282
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Modulating the glycemic response of starch-based foods using organic nanomaterials: strategies and opportunities

, ORCID Icon, , & ORCID Icon
Pages 11942-11966 | Published online: 28 Jul 2022

References

  • Aguilar-Pérez, K., J. Avilés-Castrillo, D. I. Medina, R. Parra-Saldivar, and H. Iqbal. 2020. Insight into nanoliposomes as smart nanocarriers for greening the twenty-first century biomedical settings. Frontiers in Bioengineering and Biotechnology 8:1441. doi: 10.3389/fbioe.2020.579536.
  • Ahmad, M., P. Mudgil, A. Gani, F. Hamed, F. A. Masoodi, and S. Maqsood. 2019. Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chemistry 270:95–104. doi: 10.1016/j.foodchem.2018.07.024.
  • Alongi, M., G. Verardo, A. Gorassini, and M. Anese. 2018. Effect of pasteurization on in vitro α-glucosidase inhibitory activity of apple juice. LWT - Food Science and Technology 98:366–71. doi: 10.1016/j.lwt.2018.08.065.
  • Asghari, M., A. A. Karimi Zarchi, and R. A. Taheri. 2021. Preparation and characterization nanocrystalline cellulose as a food additive to produce healthy biscuit cream. Starch - Stärke 73 (3–4):2000033. doi: 10.1002/star.202000033.
  • Awosika, T. O., and R. E. Aluko. 2019. Inhibition of the in vitro activities of α‐amylase, α‐glucosidase and pancreatic lipase by yellow field pea (Pisum sativum L.) protein hydrolysates. International Journal of Food Science & Technology 54 (6):2021–34. doi: 10.1111/ijfs.14087.
  • Azarifar, M., B. Ghanbarzadeh, M. Sowti Khiabani, A. Akhondzadeh Basti, and A. Abdulkhani. 2020. The effects of gelatin-CMC films incorporated with chitin nanofiber and Trachyspermum ammi essential oil on the shelf life characteristics of refrigerated raw beef. International Journal of Food Microbiology 318:108493.
  • Babu, P. J., and J. M. R. Tingirikari. 2022. A review on polymeric nanomaterials intervention in food industry. Polymer Bulletin 2022:1–28.
  • Baghaenezhad, M., N. Mollania, and S. Kazemi-Noreini. 2021. Antioxidant capacities, antimicrobial activity, phenolic contents and α-amylase inhibitory of Salvia leriifolia extracts from Sabzevar. Iranian Journal of Science and Technology, Transactions A: Science 2021:1–9.
  • Bai, L., S. Lv, W. Xiang, S. Huan, D. J. McClements, and O. J. Rojas. 2019. Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 2. In vitro lipid digestion. Food Hydrocolloids. 96:709–16. doi: 10.1016/j.foodhyd.2019.04.039.
  • Ban, C., M. Jo, Y. H. Park, J. H. Kim, J. Y. Han, K. W. Lee, D.-H. Kweon, and Y. J. Choi. 2020. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chemistry 302:125328. doi: 10.1016/j.foodchem.2019.125328.
  • Bangham, A., J. De Gier, and G. Greville. 1967. Osmotic properties and water permeability of phospholipid liquid crystals. Chemistry and Physics of Lipids 1 (3):225–46. doi: 10.1016/0009-3084(67)90030-8.
  • Bello-Pérez, L. A., P. C. Flores-Silva, I. Sifuentes-Nieves, and E. Agama-Acevedo. 2021. Controlling starch digestibility and glycaemic response in maize-based foods. Journal of Cereal Science 99:103222.
  • Bhattarai, R. R., S. Dhital, and M. J. Gidley. 2016. Interactions among macronutrients in wheat flour determine their enzymic susceptibility. Food Hydrocolloids 61:415–25. doi: 10.1016/j.foodhyd.2016.05.026.
  • Borges, A., V. D. Freitas, N. Mateus, I. Fernandes, and J. Oliveira. 2020. Solid lipid nanoparticles as carriers of natural phenolic compounds. Antioxidants 9 (10):998. doi: 10.3390/antiox9100998.
  • Cao, Y., F. Zhang, P. Guo, S. Dong, and H. Li. 2019. Effect of wheat flour substitution with potato pulp on dough rheology, the quality of steamed bread and in vitro starch digestibility. LWT - Food Science and Technology 111:527–33. doi: 10.1016/j.lwt.2019.01.034.
  • Chan, C.-H., R.-G. Wu, and Y.-Y. Shao. 2021. The effects of ultrasonic treatment on physicochemical properties and in vitro digestibility of semigelatinized high amylose maize starch. Food Hydrocolloids. 119:106831. doi: 10.1016/j.foodhyd.2021.106831.
  • Chen, H., B. Xu, C. Zhou, A. E.-G A. Yagoub, Z. Cai, and X. Yu. 2022. Multi-frequency ultrasound-assisted dialysis modulates the self-assembly of alcohol-free zein-sodium caseinate to encapsulate curcumin and fabricate composite nanoparticles. Food Hydrocolloids. 122:107110. doi: 10.1016/j.foodhyd.2021.107110.
  • Chen, X., X.-W. He, B. Zhang, X. Fu, J-l. Jane, and Q. Huang. 2017. Effects of adding corn oil and soy protein to corn starch on the physicochemical and digestive properties of the starch. International Journal of Biological Macromolecules 104 (Pt A):481–6.
  • Chen, X., X. He, B. Zhang, L. Sun, Z. Liang, and Q. Huang. 2019. Wheat gluten protein inhibits α-amylase activity more strongly than a soy protein isolate based on kinetic analysis. International Journal of Biological Macromolecules 129:433–41.
  • Chi, C., X. Li, T. Feng, X. Zeng, L. Chen, and L. Li. 2018. Improvement in nutritional attributes of rice starch with dodecyl gallate complexation: A molecular dynamic simulation and in vitro study. Journal of Agricultural and Food Chemistry 66 (35):9282–90.
  • Chinsriwongkul, A., P. Chareanputtakhun, T. Ngawhirunpat, T. Rojanarata, W. Sila-on, U. Ruktanonchai, and P. Opanasopit. 2012. Nanostructured lipid carriers (NLC) for parenteral delivery of an anticancer drug. AAPS PharmSciTech 13 (1):150–8.
  • Condés, M. C., M. C. Añón, A. N. Mauri, and A. Dufresne. 2015. Amaranth protein films reinforced with maize starch nanocrystals. Food Hydrocolloids. 47:146–57. doi: 10.1016/j.foodhyd.2015.01.026.
  • Costa, A. L. R., A. Gomes, H. Tibolla, F. C. Menegalli, and R. L. Cunha. 2018. Cellulose nanofibers from banana peels as a Pickering emulsifier: High-energy emulsification processes. Carbohydrate Polymers 194:122–31.
  • Criado, P., C. Fraschini, S. Salmieri, D. Bécher, A. Safrany, and M. Lacroix. 2016. Free radical grafting of gallic acid (GA) on cellulose nanocrystals (CNCS) and evaluation of antioxidant reinforced gellan gum films. Radiation Physics and Chemistry 118:61–9. doi: 10.1016/j.radphyschem.2015.05.030.
  • Cui, J., C. Li, Y. Deng, Y. Wang, and W. Wang. 2006. Freeze-drying of liposomes using tertiary butyl alcohol/water cosolvent systems. International Journal of Pharmaceutics 312 (1–2):131–6.
  • De Souza Guedes, L., R. M. Martinez, N. A. Bou-Chacra, M. V. R. Velasco, C. Rosado, and A. R. Baby. 2021. An overview on topical administration of carotenoids and coenzyme Q10 loaded in lipid nanoparticles. Antioxidants 10 (7):1034. doi: 10.3390/antiox10071034.
  • Dhital, S., M. J. Gidley, and F. J. Warren. 2015. Inhibition of α-amylase activity by cellulose: Kinetic analysis and nutritional implications. Carbohydrate Polymers 123:305–12.
  • Ding, Y., J. Cheng, Q. Lin, Q. Wang, J. Wang, and G. Yu. 2021. Effects of endogenous proteins and lipids on structural, thermal, rheological, and pasting properties and digestibility of adlay seed (Coix lacryma-jobi L.) starch. Food Hydrocolloids. 111:106254. doi: 10.1016/j.foodhyd.2020.106254.
  • Dirir, A. M., M. Daou, A. F. Yousef, and L. F. Yousef. 2021. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochemistry Reviews 2021:1–31.
  • Dong, S., G. Fang, Z. Luo, and Q. Gao. 2021. Effect of granule size on the structure and digestibility of jackfruit seed starch. Food Hydrocolloids 120:106964.
  • Du, J., R. Pan, M. Obadi, H. Li, F. Shao, J. Sun, Y. Wang, Y. Qi, and B. Xu. 2022. In vitro starch digestibility of buckwheat cultivars in comparison to wheat: The key role of starch molecular structure. Food Chemistry 368:130806. doi: 10.1016/j.foodchem.2021.130806.
  • Du, X., M. Hu, G. Liu, B. Qi, S. Zhou, K. Lu, F. Xie, X. Zhu, and Y. Li. 2022. Development and evaluation of delivery systems for quercetin: A comparative study between coarse emulsion, nano-emulsion, high internal phase emulsion, and emulsion gel. Journal of Food Engineering 314:110784. doi: 10.1016/j.jfoodeng.2021.110784.
  • Dua, J., A. Rana, and A. Bhandari. 2012. Liposome: Methods of preparation and applications. Int J Pharm Stud Res 3 (2):14–20.
  • Dutta, S., and P. Bhattacharjee. 2017. Nanoliposomal encapsulates of piperine-rich black pepper extract obtained by enzyme-assisted supercritical carbon dioxide extraction. Journal of Food Engineering 201:49–56. doi: 10.1016/j.jfoodeng.2017.01.006.
  • Ekin, M. M., N. Kutlu, R. Meral, Z. Ceylan, and İ. Cavidoglu. 2021. A novel nanotechnological strategy for obtaining fat-reduced cookies in bakery industry: Revealing of sensory, physical properties, and fatty acid profile of cookies prepared with oil-based nanoemulsions. Food Bioscience 42:101184. doi: 10.1016/j.fbio.2021.101184.
  • Eleazu, C., A. Sampson, S. Saidu, K. Eleazu, and C. Egedigwe-Ekeleme. 2018. Starch digestibility, polyphenol contents and in vitro alpha amylase inhibitory properties of two varieties of cocoyam (Colocassia esculenta and Xanthosoma mafafa) as affected by cooking. Journal of Food Measurement and Characterization 12 (2):1047–53. doi: 10.1007/s11694-018-9720-9.
  • Falleh, H., M. B. Jemaa, M. A. Neves, H. Isoda, M. Nakajima, and R. Ksouri. 2021. Formulation, physicochemical characterization, and anti-E. coli activity of food-grade nanoemulsions incorporating clove, cinnamon, and lavender essential oils. Food Chemistry 359:129963. doi: 10.1016/j.foodchem.2021.129963.
  • Fang, Y., S. Wang, J. Wu, L. Zhang, Z. Wang, L. Gan, J. He, H. Shi, and J. Hou. 2017. The kinetics and mechanism of α-glucosidase inhibition by F5-SP, a novel compound derived from sericin peptides. Food & Function 8 (1):323–32.
  • Fathi, M., M. R. Mozafari, and M. Mohebbi. 2012. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science & Technology 23 (1):13–27. doi: 10.1016/j.tifs.2011.08.003.
  • Fathima, S. J., I. Fathima, V. Abhishek, and F. Khanum. 2016. Phosphatidylcholine, an edible carrier for nanoencapsulation of unstable thiamine. Food Chemistry 197 (Pt A):562–70.
  • Fernandes, F., M. Dias-Teixeira, C. Delerue-Matos, and C. Grosso. 2021. Critical Review of Lipid-Based Nanoparticles as Carriers of Neuroprotective Drugs and Extracts. Nanomaterials 11 (3):563 doi:10.3390/nano11030563.
  • Fonseca, L. M., N. P. Bona, R. L. Crizel, N. S. Pedra, F. M. Stefanello, L. T. Lim, … E. d R. Zavareze. 2021. Electrospun starch nanofibers as a delivery carrier for carvacrol as anti‐glioma agent. Starch‐Stärke 74 (1–2):2100115.
  • Fonseca, L. M., E. J. D. Souza, M. Radünz, E. A. Gandra, E. da Rosa Zavareze, and A. R. G. Dias. 2021a. Suitability of starch/carvacrol nanofibers as biopreservatives for minimizing the fungal spoilage of bread. Carbohydrate Polymers 252:117166. doi: 10.1016/j.carbpol.2020.117166.
  • Gaillet, S., and J.-M. Rouanet. 2015. Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms–a review. Food and Chemical Toxicology 77:58–63.
  • Garavand, F., M. Jalai-Jivan, E. Assadpour, and S. M. Jafari. 2021. Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chemistry 364:130376.
  • Garti, N. 2008. Delivery and controlled release of bioactives in foods and nutraceuticals. New York, NY: Elsevier.
  • Ge, X., H. Shen, C. Su, B. Zhang, Q. Zhang, H. Jiang, L. Yuan, X. Yu, and W. Li. 2021. Pullulanase modification of granular sweet potato starch: Assistant effect of dielectric barrier discharge plasma on multi-scale structure, physicochemical properties. Carbohydrate Polymers 272:118481. doi: 10.1016/j.carbpol.2021.118481.
  • Ghorbanpour, M. P. Bhargava, A. Varma, and D. K. Choudhary. 2020. Biogenic nano-particles and their use in agro-ecosystems. Berlin, Heidelberg: Springer Nature.
  • Gonçalves, A., B. N. Estevinho, and F. Rocha. 2021. Methodologies for simulation of gastrointestinal digestion of different controlled delivery systems and further uptake of encapsulated bioactive compounds. Trends in Food Science & Technology 114:510–20. doi: 10.1016/j.tifs.2021.06.007.
  • Gonçalves, R. F., J. T. Martins, C. M. Duarte, A. A. Vicente, and A. C. Pinheiro. 2018. Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends in Food Science & Technology 78:270–91. doi: 10.1016/j.tifs.2018.06.011.
  • Guo, Z., X. Cao, G. M. DeLoid, K. Sampathkumar, K. W. Ng, S. C. J. Loo, and P. Demokritou. 2020. Physicochemical and morphological transformations of chitosan nanoparticles across the gastrointestinal tract and cellular toxicity in an in vitro model of the small intestinal epithelium. Journal of Agricultural and Food Chemistry 68 (1):358–68. doi: 10.1021/acs.jafc.9b05506.
  • Han, M., W. Bao, Y. Wu, and J. Ouyang. 2020. Insights into the effects of caffeic acid and amylose on in vitro digestibility of maize starch-caffeic acid complex. International Journal of Biological Macromolecules 162:922–30.
  • Harwansh, R. K., R. Deshmukh, and M. A. Rahman. 2019. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. Journal of Drug Delivery Science and Technology 51:224–33. doi: 10.1016/j.jddst.2019.03.006.
  • Heydari-Majd, M., H. Rezaeinia, M. R. Shadan, B. Ghorani, and N. Tucker. 2019. Enrichment of zein nanofibre assemblies for therapeutic delivery of Barije (Ferula gummosa Boiss) essential oil. Journal of Drug Delivery Science and Technology 54:101290. doi: 10.1016/j.jddst.2019.101290.
  • Hu, Y., Y. Qin, C. Qiu, X. Xu, Z. Jin, and J. Wang. 2020. Ultrasound-assisted self-assembly of β-cyclodextrin/debranched starch nanoparticles as promising carriers of tangeretin. Food Hydrocolloids. 108:106021. doi: 10.1016/j.foodhyd.2020.106021.
  • Hua, F., P. Zhou, H.-Y. Wu, G.-X. Chu, Z.-W. Xie, and G.-H. Bao. 2018. Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu’an GuaPian tea: Molecular docking and interaction mechanism. Food & Function 9 (8):4173–83.
  • Huang, Y., L. Mei, X. Chen, and Q. Wang. 2018. Recent developments in food packaging based on nanomaterials. Nanomaterials 8 (10):830. doi: 10.3390/nano8100830.
  • Huang, J.-Y., X. Li, and W. Zhou. 2015. Safety assessment of nanocomposite for food packaging application. Trends in Food Science & Technology 45 (2):187–99. doi: 10.1016/j.tifs.2015.07.002.
  • Isogai, A., and Y. Zhou. 2019. Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals. Current Opinion in Solid State and Materials Science 23 (2):101–6. doi: 10.1016/j.cossms.2019.01.001.
  • Jafarizadeh-Malmiri, H., N. Anarjan, and A. Berenjian. 2022. Developing three-component ginger-cinnamon-cardamom composite essential oil nanoemulsion as natural food preservatives. Environmental Research 204 (Pt B):112133.
  • Jahn, A., S. M. Stavis, J. S. Hong, W. N. Vreeland, D. L. DeVoe, and M. Gaitan. 2010. Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano 4 (4):2077–87.
  • Jamali, S. N., E. Assadpour, J. Feng, and S. M. Jafari. 2021. Natural antimicrobial-loaded nanoemulsions for the control of food spoilage/pathogenic microorganisms. Advances in Colloid and Interface Science 295:102504.
  • Jebali, A., S. Hekmatimoghaddam, A. Behzadi, I. Rezapor, B. H. Mohammadi, T. Jasemizad, S. A. Yasini, M. Javadzadeh, A. Amiri, M. Soltani, et al. 2013. Antimicrobial activity of nanocellulose conjugated with allicin and lysozyme. Cellulose 20 (6):2897–907. doi: 10.1007/s10570-013-0084-3.
  • Jiang, S., M. Li, R. Chang, L. Xiong, and Q. Sun. 2018. In vitro inhibition of pancreatic α-amylase by spherical and polygonal starch nanoparticles. Food & Function 9 (1):355–63.
  • Jiang, F., L. Yang, S. Wang, X. Ying, J. Ling, and X. k. Ouyang. 2021. Fabrication and characterization of zein-alginate oligosaccharide complex nanoparticles as delivery vehicles of curcumin. Journal of Molecular Liquids 342:116937. doi: 10.1016/j.molliq.2021.116937.
  • Ji, N., C. Liu, M. Li, Q. Sun, and L. Xiong. 2018. Interaction of cellulose nanocrystals and amylase: Its influence on enzyme activity and resistant starch content. Food Chemistry 245:481–7.
  • Ji, N., Y. Hong, Z. Gu, L. Cheng, Z. Li, and C. Li. 2019. Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo. Journal of Controlled Release 313:1–13.
  • Jovanović, B. 2015. Critical review of public health regulations of titanium dioxide, a human food additive. Integrated Environmental Assessment and Management 11 (1):10–20. doi: 10.1002/ieam.1571.
  • Khan, A., Y. Wen, T. Huq, and Y. Ni. 2018. Cellulosic nanomaterials in food and nutraceutical applications: A review. Journal of Agricultural and Food Chemistry 66 (1):8–19.
  • Kalita, D., D. G. Holm, D. V. LaBarbera, J. M. Petrash, and S. S. Jayanty. 2018. Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PLoS One 13 (1):e0191025. doi: 10.1371/journal.pone.0191025.
  • Kan, L., E. Capuano, V. Fogliano, T. Oliviero, and R. Verkerk. 2020. Tea polyphenols as a strategy to control starch digestion in bread: The effects of polyphenol type and gluten. Food & Function 11 (7):5933–43.
  • Kan, L., T. Oliviero, R. Verkerk, V. Fogliano, and E. Capuano. 2020a. Interaction of bread and berry polyphenols affects starch digestibility and polyphenols bio-accessibility. Journal of Functional Foods 68:103924. doi: 10.1016/j.jff.2020.103924.
  • Karthik, P., P. Ezhilarasi, and C. Anandharamakrishnan. 2017. Challenges associated in stability of food grade nanoemulsions. Critical Reviews in Food Science and Nutrition 57 (7):1435–50.
  • Kaur, J., K. Kaur, B. Singh, A. Singh, and S. Sharma. 2021. Insights into the latest advances in low glycemic foods, their mechanism of action and health benefits. Journal of Food Measurement and Characterization 2021:1–14.
  • Kaphle, A., P. Navya, A. Umapathi, and H. K. Daima. 2018. Nanomaterials for agriculture, food and environment: Applications, toxicity and regulation. Environmental Chemistry Letters 16 (1):43–58. doi: 10.1007/s10311-017-0662-y.
  • Khatibi, S. A., A. Misaghi, M. H. Moosavy, A. A. Basti, M. K. Koohi, P. Khosravi, and F. Haghirosadat. 2017. Encapsulation of Zataria multiflora Bioss. essential oil into nanoliposomes and in vitro antibacterial activity against Escherichia coli O157: H7. Journal of Food Processing and Preservation 41 (3):e12955. doi: 10.1111/jfpp.12955.
  • Kheadr, E. E., J. C. Vuillemard, and S. A. El Deeb. 2000. Accelerated Cheddar cheese ripening with encapsulated proteinases. International Journal of Food Science and Technology 35 (5):483–95. doi: 10.1046/j.1365-2621.2000.00398.x.
  • Kim, Y.-M., Y.-K. Jeong, M.-H. Wang, W.-Y. Lee, and H.-I. Rhee. 2005. Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition (Burbank, Los Angeles County, Calif.) 21 (6):756–61.
  • Korompokis, K., L. J. Deleu, N. De Brier, and J. A. Delcour. 2021. Investigation of starch functionality and digestibility in white wheat bread produced from a recipe containing added maltogenic amylase or amylomaltase. Food Chemistry 362:130203. doi: 10.1016/j.foodchem.2021.130203.
  • Kou, Z., D. Dou, L. Lan, J. Zhang, P. Lan, Q. Yu, and Y. Zhang. 2020. Preparation, characterization, and performance analysis of starch-based nanomicelles. International Journal of Biological Macromolecules 145:655–62.
  • Kumar, S. B., and P. Prabhasankar. 2014. Low glycemic index ingredients and modified starches in wheat based food processing: A review. Trends in Food Science & Technology 35 (1):32–41. doi: 10.1016/j.tifs.2013.10.007.
  • Kumar, S. V., A. P. Bafana, P. Pawar, A. Rahman, S. A. Dahoumane, and C. S. Jeffryes. 2018. High conversion synthesis of < 10 nm starch-stabilized silver nanoparticles using microwave technology. Scientific Reports 8 (1):1–10.
  • Lacroix, I. M., and E. C. Li-Chan. 2013. Inhibition of dipeptidyl peptidase (DPP)-IV and α-glucosidase activities by pepsin-treated whey proteins. Journal of Agricultural and Food Chemistry 61 (31):7500–6.
  • Laloy, E., J.-C. Vuillemard, P. Dufour, and R. Simard. 1998. Release of enzymes from liposomes during cheese ripening. Journal of Controlled Release 54 (2):213–22.
  • Lal, M. K., B. Singh, S. Sharma, M. P. Singh, and A. Kumar. 2021. Glycemic index of starchy crops and factors affecting its digestibility: A review. Trends in Food Science & Technology 111:741–55. doi: 10.1016/j.tifs.2021.02.067.
  • Lam, R., and M. T. Nickerson. 2013. Food proteins: A review on their emulsifying properties using a structure-function approach. Food Chemistry 141 (2):975–84.
  • Lankatillake, C., T. Huynh, and D. A. Dias. 2019. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. Plant Methods. 15 (1):1–35. doi: 10.1186/s13007-019-0487-8.
  • Laouini, A., C. Jaafar-Maalej, I. Limayem-Blouza, S. Sfar, C. Charcosset, and H. Fessi. 2012. Preparation, characterization and applications of liposomes: State of the art. Journal of Colloid Science and Biotechnology 1 (2):147–68. doi: 10.1166/jcsb.2012.1020.
  • Lavoine, N., V. Guillard, I. Desloges, N. Gontard, and J. Bras. 2016. Active bio-based food-packaging: Diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design. Carbohydrate Polymers 149:40–50. doi: 10.1016/j.carbpol.2016.04.048.
  • Lemlioglu-Austin, D., N. D. Turner, C. M. McDonough, and L. W. Rooney. 2012. Effects of sorghum [Sorghum bicolor (L.) Moench] crude extracts on starch digestibility, estimated glycemic index (EGI), and resistant starch (RS) contents of porridges. Molecules (Basel, Switzerland) 17 (9):11124–38. doi: 10.3390/molecules170911124.
  • Li, L., G. Jiang, W. Yu, D. Liu, H. Chen, Y. Liu, Z. Tong, X. Kong, and J. Yao. 2017. Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin. Materials Science & Engineering. C, Materials for Biological Applications 70 (Pt 1):278–86.
  • Li, B. X. 2021. Hypoglycemic effect of insulin-loaded hydrogel-nanogel composite on streptozotocin-induced diabetic rats. Die Pharmazie - An International Journal of Pharmaceutical Sciences 76 (8):364–71.
  • Li, H.-T., Z. Li, G. P. Fox, M. J. Gidley, and S. Dhital. 2021. Protein-starch matrix plays a key role in enzymic digestion of high-amylose wheat noodle. Food Chemistry 336:127719. doi: 10.1016/j.foodchem.2020.127719.
  • Li, X., J. Cai, J. Yu, S. Wang, L. Copeland, and S. Wang. 2021. Inhibition of in vitro enzymatic starch digestion by coffee extract. Food Chemistry 358:129837.
  • Li, Z., R. Yang, F. Yang, M. Zhang, and B. Wang. 2015. Structure and properties of chitin whisker reinforced papers for food packaging application. BioResources 10 (2):2995–3004.
  • Ling, J., Y. S. Chan, and J. Nandong. 2021. Insights into the release mechanisms of antioxidants from nanoemulsion droplets. Journal of Food Science and Technology 2021:1–15.
  • Liu, M., B. Hu, H. Zhang, Y. Zhang, L. Wang, H. Qian, and X. Qi. 2017. Inhibition study of red rice polyphenols on pancreatic α-amylase activity by kinetic analysis and molecular docking. Journal of Cereal Science 76:186–92. doi: 10.1016/j.jcs.2017.04.011.
  • Liu, L., W. L. Kerr, F. Kong, D. R. & Dee, and M. Lin. 2018. Influence of nano-fibrillated cellulose (NFC) on starch digestion and glucose absorption. Carbohydrate Polymers 196:146–53.
  • Liu, X., K. Lu, J. Yu, L. Copeland, S. Wang, and S. Wang. 2019. Effect of purple yam flour substitution for wheat flour on in vitro starch digestibility of wheat bread. Food Chemistry 284:118–24.
  • Liu, S., J. Yu, S. Guo, H. Fang, and X. Chang. 2020. Inhibition of pancreatic α-amylase by Lonicera caerulea berry polyphenols in vitro and their potential as hyperglycemic agents. LWT - Food Science and Technology 126:109288. doi: 10.1016/j.lwt.2020.109288.
  • López-Barón, N., D. Sagnelli, A. Blennow, M. Holse, J. Gao, L. Saaby, A. Müllertz, B. Jespersen, and T. Vasanthan. 2018. Hydrolysed pea proteins mitigate in vitro wheat starch digestibility. Food Hydrocolloids. 79:117–26. doi: 10.1016/j.foodhyd.2017.12.009.
  • Lyu, X., X. Wang, Q. Wang, X. Ma, S. Chen, and J. Xiao. 2021. Encapsulation of sea buckthorn (Hippophae rhamnoides L.) leaf extract via an electrohydrodynamic method. Food Chemistry 365:130481.
  • Mallik, A. K. M. N. Sakib, M. Shaharuzzaman, P. Haque, and M. M. Rahman. 2020. Chitin nanomaterials: Preparation and surface modifications. In Handbook of chitin and chitosan, 165–94. New York, NY: Elsevier.
  • Maniglia, B. C., C. I. A. La Fuente, L. d V. Siqueira, and C. C. Tadini. 2021. Carbohydrate nanomaterials addition to starch‐based packaging: A review about fundamentals and application. Starch - Stärke 73 (11–12):2100057. doi: 10.1002/star.202100057.
  • McClements, D. J., G. DeLoid, G. Pyrgiotakis, J. A. Shatkin, H. Xiao, and P. Demokritou. 2016. The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. NanoImpact 3-4:47–57. doi:10.1016/j.impact.2016.10.002.
  • McClements, D. J., and J. Rao. 2011. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition 51 (4):285–330. doi: 10.1080/10408398.2011.559558.
  • McClements, D. J., and H. Xiao. 2012. Potential biological fate of ingested nanoemulsions: Influence of particle characteristics. Food & Function 3 (3):202–20.
  • McClements, D. J., and H. Xiao. 2017. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. Npj Science of Food 1 (1):1–13. doi: 10.1038/s41538-017-0005-1.
  • Medina-Pérez, G., J. A. Estefes-Duarte, L. N. Afanador-Barajas, F. Fernández-Luqueño, A. P. Zepeda-Velásquez, M. J. Franco-Fernández, A. Peláez-Acero, and R. G. Campos-Montiel. 2020. Encapsulation preserves antioxidant and antidiabetic activities of cactus acid fruit bioactive compounds under simulated digestion conditions. Molecules 25 (23):5736. doi: 10.3390/molecules25235736.
  • Meng, D., L. Zhu, L. Zhang, T. Ma, Y. Zhang, L. Chen, Y. Shan, Y. Wang, Z. Wang, Z. Zhou, et al. 2021. Succinylated ferritin as a novel nanocage-like vehicle of polyphenol: Structure, stability, and absorption analysis. Food Chemistry 361:130069. doi: 10.1016/j.foodchem.2021.130069.
  • Miao, M., B. Jiang, H. Jiang, T. Zhang, and X. Li. 2015. Interaction mechanism between green tea extract and human α-amylase for reducing starch digestion. Food Chemistry 186:20–5.
  • Miñon-Hernández, D., J. Villalobos-Espinosa, I. Santiago-Roque, S. L. González-Herrera, S. Herrera-Meza, E. Meza-Alvarado, A. Bello-Pérez, P. Osorio-Díaz, J. Chanona-Pérez, J. V. Méndez-Méndez, et al. 2018. Biofunctionality of native and nano-structured blue corn starch in prediabetic Wistar rats. CyTA - Journal of Food 16 (1):477–83. doi: 10.1080/19476337.2017.1422279.
  • Mirab, B., H. A. Gavlighi, R. A. Sarteshnizi, M. H. Azizi, and C. C. Udenigwe. 2020. Production of low glycemic potential sponge cake by pomegranate peel extract (PPE) as natural enriched polyphenol extract: Textural, color and consumer acceptability. LWT - Food Science and Technology 134:109973. doi: 10.1016/j.lwt.2020.109973.
  • Mohammadian, M., M. I. Waly, M. Moghadam, Z. Emam-Djomeh, M. Salami, and A. A. Moosavi-Movahedi. 2020. Nanostructured food proteins as efficient systems for the encapsulation of bioactive compounds. Food Science and Human Wellness 9 (3):199–213. doi: 10.1016/j.fshw.2020.04.009.
  • Mohammadpour, F., F. Hadizadeh, M. Tafaghodi, K. Sadri, A. H. Mohammadpour, M. R. Kalani, L. Gholami, A. Mahmoudi, and J. Chamani. 2019. Preparation, in vitro and in vivo evaluation of PLGA/Chitosan based nano-complex as a novel insulin delivery formulation. International Journal of Pharmaceutics 572:118710. doi: 10.1016/j.ijpharm.2019.118710.
  • Morán, D., G. Gutiérrez, M. C. Blanco-López, A. Marefati, M. Rayner, and M. Matos. 2021. Synthesis of starch nanoparticles and their applications for bioactive compound encapsulation. Applied Sciences 11 (10):4547. doi: 10.3390/app11104547.
  • Morán, J. I., V. A. Alvarez, V. P. Cyras, and A. Vázquez. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 15 (1):149–59. doi: 10.1007/s10570-007-9145-9.
  • Mozafari, M. R. 2005. Liposomes: An overview of manufacturing techniques. Cellular & Molecular Biology Letters 10 (4):711–9.
  • Na-Nakorn, K., T. Kulrattanarak, B. R. Hamaker, and S. Tongta. 2019. Starch digestion kinetics of extruded reformed rice is changed in different ways with added protein or fiber. Food & Function 10 (8):4577–83. doi: 10.1039/c9fo00521h.
  • Nazareth, M. S., S. Shreelakshmi, P. J. Rao, and N. P. Shetty. 2021. Micro and nanoemulsions of Carissa spinarum fruit polyphenols, enhances anthocyanin stability and anti-quorum sensing activity: Comparison of degradation kinetics. Food Chemistry 359:129876. doi: 10.1016/j.foodchem.2021.129876.
  • Nazief, A. M., P. S. Hassaan, H. M. Khalifa, M. S. Sokar, and A. H. El-Kamel. 2020. Lipid-based gliclazide nanoparticles for treatment of diabetes: Formulation, pharmacokinetics, pharmacodynamics and subacute toxicity study. International Journal of Nanomedicine 15:1129–48. doi: 10.2147/IJN.S235290.
  • Nguyen, T., and S. Kim. 2015. α‐Glucosidase inhibitory activities of fatty acids purified from the internal organ of sea cucumber Stichopus japonicas. Journal of Food Science 80 (4):H841–H847.
  • Nsor-Atindana, J., H. D. Goff, M. N. Saqib, M. Chen, W. Liu, J. Ma, and F. Zhong. 2019. Inhibition of α-amylase and amyloglucosidase by nanocrystalline cellulose and spectroscopic analysis of their binding interaction mechanism. Food Hydrocolloids. 90:341–52. doi: 10.1016/j.foodhyd.2018.12.031.
  • Nsor-Atindana, J., M. Yu, H. D. Goff, M. Chen, and F. Zhong. 2020. Analysis of kinetic parameters and mechanisms of nanocrystalline cellulose inhibition of α-amylase and α-glucosidase in simulated digestion of starch. Food & Function 11 (5):4719–31. doi: 10.1039/D0FO00317D.
  • Ojagh, S. M., and S. Hasani. 2018. Characteristics and oxidative stability of fish oil nano-liposomes and its application in functional bread. Journal of Food Measurement and Characterization 12 (2):1084–92. doi: 10.1007/s11694-018-9724-5.
  • Ou, X., J. Zheng, X. Zhao, and M. Liu. 2018. Chemically cross-linked chitin nanocrystal scaffolds for drug delivery. ACS Applied Nano Materials 1 (12):6790–9. doi: 10.1021/acsanm.8b01585.
  • Öztürk, B. 2017. Nanoemulsions for food fortification with lipophilic vitamins: Production challenges, stability, and bioavailability. European Journal of Lipid Science and Technology 119 (7):1500539. doi: 10.1002/ejlt.201500539.
  • Pal, N., P. Dubey, P. Gopinath, and K. Pal. 2017. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity. International Journal of Biological Macromolecules 95:94–105.
  • Pardeike, J., A. Hommoss, and R. H. Müller. 2009. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International Journal of Pharmaceutics 366 (1–2):170–84.
  • Perumal, V., T. Manickam, K.-S. Bang, P. Velmurugan, and B.-T. Oh. 2016. Antidiabetic potential of bioactive molecules coated chitosan nanoparticles in experimental rats. International Journal of Biological Macromolecules 92:63–9. doi: 10.1016/j.ijbiomac.2016.07.006.
  • Pezeshky, A., B. Ghanbarzadeh, H. Hamishehkar, M. Moghadam, and A. Babazadeh. 2016. Vitamin A palmitate-bearing nanoliposomes: Preparation and characterization. Food Bioscience 13:49–55. doi: 10.1016/j.fbio.2015.12.002.
  • Philippou, E., N. M. Neary, O. Chaudhri, A. E. Brynes, A. Dornhorst, A. R. Leeds, M. Hickson, and G. S. Frost. 2009. The effect of dietary glycemic index on weight maintenance in overweight subjects: A pilot study. Obesity 17 (2):396–401. doi: 10.1038/oby.2008.533.
  • Prakash, A., R. Baskaran, N. Paramasivam, and V. Vadivel. 2018. Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Research International (Ottawa, Ont.) 111:509–23.
  • Radünz, M., T. M. Camargo, H. C. dos Santos Hackbart, J. P. Blank, J. F. Hoffmann, F. M. Stefanello, and E. da Rosa Zavareze. 2021. Encapsulation of broccoli extract by electrospraying: Influence of in vitro simulated digestion on phenolic and glucosinolate contents, and on antioxidant and antihyperglycemic activities. Food Chemistry 339:128075. doi: 10.1016/j.foodchem.2020.128075.
  • Rafiee, Z., M. Barzegar, M. A. Sahari, and B. Maherani. 2017. Nanoliposomal carriers for improvement the bioavailability of high–valued phenolic compounds of pistachio green hull extract. Food Chemistry 220:115–22.
  • Ranganathan, N., and G. Mahalingam. 2019. 2, 4, 6‐Triphenylaniline nanoemulsion formulation, optimization, and its application in type 2 diabetes mellitus. Journal of Cellular Physiology 234 (12):22505–16.
  • Rehman, A., S. M. Jafari, Q. Tong, T. Riaz, E. Assadpour, R. M. Aadil, S. Niazi, I. M. Khan, Q. Shehzad, A. Ali, et al. 2020. Drug nanodelivery systems based on natural polysaccharides against different diseases. Advances in Colloid and Interface Science 284:102251. doi: 10.1016/j.cis.2020.102251.
  • Rocchetti, G., G. Giuberti, A. Gallo, J. Bernardi, A. Marocco, and L. Lucini. 2018. Effect of dietary polyphenols on the in vitro starch digestibility of pigmented maize varieties under cooking conditions. Food Research International (Ottawa, Ont.) 108:183–91.
  • Roy, M. C., R. Anguenot, C. Fillion, M. Beaulieu, J. Bérubé, and D. Richard. 2011. Effect of a commercially-available algal phlorotannins extract on digestive enzymes and carbohydrate absorption in vivo. Food Research International 44 (9):3026–9. doi: 10.1016/j.foodres.2011.07.023.
  • Sahoo, M., S. Vishwakarma, C. Panigrahi, and J. Kumar. 2021. Nanotechnology: Current applications and future scope in food. Food Frontiers 2 (1):3–22. doi: 10.1002/fft2.58.
  • Salvia-Trujillo, L., R. Soliva-Fortuny, M. A. Rojas-Graü, D. J. McClements, and O. Martín-Belloso. 2017. Edible nanoemulsions as carriers of active ingredients: A review. Annual Review of Food Science and Technology 8:439–66.
  • Schjoerring-Thyssen, J., K. Olsen, K. Koehler, E. Jouenne, D. r. Rousseau, and M. L. Andersen. 2019. Morphology and structure of solid lipid nanoparticles loaded with high concentrations of β-carotene. Journal of Agricultural and Food Chemistry 67 (44):12273–82.
  • Shafaei, A., K. Esmailli, E. Farsi, A. F. Aisha, A. M. S. A. Majid, and Z. Ismail. 2015. Genotoxicity, acute and subchronic toxicity studies of nano liposomes of Orthosiphon stamineus ethanolic extract in Sprague Dawley rats. BMC Complementary and Alternative Medicine 15 (1):1–14. doi: 10.1186/s12906-015-0885-z.
  • Sharma, V. K., K. M. Siskova, R. Zboril, and J. L. Gardea-Torresdey. 2014. Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Advances in Colloid and Interface Science 204:15–34.
  • Shishir, M. R. I., N. Karim, J. Xie, A. K. Rashwan, and W. Chen. 2020. Colonic delivery of pelargonidin-3-O-glucoside using pectin-chitosan-nanoliposome: Transport mechanism and bioactivity retention. International Journal of Biological Macromolecules 159:341–55.
  • Shtay, R., J. K. Keppler, K. Schrader, and K. Schwarz. 2019. Encapsulation of (-)-epigallocatechin-3-gallate (EGCG) in solid lipid nanoparticles for food applications. Journal of Food Engineering 244:91–100. doi: 10.1016/j.jfoodeng.2018.09.008.
  • Singh, T., S. Shukla, P. Kumar, V. Wahla, V. K. Bajpai, and I. A. Rather. 2017. Application of nanotechnology in food science: Perception and overview. Frontiers in Microbiology 8:1501. doi: 10.3389/fmicb.2017.01501.
  • Soleimanifar, M., S. M. Jafari, E. Assadpour, and A. Mirarab. 2021. Electrosprayed whey protein nanocarriers containing natural phenolics; thermal and antioxidant properties, release behavior and stability. Journal of Food Engineering 307:110644. doi: 10.1016/j.jfoodeng.2021.110644.
  • Sun, J., J. Fu, Y. Wang, H. Ye, D. Wu, and X. Shu. 2019. Endogenous rice endosperm hemicellulose slows in vitro starch digestibility. International Journal of Food Science & Technology 54 (3):734–43. doi: 10.1111/ijfs.13988.
  • Sun, L., W. Chen, Y. Meng, X. Yang, L. Yuan, Y. Guo, F. J. Warren, and M. J. Gidley. 2016. Interactions between polyphenols in thinned young apples and porcine pancreatic α-amylase: Inhibition, detailed kinetics and fluorescence quenching. Food Chemistry 208:51–60. doi: 10.1016/j.foodchem.2016.03.093.
  • Taepaiboon, P., U. Rungsardthong, and P. Supaphol. 2007. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. European Journal of Pharmaceutics and Biopharmaceutics 67 (2):387–97.
  • Tamura, M., H. Tsujii, T. Saito, and Y. Sasahara. 2021. Relationship between starch digestibility and physicochemical properties of aged rice grain. LWT - Food Science and Technology 150:111887.
  • Tang, C-h. 2021. Strategies to utilize naturally occurring protein architectures as nanovehicles for hydrophobic nutraceuticals. Food Hydrocolloids 112:106344. doi: 10.1016/j.foodhyd.2020.106344.
  • Teow, Y., P. Asharani, M. P. Hande, and S. Valiyaveettil. 2011. Health impact and safety of engineered nanomaterials. Chemical Communications (Cambridge, England) 47 (25):7025–38.
  • Tong, D.-P., K.-X. Zhu, X.-N. Guo, W. Peng, and H.-M. Zhou. 2018. The enhanced inhibition of water extract of black tea under baking treatment on α-amylase and α-glucosidase. International Journal of Biological Macromolecules 107 (Pt A):129–36.
  • Toniazzo, T., M. S. Peres, A. P. Ramos, and S. C. Pinho. 2017. Encapsulation of quercetin in liposomes by ethanol injection and physicochemical characterization of dispersions and lyophilized vesicles. Food Bioscience 19:17–25. doi: 10.1016/j.fbio.2017.05.003.
  • Torchilin, P. V. V. Torchilin, V. Torchilin, and V. Weissig. 2003. Liposomes: A practical approach. Oxford, UK: Oxford University Press.
  • Toutounji, M. R., A. Farahnaky, A. B. Santhakumar, P. Oli, V. M. Butardo, Jr, and C. L. Blanchard. 2019. Intrinsic and extrinsic factors affecting rice starch digestibility. Trends in Food Science & Technology 88:10–22. doi: 10.1016/j.tifs.2019.02.012.
  • Tran, T. H., H.-L. Nguyen, D. S. Hwang, J. Y. Lee, H. G. Cha, J. M. Koo, S. Y. Hwang, J. Park, and D. X. Oh. 2019. Five different chitin nanomaterials from identical source with different advantageous functions and performances. Carbohydrate Polymers 205:392–400.
  • Triunfo, M., E. Tafi, A. Guarnieri, C. Scieuzo, T. Hahn, S. Zibek, R. Salvia, and P. Falabella. 2021. Insect chitin-based nanomaterials for innovative cosmetics and cosmeceuticals. Cosmetics 8 (2):40. doi: 10.3390/cosmetics8020040.
  • Tsai, L.-C., C.-H. Chen, C.-W. Lin, Y.-C. Ho, and F.-L. Mi. 2019. Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. International Journal of Biological Macromolecules 126:141–50.
  • Tu, Y., S. Huang, C. Chi, P. Lu, L. Chen, L. Li, and X. Li. 2021. Digestibility and structure changes of rice starch following co-fermentation of yeast and Lactobacillus strains. International Journal of Biological Macromolecules 184:530–7. doi: 10.1016/j.ijbiomac.2021.06.069.
  • Uraipong, C., and J. Zhao. 2018. In vitro digestion of rice bran proteins produces peptides with potent inhibitory effects on α-glucosidase and angiotensin I converting enzyme. Journal of the Science of Food and Agriculture 98 (2):758–66.
  • Van Baak, M., and A. Astrup. 2009. Consumption of sugars and body weight. Obesity Reviews 10:9–23. doi: 10.1111/j.1467-789X.2008.00561.x.
  • Van Kesteren, P. C., F. Cubadda, H. Bouwmeester, J. C. van Eijkeren, S. Dekkers, W. H. de Jong, and A. G. Oomen. 2015. Novel insights into the risk assessment of the nanomaterial synthetic amorphous silica, additive E551, in food. Nanotoxicology 9 (4):442–52. doi: 10.3109/17435390.2014.940408.
  • Venn, B., and T. Green. 2007. Glycemic index and glycemic load: measurement issues and their effect on diet–disease relationships. European Journal of Clinical Nutrition 61 (S1):S122–S131. doi: 10.1038/sj.ejcn.1602942.
  • Verma, M. L., B. S. Dhanya, V. Rani, M. Thakur, J. Jeslin, and R. Kushwaha. 2020. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. International Journal of Biological Macromolecules 154:390–412.
  • Vernon-Carter, E., J. Alvarez-Ramirez, L. Bello-Perez, I. Reyes, and C. Hernandez-Jaimes. 2019. Inhibition of the amylolytic hydrolysis of starch by ethanol. Food Hydrocolloids. 90:285–90. doi: 10.1016/j.foodhyd.2018.12.046.
  • Villanueva, M. E., A. Salinas, L. E. Díaz, and G. J. Copello. 2015. Chitin nanowhiskers as alternative antimicrobial controlled release carriers. New Journal of Chemistry 39 (1):614–20. doi: 10.1039/C4NJ01522C.
  • Vineis, C., I. Cruz Maya, S. Mowafi, A. Varesano, D. O. Sánchez Ramírez, M. Abou Taleb, C. Tonetti, V. Guarino, and H. El-Sayed. 2021. Synergistic effect of sericin and keratin in gelatin based nanofibers for in vitro applications. International Journal of Biological Macromolecules 190:375–81. doi: 10.1016/j.ijbiomac.2021.09.007.
  • Vukoja, J., I. Buljeta, A. Pichler, J. Šimunović, and M. Kopjar. 2021. Formulation and Stability of Cellulose-Based Delivery Systems of Raspberry Phenolics. Processes 9 (1):90. doi: 10.3390/pr9010090.
  • Wang, J., X. Jiang, Z. Guo, B. Zheng, and Y. Zhang. 2021. Insights into the multi-scale structural properties and digestibility of lotus seed starch-chlorogenic acid complexes prepared by microwave irradiation. Food Chemistry 361:130171. doi: 10.1016/j.foodchem.2021.130171.
  • Wang, L., L. Ke, P. Rao, and Y. Zhang. 2021. Fabrication and characterization of curcumin-loaded nanoparticles using protein from brewers’ spent grain. LWT - Food Science and Technology 150:111992. doi: 10.1016/j.lwt.2021.111992.
  • Wang, Y., Y. Sun, M. Li, L. Xiong, X. Xu, N. Ji, L. Dai, and Q. Sun. 2020. The formation of a protein corona and the interaction with α-amylase by chitin nanowhiskers in simulated saliva fluid. Food Hydrocolloids. 102:105615. doi: 10.1016/j.foodhyd.2019.105615.
  • Witika, B. A., P. A. Makoni, S. K. Matafwali, B. Chabalenge, C. Mwila, A. C. Kalungia, C. I. Nkanga, A. M. Bapolisi, and R. B. Walker. 2020. Biocompatibility of Biomaterials for Nanoencapsulation: Current Approaches. Nanomaterials 10 (9):1649 doi:10.3390/nano10091649.
  • Xu, H., J. Zhou, J. Yu, S. Wang, and S. Wang. 2021. Mechanisms underlying the effect of gluten and its hydrolysates on in vitro enzymatic digestibility of wheat starch. Food Hydrocolloids. 113:106507. doi: 10.1016/j.foodhyd.2020.106507.
  • Yang, J., and O. N. Ciftci. 2020. In vitro bioaccessibility of fish oil-loaded hollow solid lipid micro-and nanoparticles. Food & Function 11 (10):8637–47. doi: 10.1039/D0FO01591A.
  • Yang, S., W. Liu, C. Liu, W. Liu, G. Tong, H. Zheng, and W. Zhou. 2012. Characterization and bioavailability of vitamin C nanoliposomes prepared by film evaporation-dynamic high pressure microfluidization. Journal of Dispersion Science and Technology 33 (11):1608–14. doi: 10.1080/01932691.2011.629511.
  • Yang, T., J. Zheng, B.-S. Zheng, F. Liu, S. Wang, and C.-H. Tang. 2018. High internal phase emulsions stabilized by starch nanocrystals. Food Hydrocolloids. 82:230–8. doi: 10.1016/j.foodhyd.2018.04.006.
  • Ye, J., X. Hu, S. Luo, D. J. McClements, L. Liang, and C. Liu. 2018. Effect of endogenous proteins and lipids on starch digestibility in rice flour. Food Research International (Ottawa, Ont.) 106:404–9.
  • Yin, C., L. Cheng, X. Zhang, and Z. Wu. 2020. Nanotechnology improves delivery efficiency and bioavailability of tea polyphenols. Journal of Food Biochemistry 44 (9):e13380.
  • Yin, L.-J., B.-S. Chu, I. Kobayashi, and M. Nakajima. 2009. Performance of selected emulsifiers and their combinations in the preparation of β-carotene nanodispersions. Food Hydrocolloids. 23 (6):1617–22. doi: 10.1016/j.foodhyd.2008.12.005.
  • Yoshimoto, J., Y. Kato, M. Ban, M. Kishi, H. Horie, C. Yamada, and Y. Nishizaki. 2020. Palatable noodles as a functional staple food made exclusively from yellow peas suppressed rapid postprandial glucose increase. Nutrients 12 (6):1839. doi: 10.3390/nu12061839.
  • Yu, A. H. M., P. Y. Phoon, G. C. F. Ng, and C. J. Henry. 2020. Physicochemical characteristics of green banana flour and its use in the development of konjac‐green banana noodles. Journal of Food Science 85 (10):3026–33. doi: 10.1111/1750-3841.15458.
  • Yu, B., X. Zeng, L. Wang, and J. M. Regenstein. 2021. Preparation of nanofibrillated cellulose from grapefruit peel and its application as fat substitute in ice cream. Carbohydrate Polymers 254:117415.
  • Yu, Z., Y. Yin, W. Zhao, J. Liu, and F. Chen. 2012. Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase. Food Chemistry 135 (3):2078–85.
  • Zardini, A. A., M. Mohebbi, R. Farhoosh, and S. Bolurian. 2018. Production and characterization of nanostructured lipid carriers and solid lipid nanoparticles containing lycopene for food fortification. Journal of Food Science and Technology 55 (1):287–98.
  • Zhang, B., D. Qiao, S. Zhao, Q. Lin, J. Wang, and F. Xie. 2021. Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends in Food Science & Technology 114:212–31. doi: 10.1016/j.tifs.2021.05.033.
  • Zhang, T., X. Li, L. Chen, and W. Situ. 2016. Digestibility and structural changes of waxy rice starch during the fermentation process for waxy rice vinasse. Food Hydrocolloids 57:38–45. doi: 10.1016/j.foodhyd.2016.01.004.
  • Zhang, Y., C. Chi, X. Huang, Q. Zou, X. Li, and L. Chen. 2017. Starch-based nanocapsules fabricated through layer-by-layer assembly for oral delivery of protein to lower gastrointestinal tract. Carbohydrate Polymers 171:242–51.
  • Zhang, Y., Z. Yang, G. Liu, Y. Wu, and J. Ouyang. 2020. Inhibitory effect of chestnut (Castanea mollissima Blume) inner skin extract on the activity of α-amylase, α-glucosidase, dipeptidyl peptidase IV and in vitro digestibility of starches. Food Chemistry 324:126847. doi: 10.1016/j.foodchem.2020.126847.
  • Zhao, W., V. Iyer, F. P. Flores, E. Donhowe, and F. Kong. 2013. Microencapsulation of tannic acid for oral administration to inhibit carbohydrate digestion in the gastrointestinal tract. Food & Function 4 (6):899–905.
  • Zheng, J., S. Huang, R. Zhao, N. Wang, J. Kan, and F. Zhang. 2021. Effect of four viscous soluble dietary fibers on the physicochemical, structural properties, and in vitro digestibility of rice starch: A comparison study. Food Chemistry 362:130181. doi: 10.1016/j.foodchem.2021.130181.
  • Zhou, J., J. Tong, X. Su, and L. Ren. 2016. Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid. International Journal of Biological Macromolecules 91:1186–93.
  • Zhou, R., L. Zhao, Y. Wang, S. Hameed, J. Ping, L. Xie, and Y. Ying. 2020. Recent advances in food-derived nanomaterials applied to biosensing. TrAC - Trends in Analytical Chemistry 127:115884. doi: 10.1016/j.trac.2020.115884.
  • Zou, W., B. L. Schulz, X. Tan, M. Sissons, F. J. Warren, M. J. Gidley, and R. G. Gilbert. 2019. The role of thermostable proteinaceous α-amylase inhibitors in slowing starch digestion in pasta. Food Hydrocolloids. 90:241–7. doi: 10.1016/j.foodhyd.2018.12.023.
  • Zhu, J., X. Chen, J. Luo, Y. Liu, B. Wang, Z. Liang, and L. Li. 2021. Insight into the binding modes and mechanisms of inhibition between soybean-peptides and α-amylase based on spectrofluorimetry and kinetic analysis. LWT - Food Science and Technology 142:110977. doi: 10.1016/j.lwt.2021.110977.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.