4,138
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Anthocyanins’ effects on diabetes mellitus and islet transplantation

, , , , , ORCID Icon & show all
Pages 12102-12125 | Published online: 13 Jul 2022

References

  • Alappat, B., and J. Alappat. 2020. Anthocyanin pigments: Beyond aesthetics. Molecules 25 (23):5500. doi: 10.3390/molecules25235500.
  • Al-Ishaq, R. K., M. Abotaleb, P. Kubatka, K. Kajo, and D. Büsselberg. 2019. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 9 (9):430. doi: 10.3390/biom9090430.
  • Alnajjar, M., S. Kumar Barik, C. Bestwick, F. Campbell, M. Cruickshank, F. Farquharson, G. Holtrop, G. Horgan, P. Louis, K.-M. Moar, et al. 2020. Anthocyanin-enriched bilberry extract attenuates glycaemic response in overweight volunteers without changes in insulin. Journal of Functional Foods 64:103597. doi: 10.1016/j.jff.2019.103597.
  • Altmann, C., and M. H. H. Schmidt. 2018. The role of microglia in diabetic retinopathy: Inflammation, microvasculature defects and neurodegeneration. International Journal of Molecular Sciences 19 (1). doi: 10.3390/ijms19010110.
  • Alvarado, J. L., A. Leschot, Á. Olivera-Nappa, A. M. Salgado, H. Rioseco, C. Lyon, and P. Vigil. 2016. Delphinidin-rich maqui berry extract (Delphinol®) lowers fasting and postprandial glycemia and insulinemia in prediabetic individuals during oral glucose tolerance tests. BioMed Research International 2016:9070537.
  • Alvarado, J., F. Schoenlau, A. Leschot, A. M. Salgad, and P. Vigil Portales. 2016. Delphinol® standardized maqui berry extract significantly lowers blood glucose and improves blood lipid profile in prediabetic individuals in three-month clinical trial. Panminerva Medica 58 (3 Suppl 1):1–6.
  • Andersen, Ø. M., M. Jordheim, R. Byamukama, A. Mbabazi, G. Ogweng, I. Skaar, and B. Kiremire. 2010. Anthocyanins with unusual furanose sugar (apiose) from leaves of Synadenium grantii (Euphorbiaceae). Phytochemistry 71 (13):1558–63. doi: 10.1016/j.phytochem.2010.05.025.
  • Ashande, C. M., A. Masunda, K. N. Ngbolua, J. T. Kilembe, A. Matondo, I. Liyongo Clément, G. Z. Benjamin, L. M. Emmanuel, D. S. T. Tshibangu, D. D. Tshilanda, et al. 2022. Glucose oxidase as a model enzyme for antidiabetic activity evaluation of medicinal plants: In vitro and in silico evidence.
  • Azzini, E., E. Venneria, D. Ciarapica, M. S. Foddai, F. Intorre, M. Zaccaria, F. Maiani, L. Palomba, L. Barnaba, C. Tubili, et al. 2017. Effect of red orange juice consumption on body composition and nutritional status in overweight/obese female: A pilot study. Oxidative Medicine and Cellular Longevity 2017:1–9. doi: 10.1155/2017/1672567.
  • Banihani, S. A., S. M. Makahleh, Z. El-Akawi, R. A. Al-Fashtaki, O. F. Khabour, M. Y. Gharibeh, N. A. Saadah, F. H. Al-Hashimi, and N. J. Al-Khasieb. 2014. Fresh pomegranate juice ameliorates insulin resistance, enhances β-cell function, and decreases fasting serum glucose in type 2 diabetic patients. Nutrition Research 34 (10):862–7. doi: 10.1016/j.nutres.2014.08.003.
  • Bending, D., P. Zaccone, and A. Cooke. 2012. Inflammation and type one diabetes. International Immunology 24 (6):339–46. doi: 10.1093/intimm/dxs049.
  • Beulens, J., F. Rutters, L. Rydén, O. Schnell, L. Mellbin, H. E. Hart, and R. C. Vos. 2019. Risk and management of pre-diabetes. European Journal of Preventive Cardiology 26 (2_suppl):47–54. doi: 10.1177/2047487319880041.
  • Boto-Ordóñez, M., M. Urpi-Sarda, M. I. Queipo-Ortuño, S. Tulipani, F. J. Tinahones, and C. Andres-Lacueva. 2014. High levels of Bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: A randomized clinical trial. Food & Function 5 (8):1932–8. doi: 10.1039/C4FO00029C.
  • Buchweitz, M., J. Brauch, R. Carle, and D. R. Kammerer. 2013. Application of ferric anthocyanin chelates as natural blue food colorants in polysaccharide and gelatin based gels. Food Research International 51 (1):274–82. doi: 10.1016/j.foodres.2012.11.030.
  • Buko, V., I. Zavodnik, O. Kanuka, E. Belonovskaya, E. Naruta, O. Lukivskaya, S. Kirko, G. Budryn, D. Żyżelewicz, J. Oracz, et al. 2018. Antidiabetic effects and erythrocyte stabilization by red cabbage extract in streptozotocin-treated rats. Food & Function 9 (3):1850–63. doi: 10.1039/c7fo01823a.
  • Cai, H., B. Yang, Z. Xu, B. Zhang, B. Xu, X. Li, P. Wu, K. Chen, R. V. Rajotte, Y. Wu, et al. 2015. Cyanidin-3-O-glucoside enhanced the function of syngeneic mouse islets transplanted under the kidney capsule or into the portal vein. Transplantation 99 (3):508–14. doi: 10.1097/TP.0000000000000628.
  • Cao, H., J. Ou, L. Chen, Y. Zhang, T. Szkudelski, D. Delmas, M. Daglia, and J. Xiao. 2019. Dietary polyphenols and type 2 diabetes: Human Study and Clinical Trial. Critical Reviews in Food Science and Nutrition 59 (20):3371–9. doi: 10.1080/10408398.2018.1492900.
  • Chan, S. W., T. T. W. Chu, S. W. Choi, I. F. F. Benzie, and B. Tomlinson. 2021. Impact of short-term bilberry supplementation on glycemic control, cardiovascular disease risk factors, and antioxidant status in Chinese patients with type 2 diabetes. Phytotherapy Research: PTR 35 (6):3236–45. doi: 10.1002/ptr.7038.
  • Chellappan, D. K., W. S. Yap, N. A. Bt Ahmad Suhaimi, G. Gupta, and K. Dua. 2018. Current therapies and targets for type 2 diabetes mellitus. Panminerva Medica 60 (3):117–31. doi: 10.23736/S0031-0808.18.03455-9.
  • Chen, B. H., and B. Stephen Inbaraj. 2019. Nanoemulsion and Nanoliposome Based Strategies for Improving Anthocyanin Stability and Bioavailability. Nutrients 11 (5):1052. doi: 10.3390/nu11051052.
  • Chen, Y. F., M. A. Shibu, M. J. Fan, M. C. Chen, V. P. Viswanadha, Y. L. Lin, C. H. Lai, K. H. Lin, T. J. Ho, W. W. Kuo, et al. 2016. Purple rice anthocyanin extract protects cardiac function in STZ-induced diabetes rat hearts by inhibiting cardiac hypertrophy and fibrosis. The Journal of Nutritional Biochemistry 31:98–105. doi: 10.1016/j.jnutbio.2015.12.020.
  • Chen, Z., C. Wang, Y. Pan, X. Gao, and H. Chen. 2018. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food & Function 9 (1):426–39. doi: 10.1039/C7FO00983F.
  • Chien, C.-Y., and B.-D. Hsu. 2013. Optimization of the dye-sensitized solar cell with anthocyanin as photosensitizer. Solar Energy 98:203–11. doi: 10.1016/j.solener.2013.09.035.
  • Choi, K. H., H. A. Lee, M. H. Park, and J. S. Han. 2016. Mulberry (Morus alba L.) fruit extract containing anthocyanins improves glycemic control and insulin sensitivity via activation of AMP-activated protein kinase in diabetic C57BL/Ksj-db/db mice. Journal of Medicinal Food 19 (8):737–45. doi: 10.1089/jmf.2016.3665.
  • Cole, J. B., and J. C. Florez. 2020. Genetics of diabetes mellitus and diabetes complications. Nature Reviews. Nephrology 16 (7):377–90. doi: 10.1038/s41581-020-0278-5.
  • Crespo, M. C., and F. Visioli. 2017. A brief review of blue- and bilberries’ potential to curb cardio-metabolic perturbations: Focus on diabetes. Current Pharmaceutical Design 23 (7):983–8. doi: 10.2174/1381612822666161010120523.
  • Croden, J., J. R. Silva, W. Huang, N. Gupta, W. Fu, K. Matovinovic, M. Black, X. Li, K. Chen, Y. Wu, et al. 2021. Cyanidin-3-O-Glucoside improves the viability of human islet cells treated with amylin or Aβ1-42 in vitro. Plos One 16 (10):e0258208. doi: 10.1371/journal.pone.0258208.
  • Czank, C., A. Cassidy, Q. Zhang, D. J. Morrison, T. Preston, P. A. Kroon, N. P. Botting, and C. D. Kay. 2013. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: A (13)C-tracer study. The American Journal of Clinical Nutrition 97 (5):995–1003. doi: 10.3945/ajcn.112.049247.
  • Damiano, S., C. Lauritano, C. Longobardi, E. Andretta, A. M. Elagoz, P. Rapisarda, M. D. Iorio, S. Florio, and R. Ciarcia. 2020. Effects of a red orange and lemon extract in obese diabetic zucker rats: Role of nicotinamide adenine dinucleotide phosphate oxidase. Journal of Clinical Medicine 9 (5). doi: 10.3390/jcm9051600.
  • Damiano, S., P. Lombari, E. Salvi, M. Papale, A. Giordano, M. Amenta, G. Ballistreri, S. Fabroni, P. Rapisarda, G. Capasso, et al. 2019. A red orange and lemon by-products extract rich in anthocyanins inhibits the progression of diabetic nephropathy. Journal of Cellular Physiology 234 (12):23268–78. doi: 10.1002/jcp.28893.
  • Daveri, E., E. Cremonini, A. Mastaloudis, S. N. Hester, S. M. Wood, A. L. Waterhouse, M. Anderson, C. G. Fraga, and P. I. Oteiza. 2018. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biology 18:16–24. doi: 10.1016/j.redox.2018.05.012.
  • DeJesus, R. S., C. R. Breitkopf, L. J. Rutten, D. J. Jacobson, P. M. Wilson, and J. S. Sauver. 2017. Incidence rate of prediabetes progression to diabetes: Modeling an optimum target group for intervention. Population Health Management 20 (3):216–23. doi: 10.1089/pop.2016.0067.
  • Doshi, P., P. Adsule, K. Banerjee, and D. Oulkar. 2015. Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L) byproducts. Journal of Food Science and Technology 52 (1):181–90. doi: 10.1007/s13197-013-0991-1.
  • Duarte, L. J., V. C. Chaves, M. Nascimento, E. Calvete, M. Li, E. Ciraolo, A. Ghigo, E. Hirsch, C. M. O. Simões, F. H. Reginatto, et al. 2018. Molecular mechanism of action of Pelargonidin-3-O-glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits. Food Chemistry 247:56–65. doi: 10.1016/j.foodchem.2017.12.015.
  • Dzydzan, O., I. Bila, A. Z. Kucharska, I. Brodyak, and N. Sybirna. 2019. Antidiabetic effects of extracts of red and yellow fruits of cornelian cherries (Cornus mas L.) on rats with streptozotocin-induced diabetes mellitus. Food & Function 10 (10):6459–72. doi: 10.1039/c9fo00515c.
  • Eizirik, D. L., L. Pasquali, and M. Cnop. 2020. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: Different pathways to failure. Nature Reviews. Endocrinology 16 (7):349–62. doi: 10.1038/s41574-020-0355-7.
  • Fang, J. 2014. Bioavailability of anthocyanins. Drug Metabolism Reviews 46 (4):508–20. doi: 10.3109/03602532.2014.978080.
  • Faria, A., I. Fernandes, S. Norberto, N. Mateus, and C. Calhau. 2014. Interplay between anthocyanins and gut microbiota. Journal of Agricultural and Food Chemistry 62 (29):6898–902. doi: 10.1021/jf501808a.
  • Farrell, N. J., G. H. Norris, J. Ryan, C. M. Porter, C. Jiang, and C. N. Blesso. 2015. Black elderberry extract attenuates inflammation and metabolic dysfunction in diet-induced obese mice. The British Journal of Nutrition 114 (8):1123–31. doi: 10.1017/S0007114515002962.
  • Fu, Y. C., S. C. Yin, C. S. Chi, B. Hwang, and S. L. Hsu. 2006. Norepinephrine induces apoptosis in neonatal rat endothelial cells via a ROS-dependent JNK activation pathway. Apoptosis: An International Journal on Programmed Cell Death 11 (11):2053–63. doi: 10.1007/s10495-006-0192-8.
  • Gaiz, A. A., S. Mosawy, N. Colson, and I. Singh. 2018. Potential of anthocyanin to prevent cardiovascular disease in diabetes. Alternative Therapies in Health and Medicine 24 (3):40–7.
  • Grosso, G., U. Stepaniak, A. Micek, M. Kozela, D. Stefler, M. Bobak, and A. Pajak. 2017. Dietary polyphenol intake and risk of type 2 diabetes in the Polish arm of the Health, Alcohol and Psychosocial factors in Eastern Europe (HAPIEE) study. The British Journal of Nutrition 118 (1):60–8. doi: 10.1017/S0007114517001805.
  • Guo, H., J. Guo, X. Jiang, Z. Li, and W. Ling. 2012. Cyanidin-3-O-β-glucoside, a typical anthocyanin, exhibits antilipolytic effects in 3T3-L1 adipocytes during hyperglycemia: Involvement of FoxO1-mediated transcription of adipose triglyceride lipase. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 50 (9):3040–7. doi: 10.1016/j.fct.2012.06.015.
  • Guo, H., M. Xia, T. Zou, W. Ling, R. Zhong, and W. Zhang. 2012. Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1. The Journal of Nutritional Biochemistry 23 (4):349–60. doi: 10.1016/j.jnutbio.2010.12.013.
  • Guo, X., B. Yang, J. Tan, J. Jiang, and D. Li. 2016. Associations of dietary intakes of anthocyanins and berry fruits with risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective cohort studies. European Journal of Clinical Nutrition 70 (12):1360–7. doi: 10.1038/ejcn.2016.142.
  • Hansson, J., L. Lind, J. Hulthe, and J. Sundström. 2009. Relations of serum MMP-9 and TIMP-1 levels to left ventricular measures and cardiovascular risk factors: A population-based study. European Journal of Cardiovascular Prevention & Rehabilitation 16 (3):297–303. doi: 10.1097/HJR.0b013e3283213108.
  • He, B., J. Ge, P. Yue, X. Yue, R. Fu, J. Liang, and X. Gao. 2017. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage. Food Chemistry 221:1671–7. doi: 10.1016/j.foodchem.2016.10.120.
  • He, J., and M. M. Giusti. 2010. Anthocyanins: Natural colorants with health-promoting properties. Annual Review of Food Science and Technology 1:163–87. doi: 10.1146/annurev.food.080708.100754.
  • He, Y., Y. Hu, X. Jiang, T. Chen, Y. Ma, S. Wu, J. Sun, R. Jiao, X. Li, L. Deng, et al. 2017. Cyanidin-3-O-glucoside inhibits the UVB-induced ROS/COX-2 pathway in HaCaT cells. Journal of Photochemistry and Photobiology. B, Biology 177:24–31. doi: 10.1016/j.jphotobiol.2017.10.006.
  • Herrera-Balandrano, D. D., Z. Chai, R. P. Hutabarat, T. Beta, J. Feng, K. Ma, D. Li, and W. Huang. 2021. Hypoglycemic and hypolipidemic effects of blueberry anthocyanins by AMPK activation: In vitro and in vivo studies. Redox Biology. 46:102100. doi: 10.1016/j.redox.2021.102100.
  • Heydemann, A. 2016. An overview of murine high fat diet as a model for type 2 diabetes mellitus. Journal of Diabetes Research 2016:2902351. doi: 10.1155/2016/2902351.
  • Hidalgo, J., C. Flores, M. A. Hidalgo, M. Perez, A. Yañez, L. Quiñones, D. D. Caceres, and R. A. Burgos. 2014. Delphinol® standardized maqui berry extract reduces postprandial blood glucose increase in individuals with impaired glucose regulation by novel mechanism of sodium glucose cotransporter inhibition. Panminerva Medica 56 (2 Suppl 3):1–7.
  • Hidalgo, M., M. J. Oruna-Concha, S. Kolida, G. E. Walton, S. Kallithraka, J. P. Spencer, and S. de Pascual-Teresa. 2012. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry 60 (15):3882–90. doi: 10.1021/jf3002153.
  • Hirose, A., T. Tanikawa, H. Mori, Y. Okada, and Y. Tanaka. 2010. Advanced glycation end products increase endothelial permeability through the RAGE/Rho signaling pathway. FEBS Letters 584 (1):61–6. doi: 10.1016/j.febslet.2009.11.082.
  • Hoggard, N., M. Cruickshank, K. M. Moar, C. Bestwick, J. J. Holst, W. Russell, and G. Horgan. 2013. A single supplement of a standardised bilberry (Vaccinium myrtillus L.) extract (36% wet weight anthocyanins) modifies glycaemic response in individuals with type 2 diabetes controlled by diet and lifestyle. Journal of Nutritional Science 2:e22. doi: 10.1017/jns.2013.16.
  • Hou, D. X., K. Kai, J. J. Li, S. Lin, N. Terahara, M. Wakamatsu, M. Fujii, M. R. Young, and N. Colburn. 2004. Anthocyanidins inhibit activator protein 1 activity and cell transformation: Structure-activity relationship and molecular mechanisms. Carcinogenesis 25 (1):29–36. doi: 10.1093/carcin/bgg184.
  • Hsu, J. D., C. C. Wu, C. N. Hung, C. J. Wang, and H. P. Huang. 2016. Myrciaria cauliflora extract improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-nicotinamide mice. Journal of Food and Drug Analysis 24 (4):730–7. doi: 10.1016/j.jfda.2016.03.009.
  • Huang, P. C., G. J. Wang, M. J. Fan, M. Asokan Shibu, Y. T. Liu, V. Padma Viswanadha, Y. L. Lin, C. H. Lai, Y. F. Chen, H. E. Liao, et al. 2017. Cellular apoptosis and cardiac dysfunction in STZ-induced diabetic rats attenuated by anthocyanins via activation of IGFI-R/PI3K/Akt survival signaling. Environmental Toxicology 32 (12):2471–80. doi: 10.1002/tox.22460.
  • Huang, W., Z. Yan, D. Li, Y. Ma, J. Zhou, and Z. Sui. 2018. Antioxidant and anti-inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells. Oxidative Medicine and Cellular Longevity 2018:1–10. doi: 10.1155/2018/1862462.
  • Hwang, Y. P., J. H. Choi, E. H. Han, H. G. Kim, J. H. Wee, K. O. Jung, K. H. Jung, K. I. Kwon, T. C. Jeong, Y. C. Chung, et al. 2011. Purple sweet potato anthocyanins attenuate hepatic lipid accumulation through activating adenosine monophosphate-activated protein kinase in human HepG2 cells and obese mice. Nutrition Research (New York, N.Y.) 31 (12):896–906. doi: 10.1016/j.nutres.2011.09.026.
  • Iizuka, Y., A. Ozeki, T. Tani, and T. Tsuda. 2018. Blackcurrant extract ameliorates hyperglycemia in type 2 diabetic mice in association with increased basal secretion of glucagon-like peptide-1 and activation of AMP-activated protein kinase. Journal of Nutritional Science and Vitaminology 64 (4):258–64. doi: 10.3177/jnsv.64.258.
  • Jacques, P. F., A. Cassidy, G. Rogers, J. J. Peterson, J. B. Meigs, and J. T. Dwyer. 2013. Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes. The Journal of Nutrition 143 (9):1474–80. doi: 10.3945/jn.113.177212.
  • Jayaprakasam, B., L. K. Olson, R. E. Schutzki, M. H. Tai, and M. G. Nair. 2006. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas). Journal of Agricultural and Food Chemistry 54 (1):243–8. doi: 10.1021/jf0520342.
  • Jayaprakasam, B., S. K. Vareed, L. K. Olson, and M. G. Nair. 2005. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. Journal of Agricultural and Food Chemistry 53 (1):28–31. doi: 10.1021/jf049018+.
  • Jeon, Y. D., S. H. Kang, K. H. Moon, J. H. Lee, D. G. Kim, W. Kim, J. S. Kim, B. Y. Ahn, and J. S. Jin. 2018. The effect of aronia berry on type 1 diabetes in vivo and in vitro. Journal of Medicinal Food 21 (3):244–53. doi: 10.1089/jmf.2017.3939.
  • Ji, J., C. Zhang, X. Luo, L. Wang, R. Zhang, Z. Wang, D. Fan, H. Yang, and J. Deng. 2015. Effect of stay-green wheat, a novel variety of wheat in China, on glucose and lipid metabolism in high-fat diet induced type 2 diabetic rats. Nutrients 7 (7):5143–55. doi: 10.3390/nu7075143.
  • Jiang, T., X. Shuai, J. Li, N. Yang, L. Deng, S. Li, Y. He, H. Guo, Y. Li, and J. He. 2020. Protein-bound anthocyanin compounds of purple sweet potato ameliorate hyperglycemia by regulating hepatic glucose metabolism in high-fat diet/streptozotocin-induced diabetic mice. Journal of Agricultural and Food Chemistry 68 (6):1596–608. doi: 10.1021/acs.jafc.9b06916.
  • Jones, B., S. R. Bloom, T. Buenaventura, A. Tomas, and G. A. Rutter. 2018. Control of insulin secretion by GLP-1. Peptides 100:75–84. doi: 10.1016/j.peptides.2017.12.013.
  • Jung, A. J., A. Sharma, S. H. Lee, S. J. Lee, J. H. Kim, and H. J. Lee. 2021. Efficacy of black rice extract on obesity in obese postmenopausal women: A 12-week randomized, double-blind, placebo-controlled preliminary clinical trial. Menopause (New York, NY) 28 (12):1391–9. doi: 10.1097/GME.0000000000001862.
  • Jurgoński, A., J. Juśkiewicz, and Z. Zduńczyk. 2008. Ingestion of black chokeberry fruit extract leads to intestinal and systemic changes in a rat model of prediabetes and hyperlipidemia. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 63 (4):176–82. doi: 10.1007/s11130-008-0087-7.
  • Kalt, W., A. Cassidy, L. R. Howard, R. Krikorian, A. J. Stull, F. Tremblay, and R. Zamora-Ros. 2020. Recent research on the health benefits of blueberries and their anthocyanins. Advances in Nutrition. 11 (2):224–36.
  • Kang, M. K., J. Li, J. L. Kim, J. H. Gong, S. N. Kwak, J. H. Park, J. Y. Lee, S. S. Lim, and Y. H. Kang. 2012. Purple corn anthocyanins inhibit diabetes-associated glomerular monocyte activation and macrophage infiltration. American Journal of Physiology. Renal Physiology 303 (7):F1060–1069. doi: 10.1152/ajprenal.00106.2012.
  • Kang, M. K., S. S. Lim, J. Y. Lee, K. M. Yeo, and Y. H. Kang. 2013. Anthocyanin-rich purple corn extract inhibit diabetes-associated glomerular angiogenesis. PloS One 8 (11):e79823. doi: 10.1371/journal.pone.0079823.
  • Khan, R. M. M., Z. J. Y. Chua, J. C. Tan, Y. Yang, Z. Liao, and Y. Zhao. 2019. From pre-diabetes to diabetes: Diagnosis, treatments and translational research. Medicina 55 (9):546. doi: 10.3390/medicina55090546.
  • Kianbakht, S., B. Abasi, and F. H. Dabaghian. 2013. Anti-hyperglycemic effect of Vaccinium arctostaphylos in type 2 diabetic patients: A randomized controlled trial. Complementary Medicine Research 20 (1):17–22. doi: 10.1159/000346607.
  • Kim, H. J., K. A. Koo, W. S. Park, D. M. Kang, H. S. Kim, B. Y. Lee, Y. M. Goo, J. H. Kim, M. K. Lee, D. K. Woo, et al. 2020. Anti-obesity activity of anthocyanin and carotenoid extracts from color-fleshed sweet potatoes. Journal of Food Biochemistry:e13438. doi: 10.1111/jfbc.13438.
  • Kim, J., C. S. Kim, Y. M. Lee, E. Sohn, K. Jo, and J. S. Kim. 2015. Vaccinium myrtillus extract prevents or delays the onset of diabetes–induced blood-retinal barrier breakdown. International Journal of Food Sciences and Nutrition 66 (2):236–42. doi: 10.3109/09637486.2014.979319.
  • Kim, N. H., J. Jegal, Y. N. Kim, D. M. Chung, J. D. Heo, J. R. Rho, M. H. Yang, and E. J. Jeong. 2018. Antiobesity effect of fermented chokeberry extract in high-fat diet-induced obese mice. Journal of Medicinal Food 21 (11):1113–9. doi: 10.1089/jmf.2017.4124.
  • Koh, E. S., J. H. Lim, M. Y. Kim, S. Chung, S. J. Shin, B. S. Choi, H. W. Kim, S. Y. Hwang, S. W. Kim, C. W. Park, et al. 2015. Anthocyanin-rich Seoritae extract ameliorates renal lipotoxicity via activation of AMP-activated protein kinase in diabetic mice. Journal of Translational Medicine 13:203. doi: 10.1186/s12967-015-0563-4.
  • Kongthitilerd, P., T. Thilavech, M. Marnpae, W. Rong, S. Yao, S. Adisakwattana, H. Cheng, and T. Suantawee. 2022. Cyanidin-3-rutinoside stimulated insulin secretion through activation of L-type voltage-dependent Ca(2+) channels and the PLC-IP(3) pathway in pancreatic β-cells. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 146:112494. doi: 10.1016/j.biopha.2021.112494.
  • Kurimoto, Y., Y. Shibayama, S. Inoue, M. Soga, M. Takikawa, C. Ito, F. Nanba, T. Yoshida, Y. Yamashita, H. Ashida, et al. 2013. Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase in diabetic mice. Journal of Agricultural and Food Chemistry 61 (23):5558–64. doi: 10.1021/jf401190y.
  • Kusunoki, M., D. Sato, K. Tsutsumi, H. Tsutsui, T. Nakamura, and Y. Oshida. 2015. Black soybean extract improves lipid profiles in fenofibrate-treated type 2 diabetics with postprandial hyperlipidemia. Journal of Medicinal Food 18 (6):615–8. doi: 10.1089/jmf.2014.3234.
  • Laouali, N., T. Berrandou, A. J. Rothwell, S. Shah, D. El Fatouhi, F. R. Mancini, M. C. Boutron-Ruault, and G. Fagherazzi. 2020. Profiles of polyphenol intake and type 2 diabetes risk in 60,586 women followed for 20 years: Results from the E3N cohort study. Nutrients 12 (7):1934. doi: 10.3390/nu12071934.
  • Lee, J. S., Y. R. Kim, I. G. Song, S. J. Ha, Y. E. Kim, N. I. Baek, and E. K. Hong. 2015. Cyanidin-3-glucoside isolated from mulberry fruit protects pancreatic β-cells against oxidative stress-induced apoptosis. International Journal of Molecular Medicine 35 (2):405–12. doi: 10.3892/ijmm.2014.2013.
  • Lee, M., S. R. Sorn, Y. Park, and H. K. Park. 2016. Anthocyanin rich-black soybean testa improved visceral fat and plasma lipid profiles in overweight/obese Korean adults: A randomized controlled trial. Journal of Medicinal Food 19 (11):995–1003. doi: 10.1089/jmf.2016.3762.
  • Lee, S. G., J. Chae, D. S. Kim, J. B. Lee, G. S. Kwon, T. K. Kwon, and J. O. Nam. 2021. Enhancement of the antiobesity and antioxidant effect of purple sweet potato extracts and enhancement of the effects by fermentation. Antioxidants 10 (6):888. doi: 10.3390/antiox10060888.
  • Lee, S., K. I. Keirsey, R. Kirkland, Z. I. Grunewald, J. G. Fischer, and C. B. de La Serre. 2018. Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet-fed rats. The Journal of Nutrition 148 (2):209–19. doi: 10.1093/jn/nxx027.
  • Li, C., B. Yang, Z. Xu, E. Boivin, M. Black, W. Huang, B. Xu, P. Wu, B. Zhang, X. Li, et al. 2017. Protective effect of cyanidin-3-O-glucoside on neonatal porcine islets. The Journal of Endocrinology 235 (3):237–49. doi: 10.1530/JOE-17-0141.
  • Li, D., P. Wang, Y. Luo, M. Zhao, and F. Chen. 2017. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical Reviews in Food Science and Nutrition 57 (8):1729–41. doi: 10.1080/10408398.2015.1030064.
  • Li, D., Y. Zhang, Y. Liu, R. Sun, and M. Xia. 2015. Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. The Journal of Nutrition 145 (4):742–8. doi: 10.3390/ijms222011076.
  • Li, H., H. M. Park, H. S. Ji, J. Han, S. K. Kim, H. Y. Park, and T. S. Jeong. 2020. Phenolic-enriched blueberry-leaf extract attenuates glucose homeostasis, pancreatic β-cell function, and insulin sensitivity in high-fat diet-induced diabetic mice. Nutrition Research (New York, N.Y.) 73:83–96. doi: 10.1016/j.nutres.2019.09.005.
  • Li, J., M. K. Kang, J. K. Kim, J. L. Kim, S. W. Kang, S. S. Lim, and Y. H. Kang. 2012. Purple corn anthocyanins retard diabetes-associated glomerulosclerosis in mesangial cells and db/db mice. European Journal of Nutrition 51 (8):961–73. doi: 10.1007/s00394-011-0274-4.
  • Li, J., S. S. Lim, J. Y. Lee, J. K. Kim, S. W. Kang, J. L. Kim, and Y. H. Kang. 2012. Purple corn anthocyanins dampened high-glucose-induced mesangial fibrosis and inflammation: Possible renoprotective role in diabetic nephropathy. The Journal of Nutritional Biochemistry 23 (4):320–31. doi: 10.1016/j.jnutbio.2010.12.008.
  • Liang, N., and D. D. Kitts. 2014. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules (Basel, Switzerland) 19 (11):19180–208. doi: 10.3390/molecules191119180.
  • Ligthart, S., T. T. van Herpt, M. J. Leening, M. Kavousi, A. Hofman, B. H. Stricker, M. van Hoek, E. J. Sijbrands, O. H. Franco, and A. Dehghan. 2016. Lifetime risk of developing impaired glucose metabolism and eventual progression from prediabetes to type 2 diabetes: A prospective cohort study. Lancet Diabetes and Endocrinology. 4 (1):44–51. doi: 10.1016/S2213-8587(15)00362-9.
  • Lila, M. A., B. Burton-Freeman, M. Grace, and W. Kalt. 2016. Unraveling anthocyanin bioavailability for human health. Annual Review of Food Science and Technology 7:375–93. doi: 10.1146/annurev-food-041715-033346.
  • Lim, S. M., H. S. Lee, J. I. Jung, S. M. Kim, N. Y. Kim, T. S. Seo, J. S. Bae, and E. J. Kim. 2019. Cyanidin-3-O-galactoside-enriched Aronia melanocarpa extract attenuates weight gain and adipogenic pathways in high-fat diet-induced obese C57BL/6 mice. Nutrients 11 (5):1190. doi: 10.3390/nu11051190.
  • Lin, B. W., C. C. Gong, H. F. Song, and Y. Y. Cui. 2017. Effects of anthocyanins on the prevention and treatment of cancer. British Journal of Pharmacology 174 (11):1226–43. doi: 10.1111/bph.13627.
  • Lin, K., D. M. Lloyd-Jones, D. Li, and J. C. Carr. 2014. Quantitative imaging biomarkers for the evaluation of cardiovascular complications in type 2 diabetes mellitus. Journal of Diabetes and Its Complications 28 (2):234–42. doi: 10.1016/j.jdiacomp.2013.09.008.
  • Liu, J., S. Tian, C. Xin, J. Liu, Q. Wang, Y. He, M. Liu, M. Fu, Y. Yang, and X. Cao. 2020. The Identification of Anthocyanins from Padus racemosa and its protective effects on H(2) O(2) -induced INS-1 cells damage and STZ-induced diabetes mice. Chemistry and Biodiversity 17 (11):e2000382.
  • Liu, Y., D. Li, Y. Zhang, R. Sun, and M. Xia. 2014. Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction. American Journal of Physiology. Endocrinology and Metabolism 306 (8):E975–988. doi: 10.1152/ajpendo.00699.2013.
  • Lontchi-Yimagou, E., E. Sobngwi, T. E. Matsha, and A. P. Kengne. 2013. Diabetes mellitus and inflammation. Current Diabetes Reports 13 (3):435–44. doi: 10.1007/s11892-013-0375-y.
  • Lu, X., and C. Zhao. 2020. Exercise and type 1 diabetes. Advances in Experimental Medicine and Biology 1228:107–21.
  • Luna-Vital, D. A., and E. Gonzalez de Mejia. 2018. Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake. Plos One 13 (7):e0200449. doi: 10.1371/journal.pone.0200449.
  • Ma, Y., F. Chen, S. Yang, B. Chen, and J. Shi. 2018. Protocatechuic acid ameliorates high glucose-induced extracellular matrix accumulation in diabetic nephropathy. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 98:18–22. doi: 10.1016/j.biopha.2017.12.032.
  • Ma, Z., B. Du, J. Li, Y. Yang, and F. Zhu. 2021. An insight into anti-inflammatory activities and inflammation related diseases of anthocyanins: A review of both in vivo and in vitro investigations. International Journal of Molecular Sciences 22 (20). doi: 10.1016/j.biopha.2017.12.032.
  • Manach, C., G. Williamson, C. Morand, A. Scalbert, and C. Rémésy. 2005. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition 81 (1 Suppl):230s–42s. doi: 10.1093/ajcn/81.1.230S.
  • Manucha, W. 2014. Mitochondria and oxidative stress participation in renal inflammatory process. Medicina 74 (3):254–8.
  • Matsukawa, T., T. Inaguma, J. Han, M. O. Villareal, and H. Isoda. 2015. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes. The Journal of Nutritional Biochemistry 26 (8):860–7. doi: 10.1016/j.jnutbio.2015.03.006.
  • Mattioli, R., A. Francioso, L. Mosca, and P. Silva. 2020. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 25 (17):3809. doi: 10.3390/molecules25173809.
  • Maya-Monteiro, C. M., and P. T. Bozza. 2008. Leptin and mTOR: Partners in metabolism and inflammation. Cell Cycle (Georgetown, TX) 7 (12):1713–7. doi: 10.4161/cc.7.12.6157.
  • Mayans, L. 2015. Metabolic syndrome: Insulin resistance and prediabetes. FP Essent 435:11–6.
  • Mhya, D. H., A. Nuhu, and M. J. N. R. f H. H. Mankilik. 2021. In-silico discovery of antidiabetic drug potential of Balanites aegyptiaca leaf’s phenolic compounds. Natural Resources for Human Health 1 (2):91–97. doi: 10.53365/nrfhh/142375.
  • Miki, A., C. Ricordi, Y. Sakuma, T. Yamamoto, R. Misawa, A. Mita, R. D. Molano, N. D. Vaziri, A. Pileggi, and H. Ichii. 2018. Divergent antioxidant capacity of human islet cell subsets: A potential cause of beta-cell vulnerability in diabetes and islet transplantation. PloS One 13 (5):e0196570.
  • Millar, C. L., Q. Duclos, and C. N. Blesso. 2017. Effects of dietary flavonoids on reverse cholesterol transport, HDL metabolism, and HDL function. Advances in Nutrition (Bethesda, MD) 8 (2):226–39. doi: 10.3945/an.116.014050.
  • Moazen, S., R. Amani, A. Homayouni Rad, H. Shahbazian, K. Ahmadi, and M. Taha Jalali. 2013. Effects of freeze-dried strawberry supplementation on metabolic biomarkers of atherosclerosis in subjects with type 2 diabetes: A randomized double-blind controlled trial. Annals of Nutrition and Metabolism 63 (3):256–64. doi: 10.1159/000356053.
  • Montanari, E., C. Gonelle-Gispert, J. D. Seebach, M. F. Knoll, R. Bottino, and L. H. Bühler. 2019. Immunological aspects of allogeneic pancreatic islet transplantation: A comparison between mouse and human. Transplant International: Official Journal of the European Society for Organ Transplantation 32 (9):903–12. doi: 10.1111/tri.13445.
  • Muraki, I., F. Imamura, J. E. Manson, F. B. Hu, W. C. Willett, R. M. van Dam, and Q. Sun. 2013. Fruit consumption and risk of type 2 diabetes: Results from three prospective longitudinal cohort studies. BMJ 347 (aug28 1):f5001–f5001. doi: 10.1136/bmj.f5001.
  • Mussa, B. M., A. Srivastava, A. Al-Habshi, A. K. Mohammed, R. Halwani, and S. Abusnana. 2021. Inflammatory biomarkers levels in T2DM Emirati patients with diabetic neuropathy. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 14:3389–97. doi: 10.2147/DMSO.S319863.
  • Mykkänen, O. T., A. Huotari, K. H. Herzig, T. W. Dunlop, H. Mykkänen, and P. V. Kirjavainen. 2014. Wild blueberries (Vaccinium myrtillus) alleviate inflammation and hypertension associated with developing obesity in mice fed with a high-fat diet. PloS One 9 (12):e114790. doi: 10.1371/journal.pone.0114790.
  • Nasri, S., M. Roghani, T. Baluchnejadmojarad, T. Rabani, and M. Balvardi. 2011. Vascular mechanisms of cyanidin-3-glucoside response in streptozotocin-diabetic rats. Pathophysiology: The Official Journal of the International Society for Pathophysiology 18 (4):273–8. doi: 10.1016/j.pathophys.2011.03.001.
  • Nemes, A., J. R. Homoki, R. Kiss, C. Hegedűs, D. Kovács, B. Peitl, F. Gál, L. Stündl, Z. Szilvássy, and J. Remenyik. 2019. Effect of anthocyanin-rich tart cherry extract on inflammatory mediators and adipokines involved in type 2 diabetes in a high fat diet induced obesity mouse model. Nutrients 11 (9):1966. doi: 10.3390/nu11091966.
  • Nikbakht, E., I. Singh, J. Vider, L. T. Williams, L. Vugic, A. Gaiz, A. R. Kundur, and N. Colson. 2021. Potential of anthocyanin as an anti-inflammatory agent: A human clinical trial on type 2 diabetic, diabetic at-risk and healthy adults. Inflammation Research: Official Journal of the European Histamine Research Society. [et al.] 70 (3):275–84. doi: 10.1007/s00011-021-01438-1.
  • Nizamutdinova, I. T., Y. C. Jin, J. I. Chung, S. C. Shin, S. J. Lee, H. G. Seo, J. H. Lee, K. C. Chang, and H. J. Kim. 2009. The anti-diabetic effect of anthocyanins in streptozotocin-induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis. Molecular Nutrition & Food Research 53 (11):1419–29. doi: 10.1002/mnfr.200800526.
  • Nomi, Y., K. Iwasaki-Kurashige, and H. Matsumoto. 2019. Therapeutic effects of anthocyanins for vision and eye health. Molecules 24 (18):3311. doi: 10.3390/molecules24183311.
  • Noratto, G. D., N. N. Lage, B. P. Chew, S. U. Mertens-Talcott, S. T. Talcott, and M. L. Pedrosa. 2018. Non-anthocyanin phenolics in cherry (Prunus avium L.) modulate IL-6, liver lipids and expression of PPARδ and LXRs in obese diabetic (db/db) mice. Food Chemistry 266:405–14. doi: 10.1016/j.foodchem.2018.06.020.
  • Novoselova, E. G., O. V. Glushkova, M. O. Khrenov, S. M. Lunin, T. V. Novoselova, and S. B. Parfenuyk. 2021. Role of innate immunity and oxidative stress in the development of type 1 diabetes mellitus. Peroxiredoxin 6 as a new anti-diabetic agent. Biochemistry. Biokhimiia 86 (12):1579–89. doi: 10.1134/S0006297921120075.
  • Oliveira, P. S., M. Gazal, N. P. Flores, A. R. Zimmer, V. C. Chaves, F. H. Reginatto, M. P. Kaster, R. G. Tavares, R. M. Spanevello, C. L. Lencina, et al. 2017. Vaccinium virgatum fruit extract as an important adjuvant in biochemical and behavioral alterations observed in animal model of metabolic syndrome. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 88:939–47. doi: 10.1016/j.biopha.2017.01.121.
  • Oyama, L. M., F. P. Silva, J. Carnier, D. A. de Miranda, A. B. Santamarina, E. B. Ribeiro, C. M. Oller do Nascimento, and V. V. de Rosso. 2016. Juçara pulp supplementation improves glucose tolerance in mice. Diabetology & Metabolic Syndrome 8:8. doi: 10.1186/s13098-015-0122-4.
  • Palacios, O. M., M. Kramer, and K. C. Maki. 2019. Diet and prevention of type 2 diabetes mellitus: Beyond weight loss and exercise. Expert Review of Endocrinology & Metabolism 14 (1):1–12. doi: 10.1080/17446651.2019.1554430.
  • Panchamoorthy, R., and N. Vel. 2021. Herbal spices-based therapeutics for diabetic patients with COVID-19 infection: A review. Natural Resources for Human Health 2 (1):32–51.
  • Park, E., I. Edirisinghe, H. Wei, L. P. Vijayakumar, K. Banaszewski, J. C. Cappozzo, and B. Burton-Freeman. 2016. A dose-response evaluation of freeze-dried strawberries independent of fiber content on metabolic indices in abdominally obese individuals with insulin resistance in a randomized, single-blinded, diet-controlled crossover trial. Molecular Nutrition & Food Research 60 (5):1099–109. doi: 10.1002/mnfr.201500845.
  • Park, M., J. H. Yoo, Y. S. Lee, and H. J. Lee. 2019. Lonicera caerulea extract attenuates non-alcoholic fatty liver disease in free fatty acid-induced HepG2 hepatocytes and in high fat diet-fed mice. Nutrients 11 (3):494. doi: 10.3390/nu11030494.
  • Park, S., S. Kang, D. Y. Jeong, S. Y. Jeong, J. J. Park, and H. S. Yun. 2015. Cyanidin and malvidin in aqueous extracts of black carrots fermented with Aspergillus oryzae prevent the impairment of energy, lipid and glucose metabolism in estrogen-deficient rats by AMPK activation. Genes & Nutrition 10 (2):455. doi: 10.1007/s12263-015-0455-5.
  • Petersmann, A., D. Müller-Wieland, U. A. Müller, R. Landgraf, M. Nauck, G. Freckmann, L. Heinemann, and E. Schleicher. 2019. Definition, classification and diagnosis of diabetes mellitus. Experimental and Clinical Endocrinology & Diabetes: Official Journal, German Society of Endocrinology [and] German Diabetes Association 127 (S 01):S1–s7. doi: 10.1055/a-1018-9078.
  • Preedy, V. R. 2014. Handbook of nutrition, diet, and the eye. London: Academic Press.
  • Qi, C., X. Mao, Z. Zhang, and H. Wu. 2017. Classification and differential diagnosis of diabetic nephropathy. Journal of Diabetes Research 2017:1–7. doi: 10.1155/2017/8637138.
  • Qin, B., and R. A. Anderson. 2012. An extract of chokeberry attenuates weight gain and modulates insulin, adipogenic and inflammatory signalling pathways in epididymal adipose tissue of rats fed a fructose-rich diet. The British Journal of Nutrition 108 (4):581–7. doi: 10.1017/S000711451100599X.
  • Qin, Y., Q. Zhai, Y. Li, M. Cao, Y. Xu, K. Zhao, and T. Wang. 2018. Cyanidin-3-O-glucoside ameliorates diabetic nephropathy through regulation of glutathione pool. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 103:1223–30. doi: 10.1016/j.biopha.2018.04.137.
  • Reis, J. F., V. V. Monteiro, R. de Souza Gomes, M. M. do Carmo, G. V. da Costa, P. C. Ribera, and M. C. Monteiro. 2016. Action mechanism and cardiovascular effect of anthocyanins: A systematic review of animal and human studies. Journal of Translational Medicine 14 (1):315. doi: 10.1186/s12967-016-1076-5.
  • Ren, S., R. Jiménez-Flores, and M. M. Giusti. 2021. The interactions between anthocyanin and whey protein: A review. Comprehensive Reviews in Food Science and Food Safety 20 (6):5992–6011. doi: 10.1111/1541-4337.12854.
  • Rickels, M. R., and R. P. Robertson. 2019. Pancreatic islet transplantation in humans: Recent progress and future directions. Endocrine Reviews 40 (2):631–68. doi: 10.1210/er.2018-00154.
  • Rienks, J., J. Barbaresko, K. Oluwagbemigun, M. Schmid, and U. Nöthlings. 2018. Polyphenol exposure and risk of type 2 diabetes: Dose-response meta-analyses and systematic review of prospective cohort studies. The American Journal of Clinical Nutrition 108 (1):49–61. doi: 10.1093/ajcn/nqy083.
  • Rojo, L. E., D. Ribnicky, S. Logendra, A. Poulev, P. Rojas-Silva, P. Kuhn, R. Dorn, M. H. Grace, M. A. Lila, and I. Raskin. 2012. In vitro and in vivo anti-diabetic effects of anthocyanins from maqui berry (Aristotelia chilensis). Food Chemistry 131 (2):387–96. doi: 10.1016/j.foodchem.2011.08.066.
  • Roopchand, D. E., P. Kuhn, L. E. Rojo, M. A. Lila, and I. Raskin. 2013. Blueberry polyphenol-enriched soybean flour reduces hyperglycemia, body weight gain and serum cholesterol in mice. Pharmacological Research 68 (1):59–67. doi: 10.1016/j.phrs.2012.11.008.
  • Saeedi, P., I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A. A. Motala, K. Ogurtsova, et al. 2019. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Research and Clinical Practice 157:107843. doi: 10.1016/j.diabres.2019.107843.
  • Saito, T., M. Nishida, M. Saito, A. Tanabe, T. Eitsuka, S. H. Yuan, N. Ikekawa, and H. Nishida. 2016. The fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice. Nutrition Research 36 (10):1090–7.
  • Salehi, B., A. Ata, N. V Anil Kumar, F. Sharopov, K. Ramírez-Alarcón, A. Ruiz-Ortega, S. Abdulmajid Ayatollahi, P. V. Tsouh Fokou, F. Kobarfard, Z. Amiruddin Zakaria, et al. 2019. Antidiabetic potential of medicinal plants and their active components. Biomolecules 9 (10):551. [ Mismatch] doi: 10.3390/biom9100551.
  • Sanchez-Niño, M. D., A. B. Sanz, C. Lorz, A. Gnirke, M. P. Rastaldi, V. Nair, J. Egido, M. Ruiz-Ortega, M. Kretzler, and A. Ortiz. 2010. BASP1 promotes apoptosis in diabetic nephropathy. Journal of the American Society of Nephrology: JASN 21 (4):610–21. doi: 10.1681/ASN.2009020227.
  • Sarikaphuti, A., T. Nararatwanchai, T. Hashiguchi, T. Ito, S. Thaworanunta, K. Kikuchi, Y. Oyama, I. Maruyama, and S. Tancharoen. 2013. Preventive effects of Morus alba L. anthocyanins on diabetes in Zucker diabetic fatty rats. Experimental and Therapeutic Medicine 6 (3):689–95. doi: 10.3892/etm.2013.1203.
  • Sasaki, R., N. Nishimura, H. Hoshino, Y. Isa, M. Kadowaki, T. Ichi, A. Tanaka, S. Nishiumi, I. Fukuda, H. Ashida, et al. 2007. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochemical Pharmacology 74 (11):1619–27.
  • Semaming, Y., S. Kumfu, P. Pannangpetch, S. C. Chattipakorn, and N. Chattipakorn. 2014. Protocatechuic acid exerts a cardioprotective effect in type 1 diabetic rats. The Journal of Endocrinology 223 (1):13–23. doi: 10.1530/JOE-14-0273.
  • Seymour, E. M., I. I. Tanone, D. E. Urcuyo-Llanes, S. K. Lewis, A. Kirakosyan, M. G. Kondoleon, P. B. Kaufman, and S. F. Bolling. 2011. Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. Journal of Medicinal Food 14 (12):1511–8. doi: 10.1089/jmf.2010.0292.
  • Shapiro, A. M., M. Pokrywczynska, and C. Ricordi. 2017. Clinical pancreatic islet transplantation. Nature Reviews. Endocrinology 13 (5):268–77. doi: 10.1038/nrendo.2016.178.
  • Shen, Y., N. Zhang, J. Tian, G. Xin, L. Liu, X. Sun, and B. Li. 2022. Advanced approaches for improving bioavailability and controlled release of anthocyanins. Journal of Controlled Release: Official Journal of the Controlled Release Society 341:285–99. doi: 10.1016/j.jconrel.2021.11.031.
  • Silva, S., E. M. Costa, C. Calhau, R. M. Morais, and M. E. Pintado. 2017. Anthocyanin extraction from plant tissues: A review. Critical Reviews in Food Science and Nutrition 57 (14):3072–83. doi: 10.1080/10408398.2015.1087963.
  • Silveira, J. Q., G. K. Dourado, and T. B. Cesar. 2015. Red-fleshed sweet orange juice improves the risk factors for metabolic syndrome. International Journal of Food Sciences and Nutrition 66 (7):830–6. doi: 10.3109/09637486.2015.1093610.
  • Singh, R. P., M. J. Elman, S. K. Singh, A. E. Fung, and I. Stoilov. 2019. Advances in the treatment of diabetic retinopathy. Journal of Diabetes and Its Complications 33 (12):107417. doi: 10.1016/j.jdiacomp.2019.107417.
  • Solverson, P. M., T. R. Henderson, H. Debelo, M. G. Ferruzzi, D. J. Baer, and J. A. Novotny. 2019. An anthocyanin-rich mixed-berry intervention may improve insulin sensitivity in a randomized trial of overweight and obese adults. Nutrients 11 (12):2876. doi: 10.3390/nu11122876.
  • Solverson, P. M., W. V. Rumpler, J. L. Leger, B. W. Redan, M. G. Ferruzzi, D. J. Baer, T. W. Castonguay, and J. A. Novotny. 2018. Blackberry feeding increases fat oxidation and improves insulin sensitivity in overweight and obese males. Nutrients 10 (8):1048. doi: 10.3390/nu10081048.
  • Song, H., X. Shen, F. Wang, Y. Li, and X. Zheng. 2021. Black current anthocyanins improve lipid metabolism and modulate gut microbiota in high-fat diet-induced obese mice. Molecular Nutrition & Food Research 65 (6):e2001090. doi: 10.1002/mnfr.202001090.
  • Song, H., X. Shen, Y. Zhou, and X. Zheng. 2021. Black rice anthocyanins alleviate hyperlipidemia, liver steatosis and insulin resistance by regulating lipid metabolism and gut microbiota in obese mice. Food & Function 12 (20):10160–70. doi: 10.1039/d1fo01394g.
  • Song, Y., L. Huang, and J. Yu. 2016. Effects of blueberry anthocyanins on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1 signaling. Journal of Neuroimmunology 301:1–6. doi: 10.1016/j.jneuroim.2016.11.001.
  • Soon, Y. Y., and B. K. Tan. 2002. Evaluation of the hypoglycemic and anti-oxidant activities of Morinda officinalis in streptozotocin-induced diabetic rats. Singapore Medical Journal 43 (2):077–85.
  • Stevens, M., C. R. Neal, E. C. Craciun, M. Dronca, S. J. Harper, and S. Oltean. 2019. The natural drug DIAVIT is protective in a type II mouse model of diabetic nephropathy. PloS One 14 (3):e0212910. doi: 10.1371/journal.pone.0212910.
  • Strugała, P., O. Dzydzan, I. Brodyak, A. Z. Kucharska, P. Kuropka, M. Liuta, K. Kaleta-Kuratewicz, A. Przewodowska, D. Michałowska, J. Gabrielska, et al. 2019. Antidiabetic and antioxidative potential of the blue congo variety of purple potato extract in streptozotocin-induced diabetic rats. Molecules 24 (17):3126. doi: 10.3390/molecules24173126.
  • Stull, A. J., K. C. Cash, W. D. Johnson, C. M. Champagne, and W. T. Cefalu. 2010. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. The Journal of Nutrition 140 (10):1764–8. doi: 10.3945/jn.110.125336.
  • Suantawee, T., S. T. Elazab, W. H. Hsu, S. Yao, H. Cheng, and S. Adisakwattana. 2017. Cyanidin stimulates insulin secretion and pancreatic β-cell gene expression through activation of l-type voltage-dependent Ca(2+) channels. Nutrients 9 (8):814. doi: 10.3390/nu9080814.
  • Sun, H., P. Zhang, Y. Zhu, Q. Lou, and S. He. 2018. Antioxidant and prebiotic activity of five peonidin-based anthocyanins extracted from purple sweet potato (Ipomoea batatas (L.) Lam.). Scientific Reports 8 (1):5018. doi: 10.1038/s41598-018-23397-0.
  • Takikawa, M., S. Inoue, F. Horio, and T. Tsuda. 2010. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. The Journal of Nutrition 140 (3):527–33. doi: 10.3945/jn.109.118216.
  • Thorens, B. 2014. Neural regulation of pancreatic islet cell mass and function. Diabetes, Obesity & Metabolism 16 Suppl 1:87–95. doi: 10.1111/dom.12346.
  • Tian, J. L., X. Si, C. Shu, Y. H. Wang, H. Tan, Z. H. Zang, W. J. Zhang, X. Xie, Y. Chen, and B. Li. 2022. Synergistic effects of combined anthocyanin and metformin treatment for hyperglycemia in vitro and in vivo. Journal of Agricultural and Food Chemistry 70 (4):1182–95. doi: 10.1021/acs.jafc.1c07799.
  • Tian, L., H. Ning, W. Shao, Z. Song, Y. Badakhshi, W. Ling, B. B. Yang, P. L. Brubaker, and T. Jin. 2020. Dietary cyanidin-3-glucoside attenuates high-fat-diet-induced body-weight gain and impairment of glucose tolerance in mice via effects on the hepatic hormone FGF21. The Journal of Nutrition 150 (8):2101–11. doi: 10.1093/jn/nxaa140.
  • Tian, L., Y. Tan, G. Chen, G. Wang, J. Sun, S. Ou, W. Chen, and W. Bai. 2019. Metabolism of anthocyanins and consequent effects on the gut microbiota. Critical Reviews in Food Science and Nutrition 59 (6):982–91. doi: 10.1080/10408398.2018.1533517.
  • Tsuda, T. 2017. Prevention and treatment of diabetes using polyphenols via activation of AMP-activated protein kinase and stimulation of glucagon-like peptide-1 secretion. In Recent advances in polyphenol research, vol. 5, 206–25. Oxford: Blackwell publishing.
  • Tsuda, T., F. Horio, K. Uchida, H. Aoki, and T. Osawa. 2003. Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. The Journal of Nutrition 133 (7):2125–30. doi: 10.1093/jn/133.7.2125.
  • Valente, A. J., T. Yoshida, J. D. Gardner, N. Somanna, P. Delafontaine, and B. Chandrasekar. 2012. Interleukin-17A stimulates cardiac fibroblast proliferation and migration via negative regulation of the dual-specificity phosphatase MKP-1/DUSP-1. Cellular Signalling 24 (2):560–8. doi: 10.1016/j.cellsig.2011.10.010.
  • Vilhena, R. O., I. D. Figueiredo, A. M. Baviera, D. B. Silva, B. M. Marson, J. A. Oliveira, R. G. Peccinini, I. K. Borges, and R. Pontarolo. 2020. Antidiabetic activity of Musa x paradisiaca extracts in streptozotocin-induced diabetic rats and chemical characterization by HPLC-DAD-MS. Journal of Ethnopharmacology 254:112666. doi: 10.1016/j.jep.2020.112666.
  • Wada, J., and H. Makino. 2013. Inflammation and the pathogenesis of diabetic nephropathy. Clinical Science (London, England : 1979) 124 (3):139–52. doi: 10.1042/CS20120198.
  • Wang, X., Y. Y. Ouyang, J. Liu, and G. Zhao. 2014. Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. The British Journal of Nutrition 111 (1):1–11. doi: 10.1017/S000711451300278X.
  • Watanabe, M., and J. Ayugase. 2010. Effects of buckwheat sprouts on plasma and hepatic parameters in type 2 diabetic DB/DB mice. Journal of Food Science 75 (9):H294–299. doi: 10.1111/j.1750-3841.2010.01853.x.
  • Wedick, N. M., A. Pan, A. Cassidy, E. B. Rimm, L. Sampson, B. Rosner, W. Willett, F. B. Hu, Q. Sun, and R. M. van Dam. 2012. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. The American Journal of Clinical Nutrition 95 (4):925–33. doi: 10.3945/ajcn.111.028894.
  • Wei, J., H. Wu, H. Zhang, F. Li, S. Chen, B. Hou, Y. Shi, L. Zhao, and H. Duan. 2018. Anthocyanins inhibit high glucose-induced renal tubular cell apoptosis caused by oxidative stress in DB/DB mice. International Journal of Molecular Medicine 41 (3):1608–18. doi: 10.3892/ijmm.2018.3378.
  • Williamson, G. 2013. Possible effects of dietary polyphenols on sugar absorption and digestion. Molecular Nutrition & Food Research 57 (1):48–57. doi: 10.1002/mnfr.201200511.
  • Winter, A. N., and P. C. Bickford. 2019. Anthocyanins and their metabolites as therapeutic agents for neurodegenerative disease. Antioxidants (Basel) 8 (9):333. doi: 10.3390/antiox8090333.
  • Wu, C. C., C. N. Hung, Y. C. Shin, C. J. Wang, and H. P. Huang. 2016. Myrciaria cauliflora extracts attenuate diabetic nephropathy involving the Ras signaling pathway in streptozotocin/nicotinamide mice on a high fat diet. Journal of Food and Drug Analysis 24 (1):136–46. doi: 10.1016/j.jfda.2015.10.001.
  • Wu, T., L. Yang, X. Guo, M. Zhang, R. Liu, and W. Sui. 2018. Raspberry anthocyanin consumption prevents diet-induced obesity by alleviating oxidative stress and modulating hepatic lipid metabolism. Food & Function 9 (4):2112–20. doi: 10.1039/c7fo02061a.
  • Wu, T., Z. Jiang, J. Yin, H. Long, and X. Zheng. 2016. Anti-obesity effects of artificial planting blueberry (Vaccinium ashei) anthocyanin in high-fat diet-treated mice. International Journal of Food Sciences and Nutrition 67 (3):257–64. doi: 10.3109/09637486.2016.1146235.
  • Xu, H., J. Luo, J. Huang, and Q. Wen. 2018. Flavonoids intake and risk of type 2 diabetes mellitus: A meta-analysis of prospective cohort studies. Medicine 97 (19):e0686. doi: 10.1097/MD.0000000000010686.
  • Xu, M., K. A. Bower, S. Wang, J. A. Frank, G. Chen, M. Ding, S. Wang, X. Shi, Z. Ke, and J. Luo. 2010. Cyanidin-3-glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2. Molecular Cancer 9:285. doi: 10.1186/1476-4598-9-285.
  • Yamane, T., M. Kozuka, D. Konda, Y. Nakano, T. Nakagaki, I. Ohkubo, and H. Ariga. 2016. Improvement of blood glucose levels and obesity in mice given aronia juice by inhibition of dipeptidyl peptidase IV and α-glucosidase. The Journal of Nutritional Biochemistry 31:106–12. doi: 10.1016/j.jnutbio.2016.02.004.
  • Yan, F., G. Dai, and X. Zheng. 2016. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. The Journal of Nutritional Biochemistry 36:68–80. doi: 10.1016/j.jnutbio.2016.07.004.
  • Yang, L., W. Ling, Y. Qiu, Y. Liu, L. Wang, J. Yang, C. Wang, and J. Ma. 2020. Anthocyanins increase serum adiponectin in newly diagnosed diabetes but not in prediabetes: A randomized controlled trial. Nutrition & Metabolism 17:78. doi: 10.1186/s12986-020-00498-0.
  • Yang, L., W. Ling, Y. Yang, Y. Chen, Z. Tian, Z. Du, J. Chen, Y. Xie, Z. Liu, and L. Yang. 2017. Role of purified anthocyanins in improving cardiometabolic risk factors in Chinese men and women with prediabetes or early untreated diabetes-a randomized controlled trial. Nutrients 9 (10):1104. doi: 10.3390/nu9101104.
  • Yang, L., Y. Qiu, W. Ling, Z. Liu, L. Yang, C. Wang, X. Peng, L. Wang, and J. Chen. 2021. Anthocyanins regulate serum adipsin and visfatin in patients with prediabetes or newly diagnosed diabetes: A randomized controlled trial. European Journal of Nutrition 60 (4):1935–44. doi: 10.1007/s00394-020-02379-x.
  • Yang, P., C. Yuan, H. Wang, F. Han, Y. Liu, L. Wang, and Y. Liu. 2018. Stability of anthocyanins and their degradation products from cabernet sauvignon red wine under gastrointestinal pH and temperature conditions. Molecules 23 (2):354. doi: 10.3390/molecules23020354.
  • Ye, X., W. Chen, P. Tu, R. Jia, Y. Liu, Q. Tang, C. Chen, C. Yang, X. Zheng, and Q. Chu. 2022. Antihyperglycemic effect of an anthocyanin, cyanidin-3-O-glucoside, is achieved by regulating GLUT-1 via the Wnt/β-catenin-WISP1 signaling pathway. Food & Function 13 (8):4612–23. doi: 10.1039/D1FO03730G.
  • Ye, X., W. Chen, P. Tu, R. Jia, Y. Liu, Y. Li, Q. Tang, X. Zheng, and Q. Chu. 2021. Food-derived cyanidin-3-O-glucoside alleviates oxidative stress: Evidence from the islet cell line and diabetic DB/DB mice. Food & Function 12 (22):11599–610. doi: 10.1039/d1fo02385c.
  • Yue, E., Y. Yu, X. Wang, B. Liu, Y. Bai, and B. Yang. 2020. Anthocyanin protects cardiac function and cardiac fibroblasts from high-glucose induced inflammation and myocardial fibrosis by inhibiting IL-17. Frontiers in Pharmacology 11:593633.
  • Zeynaloo, E., L. D. Stone, E. Dikici, C. Ricordi, S. K. Deo, L. G. Bachas, S. Daunert, and G. Lanzoni. 2022. Delivery of therapeutic agents and cells to pancreatic islets: Towards a new era in the treatment of diabetes. Molecular Aspects of Medicine 83:101063. doi: 10.1016/j.mam.2021.101063.
  • Zhang, B., M. Buya, W. Qin, C. Sun, H. Cai, Q. Xie, B. Xu, and Y. Wu. 2013. Anthocyanins from Chinese bayberry extract activate transcription factor Nrf2 in β cells and negatively regulate oxidative stress-induced autophagy. Journal of Agricultural and Food Chemistry 61 (37):8765–72. doi: 10.1021/jf4012399.
  • Zhang, B., M. Kang, Q. Xie, B. Xu, C. Sun, K. Chen, and Y. Wu. 2011. Anthocyanins from Chinese bayberry extract protect β cells from oxidative stress-mediated injury via HO-1 upregulation. Journal of Agricultural and Food Chemistry 59 (2):537–45. doi: 10.1021/jf1035405.
  • Zhang, W., H. Liu, M. Rojas, R. W. Caldwell, and R. B. Caldwell. 2011. Anti-inflammatory therapy for diabetic retinopathy. Immunotherapy 3 (5):609–28. doi: 10.2217/imt.11.24.
  • Zhao, C. L., Y. Q. Yu, Z. J. Chen, G. S. Wen, F. G. Wei, Q. Zheng, C. D. Wang, and X. L. Xiao. 2017. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chemistry 214:119–28. doi: 10.1016/j.foodchem.2016.07.073.
  • Zhao, F., X. Gao, X. Ge, J. Cui, and X. Liu. 2021. Cyanidin-3-o-glucoside (C3G) inhibits vascular leakage regulated by microglial activation in early diabetic retinopathy and neovascularization in advanced diabetic retinopathy. Bioengineered 12 (2):9266–78. doi: 10.1080/21655979.2021.1996512.
  • Zheng, H. X., S. S. Qi, J. He, C. Y. Hu, H. Han, H. Jiang, and X. S. Li. 2020. Cyanidin-3-glucoside from black rice ameliorates diabetic nephropathy via reducing blood glucose, suppressing oxidative stress and inflammation, and regulating transforming growth factor β1/smad expression. Journal of Agricultural and Food Chemistry 68 (15):4399–410. doi: 10.1021/acs.jafc.0c00680.
  • Zhu, Y., H. Sun, S. He, Q. Lou, M. Yu, M. Tang, and L. Tu. 2018. Metabolism and prebiotics activity of anthocyanins from black rice (Oryza sativa L.) in vitro. Plos One 13 (4):e0195754. doi: 10.1371/journal.pone.0195754.
  • Zou, W., C. Zhang, X. Gu, X. Li, and H. Zhu. 2021. Metformin in combination with malvidin prevents progression of non-alcoholic fatty liver disease via improving lipid and glucose metabolisms, and inhibiting inflammation in type 2 diabetes rats. Drug Design, Development and Therapy 15:2565–76. doi: 10.2147/DDDT.S307257.