799
Views
9
CrossRef citations to date
0
Altmetric
Reviews

The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors

, , , , ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 12126-12135 | Published online: 13 Jul 2022

References

  • Abbasi, B. A., J. Iqbal, R. Ahmad, L. Zia, S. Kanwal, T. Mahmood, C. Wang, and J. T. Chen. 2019. Bioactivities of Geranium wallichianum leaf extracts conjugated with zinc oxide nanoparticles. Biomolecules 10 (1):38. doi: 10.3390/biom10010038.
  • Afolabi, O. B., O. I. Oloyede, B. T. Aluko, and J. A. Johnson. 2021. Biosynthesis of magnesium hydroxide nanomaterials using Monodora myristica, antioxidative activities and effect on disrupted glucose metabolism in streptozotocin-induced diabetic rat. Food Bioscience 41:101023. doi: 10.1016/j.fbio.2021.101023.
  • Akolade, J. O., H. O. B. Oloyede, and P. C. Onyenekwe. 2017. Encapsulation in chitosan-based polyelectrolyte complexes enhances antidiabetic activity of curcumin. Journal of Functional Foods 35:584–94. doi: 10.1016/j.jff.2017.06.023.
  • Balan, K., W. X. Qing, Y. Y. Wang, X. H. Liu, T. Palvannan, Y. Wang, F. Y. Ma, and Y. Zhang. 2016. Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Advances 6 (46):40162–8. doi: 10.1039/C5RA24391B.
  • Bano, F., M. Baber, A. Ali, Z. Shah, and S. A. Muhammad. 2017. Biosynthesis, characterization, and biological activities of iron nanoparticles using Sesamum indicum seeds extract. Pharmacognosy Magazine 13 (Suppl 1):S33–S6. doi: 10.4103/0973-1296.203985.
  • Butterworth, P. J., F. J. Warren, and P. R. Ellis. 2011. Human α-amylase and starch digestion: An interesting marriage. Starch - Stärke 63 (7):395–405. doi: 10.1002/star.201000150.
  • Chen, Y., Z. Chen, Q. Guo, X. Gao, Q. Ma, Z. Xue, N. Ferri, M. Zhang, and H. Chen. 2019a. Identification of ellagitannins in the unripe fruit of Rubus Chingii Hu and evaluation of its potential antidiabetic activity. Journal of Agricultural and Food Chemistry 67 (25):7025–39. doi: 10.1021/acs.jafc.9b02293.
  • Chen, X., X. He, B. Zhang, L. Sun, Z. Liang, and Q. Huang. 2019b. Wheat gluten protein inhibits alpha-amylase activity more strongly than a soy protein isolate based on kinetic analysis. International Journal of Biological Macromolecules 129:433–41. doi: 10.1016/j.ijbiomac.2019.01.215.
  • Cuadros, D. F., J. Li, G. Musuka, and S. F. Awad. 2021. Spatial epidemiology of diabetes: Methods and insights. World Journal of Diabetes 12 (7):1042–56. doi: 10.4239/wjd.v12.i7.1042.
  • Dhobale, S., T. Thite, S. L. Laware, C. V. Rode, S. J. Koppikar, R.-K. Ghanekar, and S. N. Kale. 2008. Zinc oxide nanoparticles as novel alpha-amylase inhibitors. Journal of Applied Physics 104 (9):094907–5. doi: 10.1063/1.3009317.
  • Du, S. Y., Y. Lv, N. Li, X. X. Huang, X. M. Liu, H. Li, C. Wang, and Y. F. Jia. 2020. Biological investigations on therapeutic effect of chitosan encapsulated nano resveratrol against gestational diabetes mellitus rats induced by streptozotocin. Drug Delivery 27 (1):953–63. doi: 10.1080/10717544.2020.1775722.
  • Dudefoi, W., H. Rabesona, C. Rivard, M. Mercier-Bonin, B. Humbert, H. Terrisse, and M. H. Ropers. 2021. In vitro digestion of food grade TiO2 (E171) and TiO2 nanoparticles: Physicochemical characterization and impact on the activity of digestive enzymes. Food & Function 12 (13):5975–88. doi: 10.1039/D1FO00499A.
  • Geiss, O., J. Ponti, C. Senaldi, I. Bianchi, D. Mehn, J. Barrero, D. Gilliland, R. Matissek, and E. Anklam. 2020. Characterisation of food grade titania with respect to nanoparticle content in pristine additives and in their related food products. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 37 (2):239–53. doi: 10.1080/19440049.2019.1695067.
  • Gonzalez-Montoya, M., B. Hernandez-Ledesma, R. Mora-Escobedo, and C. Martinez-Villaluenga. 2018. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, alpha-amylase, and alpha-glucosidase Enzymes. International Journal of Molecular Sciences 19 (10):2883. doi: 10.3390/ijms19102883.
  • Haładyn, K., K. Tkacz, A. Wojdyło, and P. Nowicka. 2021. The types of polysaccharide coatings and their mixtures as a factor affecting the stability of bioactive compounds and health-promoting properties expressed as the ability to inhibitthe alpha-amylase and alpha-glucosidase of chokeberry extracts in the microencapsulation process. Foods 10 (9):1994. doi: 10.3390/foods10091994.
  • Huang, T. W., Y. C. Ho, T. N. Tsai, C. L. Tseng, C. Lin, and F. L. Mi. 2020. Enhancement of the permeability and activities of epigallocatechin gallate by quaternary ammonium chitosan/fucoidan nanoparticles. Carbohydrate Polymers 242:116312. doi: 10.1016/j.carbpol.2020.116312.
  • Javadi, N., F. Abas, A. Abd Hamid, S. Simoh, K. Shaari, I. S. Ismail, A. Mediani, and A. Khatib. 2014. GC-MS-based metabolite profiling of Cosmos caudatus leaves possessing alpha-glucosidase inhibitory activity. Journal of Food Science 79 (6):C1130–6. doi: 10.1111/1750-3841.12491.
  • Javed, R., M. Ahmed, I. U. Haq, S. Nisa, and M. Zia. 2017. PVP and PEG doped CuO nanoparticles are more biologically active: Antibacterial, antioxidant, antidiabetic and cytotoxic perspective. Materials Science & Engineering. C, Materials for Biological Applications 79:108–15. doi: 10.1016/j.msec.2017.05.006.
  • Ji, N., C. Liu, M. Li, Q. Sun, and L. Xiong. 2018. Interaction of cellulose nanocrystals and amylase: Its influence on enzyme activity and resistant starch content. Food Chemistry 245:481–7. doi: 10.1016/j.foodchem.2017.10.130.
  • Jia, Y. N., Y. P. Lu, Y. J. Wang, M. Zhang, C. W. He, and H. X. Chen. 2022. Spheroidization of ultrasonic degraded corn silk polysaccharide to enhance bioactivity by the anti-solvent precipitation method. Journal of the Science of Food and Agriculture 102 (1):53–61. doi: 10.1002/jsfa.11329.
  • Jiang, S., M. Li, R. Chang, L. Xiong, and Q. Sun. 2018. In vitro inhibition of pancreatic alpha-amylase by spherical and polygonal starch nanoparticles. Food & Function 9 (1):355–63. doi: 10.1039/C7FO01381G.
  • Johnson, P., V. Krishnan, C. Loganathan, K. Govindhan, V. Raji, P. Sakayanathan, S. Vijayan, P. Sathishkumar, and T. Palvannan. 2018. Rapid biosynthesis of Bauhinia variegata flower extract-mediated silver nanoparticles: An effective antioxidant scavenger and α-amylase inhibitor. Artificial Cells, Nanomedicine, and Biotechnology 46 (7):1488–94. doi: 10.1080/21691401.2017.1374283.
  • Khade, B. S., V. L. Mathe, and P. M. Dongre. 2017. α-Amylase binding to thermal plasma synthesized zinc oxide nanosheets: A fluorescence study. Journal of Luminescence 187:449–56. doi: 10.1016/j.jlumin.2017.03.033.
  • Kim, K. T., L. E. Rioux, and S. L. Turgeon. 2014. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry 98:27–33. doi: 10.1016/j.phytochem.2013.12.003.
  • Kumar, S., S. Narwal, V. Kumar, and O. Prakash. 2011. alpha-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy Reviews 5 (9):19–29. doi: 10.4103/0973-7847.79096.
  • Li, X., Y. Bai, Z. Jin, and B. Svensson. 2022. Food-derived non-phenolic α-amylase and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes. LWT - Food Science and Technology 153:112455. doi: 10.1016/j.lwt.2021.112455.
  • Li, Y., W. Liang, M. Huang, W. Huang, and J. Feng. 2022. Green preparation of holocellulose nanocrystals from burdock and their inhibitory effects against alpha-amylase and alpha-glucosidase. Food & Function 13 (1):170–85. doi: 10.1039/d1fo02012a.
  • Lin, Q., N. Ji, M. Li, L. Dai, X. Xu, L. Xiong, and Q. Sun. 2020. Fabrication of debranched starch nanoparticles via reverse emulsification for improvement of functional properties of corn starch films. Food Hydrocolloids. 104:105760. doi: 10.1016/j.foodhyd.2020.105760.
  • Liu, W., H. Li, Y. Wen, Y. Liu, J. Wang, and B. Sun. 2021. Molecular mechanism for the alpha-glucosidase inhibitory effect of wheat germ peptides. Journal of Agricultural and Food Chemistry 69 (50):15231–9. doi: 10.1021/acs.jafc.1c06098.
  • MacGregor, E. A., S. Janecek, and B. Svensson. 2001. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochimica et Biophysica Acta 1546 (1):1–20. doi: 10.1016/S0167-4838(00)00302-2.
  • Maheshwaran, G., A. Nivedhitha Bharathi, M. Malai Selvi, M. Krishna Kumar, R. Mohan Kumar, and S. Sudhahar. 2020. Green synthesis of silver oxide nanoparticles using Zephyranthes Rosea flower extract and evaluation of biological activities. Journal of Environmental Chemical Engineering 8 (5):104137. doi: 10.1016/j.jece.2020.104137.
  • Miao, M., B. Jiang, H. Jiang, T. Zhang, and X. Li. 2015. Interaction mechanism between green tea extract and human alpha-amylase for reducing starch digestion. Food Chemistry 186:20–5. doi: 10.1016/j.foodchem.2015.02.049.
  • Movahedpour, A., M. Asadi, S. H. Khatami, M. Taheri-Anganeh, M. Adelipour, Z. Shabaninejad, N. Ahmadi, C. Irajie, and P. Mousavi. 2022. A brief overview on the application and sources of alpha-amylase and expression hosts properties in order to production of recombinant alpha-amylase. Biotechnology & Applied Biochemistry 69 (2):650–9. doi: 10.1002/bab.2140.
  • Naik, M. Z., S. N. Meena, S. C. Ghadi, M. M. Naik, and A. V. Salker. 2016. Evaluation of silver-doped indium oxide nanoparticles as in vitro α-amylase and α-glucosidase inhibitors. Medicinal Chemistry Research 25 (3):381–9. doi: 10.1007/s00044-015-1494-6.
  • Nasab, S. B., A. Homaei, and L. Karami. 2020. Kinetic of α-amylase inhibition by Gracilaria corticata and Sargassum angustifolium extracts and zinc oxide nanoparticles. Biocatalysis and Agricultural Biotechnology 23:101478. doi: 10.1016/j.bcab.2019.101478.
  • Nsor-Atindana, J., H. D. Goff, M. N. Saqib, M. Chen, W. Liu, J. Ma, and F. Zhong. 2019. Inhibition of α-amylase and amyloglucosidase by nanocrystalline cellulose and spectroscopic analysis of their binding interaction mechanism. Food Hydrocolloids. 90:341–52. doi: 10.1016/j.foodhyd.2018.12.031.
  • Nsor-Atindana, J., M. Yu, H. D. Goff, M. Chen, and F. Zhong. 2020. Analysis of kinetic parameters and mechanisms of nanocrystalline cellulose inhibition of alpha-amylase and alpha-glucosidase in simulated digestion of starch. Food & Function 11 (5):4719–31. doi: 10.1039/D0FO00317D.
  • Papoutsis, K., J. Zhang, M. C. Bowyer, N. Brunton, E. R. Gibney, and J. Lyng. 2021. Fruit, vegetables, and mushrooms for the preparation of extracts with alpha-amylase and alpha-glucosidase inhibition properties: A review. Food Chemistry 338:128119. doi: 10.1016/j.foodchem.2020.128119.
  • Prasad, A. R., S. M. Basheer, L. Williams, and A. Joseph. 2019. Highly selective inhibition of alpha-glucosidase by green synthesised ZnO nanoparticles - In-vitro screening and in-silico docking studies. International Journal of Biological Macromolecules 139:712–8. doi: 10.1016/j.ijbiomac.2019.08.033.
  • Qiu, C., J. Wang, H. Zhang, Y. Qin, X. Xu, and Z. Jin. 2018. Novel approach with controlled nucleation and growth for green synthesis of size-controlled cyclodextrin-based metal-organic frameworks based on short-chain starch nanoparticles. Journal of Agricultural and Food Chemistry 66 (37):9785–93. doi: 10.1021/acs.jafc.8b03144.
  • Rehana, D., D. Mahendiran, R. S. Kumar, and A. K. Rahiman. 2017. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess and Biosystems Engineering 40 (6):943–57. doi: 10.1007/s00449-017-1758-2.
  • Sati, S. C., G. Kour, A. S. Bartwal, and M. D. Sati. 2020. Biosynthesis of metal nanoparticles from leaves of Ficus palmata and evaluation of their anti-inflammatory and anti-diabetic activities. Biochemistry 59 (33):3019–25. doi: 10.1021/acs.biochem.0c00388.
  • Selvan, D. S. A., S. Shobana, P. Thiruvasagam, S. Murugesan, and A. K. Rahiman. 2020. Evaluation of antimicrobial and antidiabetic activities of Ag@SiO2 core–shell nanoparticles synthesized with diverse shell thicknesses. Journal of Cluster Science 31 (4):739–49. doi: 10.1007/s10876-019-01682-w.
  • Shaik, F, and A. Kumar. 2017. ZnO nanoparticles and their acarbose-capped nanohybrids as inhibitors for human salivary amylase. IET Nanobiotechnology 11 (3):329–35. doi: 10.1049/iet-nbt.2016.0115.
  • Sheng, Z. W., H. F. Dai, S. Y. Pan, B. L. Ai, L. L. Zheng, X. Y. Zheng, W. Prinyawiwatkul, and Z. M. Xu. 2017. Phytosterols in banana (Musa spp.) flower inhibit α-glucosidase and α-amylase hydrolysations and glycation reaction. International Journal of Food Science & Technology 52 (1):171–9. doi: 10.1111/ijfs.13263.
  • Siow, H. L., G. J. Tye, and C. Y. Gan. 2017. Pre-clinical evidence for the efficacy and safety of α-amylase inhibitory peptides from cumin (Cuminum cyminum) seed. Journal of Functional Foods 35:216–23. doi: 10.1016/j.jff.2017.05.046.
  • Spannella, F., F. Giulietti, C. Di Pentima, F. E. Lombardi, E. Borioni, and R. Sarzani. 2017. Blood pressure and metabolic changes after 3-month CPAP therapy in a very elderly obese with severe obstructive sleep apnea: A case report and review of the literature. High Blood Pressure & Cardiovascular Prevention 24 (3):341–6. doi: 10.1007/s40292-017-0190-7.
  • Suganya, K. S. U., K. Govindaraju, C. V. Vani, M. Premanathan, and V. K. G. Kumar. 2019. In vitro biological evaluation of anti-diabetic activity of organic-inorganic hybrid gold nanoparticles. IET Nanobiotechnology 13 (2):226–9. doi: 10.1049/iet-nbt.2018.5139.
  • Sun, L, and M. Miao. 2020. Dietary polyphenols modulate starch digestion and glycaemic level: A review. Critical Reviews in Food Science and Nutrition 60 (4):541–55. doi: 10.1080/10408398.2018.1544883.
  • Sun, L., F. J. Warren, and M. J. Gidley. 2019. Natural products for glycaemic control: Polyphenols as inhibitors of alpha-amylase. Trends in Food Science & Technology 91:262–73. doi: 10.1016/j.tifs.2019.07.009.
  • Teng, H, and L. Chen. 2017. alpha-Glucosidase and alpha-amylase inhibitors from seed oil: A review of liposoluble substance to treat diabetes. Critical Reviews in Food Science and Nutrition 57 (16):3438–48. doi: 10.1080/10408398.2015.1129309.
  • Vijayakumar, S., M. Divya, B. Vaseeharan, J. Chen, M. Biruntha, L. P. Silva, E. F. Durán-Lara, K. Shreema, S. Ranjan, and N. Dasgupta. 2021. Biological compound capping of silver nanoparticle with the seed extracts of blackcumin (Nigella sativa): A potential antibacterial, antidiabetic, anti-inflammatory, and antioxidant. Journal of Inorganic and Organometallic Polymers and Materials 31 (2):624–35. doi: 10.1007/s10904-020-01713-4.
  • Vilcacundo, R., C. Martínez-Villaluenga, and B. Hernández-Ledesma. 2017. Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods 35:531–9. doi: 10.1016/j.jff.2017.06.024.
  • Wu, S. J., Y. C. Ho, S. Z. Jiang, and F. L. Mi. 2015. Effect of tannic acid-fish scale gelatin hydrolysate hybrid nanoparticles on intestinal barrier function and alpha-amylase activity. Food & Function 6 (7):2283–92. doi: 10.1039/c4fo01015a.
  • Yang, Y., J. L. Zhang, L. H. Shen, L. J. Feng, and Q. Zhou. 2021. Inhibition mechanism of diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) against alpha-amylase and alpha-glucosidase. Food Chemistry 359:129934. doi: 10.1016/j.foodchem.2021.129934.
  • Zhang, S., D. Wu, H. Li, J. Zhu, W. Hu, M. Lu, and X. Liu. 2017. Rapid identification of α-glucosidase inhibitors from Dioscorea opposita Thunb peel extract by enzyme functionalized Fe3O4 magnetic nanoparticles coupled with HPLC-MS/MS. Food & Function 8 (9):3219–27. doi: 10.1039/C7FO00928C.
  • Zhao, X., J. Tao, T. Zhang, S. Jiang, W. Wei, H. Han, Y. Shao, G. Zhou, and H. Yue. 2019. Resveratroloside alleviates postprandial hyperglycemia in diabetic mice by competitively inhibiting alpha-glucosidase. Journal of Agricultural and Food Chemistry 67 (10):2886–93. doi: 10.1021/acs.jafc.9b00455.
  • Zheng, Y., J. Tian, W. Yang, S. Chen, D. Liu, H. Fang, H. Zhang, and X. Ye. 2020. Inhibition mechanism of ferulic acid against alpha-amylase and alpha-glucosidase. Food Chemistry 317:126346. doi: 10.1016/j.foodchem.2020.126346.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.