence determination of free radical scavenging abilities of “tea pigments” and comparison with “tea polyphenols. Food Chemistry 80 (1):115–8. doi: 10.1016/S0308-8146(02)00241-8.
  • Zhang, Q., L. X. Dong, G. Q. Li, and J. S. Gong. 2012. Study on membrane separation and its physicochemical properties of theabrownin in “Zijuan” Pu-Erh tea. Journal of Tea Science 3:189–96. doi: 10.13305/j.cnki.jts.2012.03.003.
  • Zhang, S. H., L. Qian, H. Y. Zhao, and X. F. Lin. 2012. Study on the microwave-assisted extraction method of theabrownine from Pu-Erh tea. Journal of Anhui Agricultural Sciences 40 (22):11421–2. doi: 10.13989/j.cnki.0517-6611.2012.22.050.
  • Zheng, R., S. Huang, J. Zhu, W. Lin, H. Xu, and X. Zheng. 2019. Leucine attenuates muscle atrophy and autophagosome formation by activating PI3K/AKT/MTOR signaling pathway in rotator cuff tears. Cell and Tissue Research 378 (1):113–25. doi: 10.1007/s00441-019-03021-x.
  • Zhu, K., J. Ouyang, J. Huang, and Z. Liu. 2021. Research progress of black tea thearubigins: A review. Critical Reviews in Food Science and Nutrition 61 (9):1556–66. doi: 10.1080/10408398.2020.1762161.
  • Zierath, J. R., and Y. Kawano. 2003. The effect of hyperglycaemia on glucose disposal and insulin signal transduction in skeletal muscle. Best Practice & Research. Clinical Endocrinology & Metabolism 17 (3):385–98. doi: 10.1016/S1521-690X(03)00040-X.
  • Zou, Y., G. Qi, T. Xu, S. Chen, T. Liu, and Y. Huang. 2016. Optimal extraction parameters of theabrownin from Sichuan dark tea. African Journal of Traditional, Complementary and Alternative Medicines 13 (3):191–6. doi: 10.4314/ajtcam.v13i3.22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.