521
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Two decades of research in dietary acrylamide: What do we know today

&
Pages 12169-12177 | Published online: 19 Jul 2022

References

  • Adani, G., T. Filippini, L. A. Wise, T. I. Halldorsson, L. Blaha, and M. Vinceti. 2020. Dietary intake of acrylamide and risk of breast, endometrial, and ovarian cancers: A systematic review and dose-response meta-analysis. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology 29 (6):1095–106. doi: 10.1158/1055-9965.epi-19-1628.
  • Badoud, F., B. Goeckener, K. Severin, M. Ernest, R. Romero, T. Alzieu, A. Glabasnia, J. Hamel, M. Buecking, and T. Delatour. 2020. Fate of acrylamide during coffee roasting and in vitro digestion assessed with carbon 14- and carbon 13-labeled materials. Food Chemistry 320:126601. doi: 10.1016/j.foodchem.2020.126601.
  • Baum, M., N. Böhm, J. Görlitz, I. Lantz, K. H. Merz, R. Ternité, and G. Eisenbrand. 2008. Fate of 14C-acrylamide in roasted and ground coffee during storage. Molecular Nutrition & Food Research 52 (5):600–8. doi: 10.1002/mnfr.200700413.
  • Becalski, A., B. P. Y. Lau, D. Lewis, and S. Seaman. 2003. Acrylamide in foods: Occurrence, sources, and modeling. Journal of Agricultural and Food Chemistry 51 (3):802–8. doi: 10.1021/jf020889y.
  • Beland, F. A., G. R. Olson, M. C. B. Mendoza, M. M. Marques, and D. R. Doerge. 2015. Carcinogenicity of glycidamide in B6C3F1 mice and F344/N rats from a two-year drinking water exposure. Food and Chemical Toxicology 86 (12):104–379. doi: 10.1016/j.fct.2015.09.017.
  • Chepelev, N. L., R. Gagné, T. Maynor, B. Kuo, C. A. Hobbs, L. Recio, and C. A. Yauk. 2017. Transcriptional profiling of male F344 rats suggests the involvement of calcium signaling in the mode of action of acrylamide-induced thyroid cancer. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 107 (Pt A):186–200. doi: 10.1016/j.fct.2017.06.019.
  • Chi, H., M. Chen, L. Jiao, Z. Lu, X. Bie, H. Zhao, and F. Lu. 2021. Characterization of a novel L-asparaginase from Mycobacterium gordonae with acrylamide mitigation potential. Foods 10 (11):2819. doi: 10.3390/foods10112819.
  • Claeys, W., K. Baert, F. Mestdagh, J. Vercammen, P. Daenens, B. de Meulenaer, G. Maghuin-Rogister, and A. Huyghebaert. 2010. Assessment of the acrylamide intake of the Belgian population and the effect of mitigation strategies. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 27 (9):1199–207. doi: 10.1080/19440049.2010.489577.
  • Curtis, T. Y., S. J. Powers, D. Balagiannis, J. S. Elmore, D. S. Mottram, M. A. J. Parry, M. Rakszegi, Z. Bedö, P. R. Shewry, and N. G. Halford. 2010. Free amino acids and sugars in rye grain: Implications for acrylamide formation. Journal of Agricultural and Food Chemistry 58 (3):1959–69. doi: 10.1021/jf903577b.
  • Delatour, T., A. Périsset, T. Goldmann, S. Riediker, and R. H. Stadler. 2004. Improved sample preparation to determine acrylamide in difficult matrixes such as chocolate powder, cocoa, and coffee by liquid chromatography tandem mass spectrometry. Journal of Agricultural and Food Chemistry 52 (15):4625–31. doi: 10.1021/jf0498362.
  • Desmarchelier, A., J. Hamel, and T. Delatour. 2020. Sources of overestimation in the analysis of acrylamide in coffee by liquid chromatography mass spectrometry. Journal of Chromatography. A 1610:460566. doi: 10.1016/j.chroma.2019.460566.
  • Desmarchelier, A., A. Bébius, F. Reding, A. Griffin, M. Ahijado Fernandez, J. Beasley, E. Clauzier, and T. Delatour. 2022. Towards a consensus LC-MS/MS method for the determination of acrylamide in food that prevents overestimation due to interferences. Food Additives & Contaminants: Part A 39 (4):653–65. doi: 10.1080/19440049.2021.2022773.
  • Duarte-Salles, T., H. von Stedingk, B. Granum, K. B. Gützkow, P. Rydberg, M. Törnqvist, M. A. Mendez, G. Brunborg, A. L. Brantsaeter, H. M. Meltzer, et al. 2013. Dietary acrylamide intake during pregnancy and fetal growth – Results from Norwegian mother and child cohort study (MoBa. Environmental Health Perspectives 121 (3):374–1745. doi: 10.1289/ehp.1205396.
  • Duda-Chodak, A., Ł. Wajda, T. Tarko, P. Sroka, and P. Satora. 2016. A review of the interactions between acrylamide, microorganisms and food components. Food & Function 7 (3):1282–95. doi: 10.1039/C5FO01294E.
  • Eisenbrand, G. 2020. Revisiting the evidence for genotoxicity of acrylamide (AA), key to risk assessment of dietary AA exposure. Archives of Toxicology 94 (9):2939–50. doi: 10.1007/s0024-020-02794-3.
  • European Food Safety Authority (EFSA). 2015. Scientific opinion on acrylamide in food. EFSA Journal 13 (6):4104.
  • European Union (EU). 2007. Commission recommendation of 3 May 2007 on the monitoring of acrylamide levels in food (2007/331/EC). The Official Journal of the European Union L123:33–40.
  • European Union (EU). 2010. Commission recommendation of 2 June 2010 on the monitoring of acrylamide levels in food (2010/307/EU). The Official Journal of the European Union L137:4–10.
  • European Union (EU). 2011. Commission recommendation of 10.1.2011 on investigations into the levels of acrylamide in food. C(2010) 9681 final.
  • European Union (EU). 2013. Commission recommendation of 8 November 2013 on investigations into the levels of acrylamide in food. The Official Journal of the European Union L301:15–7.
  • European Union (EU). 2017. Commission regulation (EU) 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. The Official Journal of the European Union L304:24–44.
  • European Union (EU). 2019. Commission recommendation (EU) 2019/1888 of 7 November 2019 on the monitoring of the presence of acrylamide in certain foods. The Official Journal of the European Union L290:31–3.
  • Fennell, T. R., S. C. J. Sumner, R. W. Snyder, J. Burgess, R. Spicer, W. E. Bridson, and M. A. Friedman. 2005. Metabolism and hemoglobin adduct formation of acrylamide in humans. Toxicological Sciences: An Official Journal of the Society of Toxicology 85 (1):447–59. doi: 10.1093/toxsci/kfi069.
  • Fleury, S., G. Rivière, B. Allès, E. Kesse-Guyot, C. Méjean, S. Hercberg, M. Touvier, and N. Bemrah. 2017. Exposure to contaminants and nutritional intakes in a French vegetarian population. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 109 (Pt 1):218–29. doi: 10.1016/j.fct.2017.07.048.
  • FoodDrinkEurope (FDE). 2019. Acrylamide Toolbox 2019.
  • Gao, R., T. Y. Curtis, S. J. Powers, H. Xu, J. Huang, and N. G. Halford. 2016. Food safety: Structure and expression of the asparagine synthetase gene family of wheat. Journal of Cereal Science 68:122–31. doi: 10.1016/j.jcs.2016.01.010.
  • Goempel, K., L. Tedsen, M. Ruenz, T. Bakuradze, D. Schipp, J. Galan, G. Eisenbrand, and E. Richling. 2017. Biomarker monitoring of controlled dietary acrylamide exposure indicates consistent human endogenous background. Archives of Toxicology 91 (11):3551–60. doi: 10.1007/s00204-017-1990-1.
  • Goerke, K., M. Ruenz, A. Lampen, K. Abraham, T. Bakuradze, G. Eisenbrand, and E. Richling. 2019. Biomonitoring of nutritional acrylamide intake by consumers without dietary preferences as compared to vegans. Archives of Toxicology 93 (4):987–96. doi: 10.1007/s0024-019-02412-x.
  • Guenther, H., E. Anklam, T. Wenzl, and R. H. Stadler. 2007. Acrylamide in coffee: Review of progress in analysis, formation and level reduction. Food Additives and Contaminants 24 (sup1):60–70. doi: 10.1080/02652030701243119.
  • Halford, N. G., N. Muttucumaru, S. J. Powers, P. N. Gillatt, L. Hartley, N. G. Elmore, and D. S. Mottram. 2012. Concentrations of free amino acids and sugars in nine potato varieties: Effects of storage and relationship with acrylamide formation. Journal of Agricultural and Food Chemistry 60 (48):12044–55. doi: 10.1021/jf3037566.
  • Hammel, Y.-A., M. Dubois, T. Delatour, and R. H. Stadler. 2014. N,N-dimethylpyridinum (mepiquat): Part 1. Formation in model systems and relevance to roasted food products. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 31 (2):226–33. doi: 10.1080/19440049.2013.871584.
  • Hartwig, A., M. Arand, B. Epe, S. Guth, G. Jahnke, A. Lampen, H.-J. Martus, B. Monien, I. Rietjens, S. Schmitz-Spanke, et al. 2020. Mode of action-based risk assessment of genotoxic carcinogens. Archives of Toxicology 94 (6):1787–877. doi: 10.1007/s00204-020-02733-2.
  • Henning, C., and M. A. Glomb. 2016. Pathways of the Maillard reaction under physiological conditions. Glycoconjugate Journal 33 (4):499–512. doi: 10.1007/s10719-016-9694-y.
  • Hogervorst, J. G. F., P. A. van den Brandt, R. W. L. Godschalk, F. J. van Schooten, and L. J. Schouten. 2016. The influence of single nucleotide polymorphisms on the association between dietary acrylamide intake and endometrial cancer risk. Scientific Reports 6:34902. doi: 10.1038/srep34902.
  • Hogervorst, J. G. F., P. A. van den Brandt, R. W. L. Godschalk, F. J. van Schooten, and L. J. Schouten. 2017. Interactions between dietary acrylamide intake and genes for ovarian cancer risk. European Journal of Epidemiology 32 (5):431–41. doi: 10.1007/s10654-017-0244-0.
  • Huang, Y., J. Lu, M. Li, C. Li, Y. Wang, M. Shen, Y. Chen, S. Nie, M. Zeng, J. Chen, et al. 2022. Effect of acidity regulators on acrylamide and 5-hydroxymethylfurfural formation in French fries: The dual role of pH and acid radical ion. Food Chemistry 371:131154. doi: 10.1016/j.foodchem.2021.131154.
  • International Agency for Research on Cancer (IARC). 1994. Acrylamide. IARC Monographs 60:389–433.
  • International Standard Organization (ISO). 2016. 18862:2016. Coffee and coffee products – Determination of acrylamide – Methods using HPLC-MS/MS and GC-MS after derivatization. 1–19.
  • Jia, R., X. Wan, X. Geng, D. Xue, Z. Xie, and C. Chen. 2021. Microbial L-asparaginase for application in acrylamide mitigation from food: Current research status and future perspectives. Microorganisms 9 (8):1659. doi: 10.3390/microorganisms9081659.
  • Joint FAO/WHO Expert Committee on Food Additives (JECFA). Summary report of the seventy-second meeting of JECFA. 2010. JECFA/72/SC 1–16.
  • Kopańska, M., R. Muchacka, J. Czech, M. Batoryna, and G. Formicki. 2018. Acrylamide toxicity and cholinergic nervous system. Journal of Physiology and Pharmacology 69 (6):847–58. doi: 10.26402/jpp.2018.6.03.
  • Kopańska, M., A. Łagowska, B. Kuduk, and A. Banaś-Ząbczyk. 2022. Acrylamide neurotoxicity as a possible factor responsible for inflammation in the cholinergic nervous system. International Journal of Molecular Sciences 23 (4):2030. doi: 10.3390/ijms23042030.
  • Kotova, N., C. Frostne, L. Abramsson-Zetterberg, E. Tareke, R. Bergman, S. Haghdoost, B. Paulsson, M. Törnqvist, D. Segerbäck, D. Jenssen, et al. 2015. Differences in micronucleus frequency and acrylamide adduct levels with hemoglobin between vegetarians and non-vegetarians. European Journal of Nutrition 54 (7):1181–90. doi: 10.1007/s00394-014-0796-7.
  • Koutsidis, G., S. P. J. Simons, Y. H. Thong, Y. Haldoupis, J. Mojica-Lazaro, B. L. Wedzicha, and D. S. Mottram. 2009. Investigations on the effect of amino acids on acrylamide, pyrazines, and Michael addition products in model systems. Journal of Agricultural and Food Chemistry 57 (19):9011–5. doi: 10.1021/jf9014763.
  • Lantz, I., R. Ternité, J. Wilkens, K. Hoenicke, H. Guenther, and G. H. van der Stegen. 2006. Studies on acrylamide levels in roasting, storage and brewing of coffee. Molecular Nutrition & Food Research 50 (11):1039–46. doi: 10.1002/mnfr.200600069.
  • Lindeman, B., Y. Johansson, M. Andreassen, T. Husøy, H. Dirven, T. Hofer, H. K. Knutsen, I. H. Caspersen, K. Vejrup, R. E. Paulsen, et al. 2021. Does the food processing contaminant acrylamide cause developmental neurotoxicity? A review and identification of knowledge gaps. Reproductive Toxicology (Elmsford, N.Y.) 101:93–114. doi: 10.1016/j.reprotox.2021.02.006.
  • Lineback, D. R., J. R. Coughlin, and R. H. Stadler. 2012. Acrylamide in foods: A review of the science and future considerations. Annual Review of Food Science and Technology 3:15–35. doi: 10.1146/annurev-food-022811-101114.
  • Malek, L., W. J. Umberger, and E. Goddard. 2019. Committed vs. uncommitted meat eaters: Understanding willingness to change protein consumption. Appetite 138:115–26. doi: 10.1016/j.appet.2019.03.024.
  • Mastovska, K., and S. Lehotay. 2006. Rapid sample preparation method for LC-MS/MS or GC-MS analysis of acrylamide in various food analysis. Journal of Agricultural and Food Chemistry 54 (19):7001–8. doi: 10.1021/jf061330r.
  • Moon, J.-K., and T. Shibamoto. 2009. Role of roasting conditions in the profile of volatile flavor chemicals formed from coffee beans. Journal of Agricultural and Food Chemistry 57 (13):5823–31. doi: 10.1021/jf901136e.
  • Mottram, D. S., B. L. Wedzicha, and A. T. Dodson. 2002. Acrylamide is formed in the Maillard reaction. Nature 419 (6906):448–9. doi: 10.1038/419448a.
  • Muttucumaru, N., S. J. Powers, J. S. Elmore, D. S. Mottram, and N. G. Halford. 2013. Effects of nitrogen and sulphur fertilization on free amino acids, sugars and acrylamide-forming potential in potato. Journal of Agricultural and Food Chemistry 61 (27):6734–42. doi: 10.1021/jf401570x.
  • Muttucumaru, N., S. J. Powers, J. S. Elmore, D. S. Mottram, and N. G. Halford. 2015. Effects of water availability on free amino acid, sugars and acrylamide-forming potential in potato. Journal of Agricultural and Food Chemistry 63 (9):2566–75. doi: 10.1021/jf506031w.
  • Neff, R. A., D. Edwards, A. Palmer, R. Ramsing, A. Righter, and J. Wolfson. 2018. Reducing meat consumption in the USA: A nationally representative survey of attitudes and behaviours. Public Health Nutrition 21 (10):1835–44. doi: 10.1017/S1368980017004190.
  • Palermo, M., V. Gökmen, B. de Meulenaer, Z. Ciesarová, Y. Zhang, F. Pedreschi, and V. Fogliano. 2016. Acrylamide mitigation strategies: Critical appraisal of the FoodDrinkEurope toolbox. Food & Function 7 (6):2516–25. doi: 10.1039/c5fo00655d.
  • Pedersen, M., H. von Stedingk, M. Botsivali, S. Agramunt, J. Alexander, G. Brunborg, L. Chatzi, S. Fleming, E. Fthenou, B. Granum, et al. 2012. Birth weight, head circumference, and prenatal exposure to acrylamide from maternal diet: The European prospective mother-child study (NewGeneris). Environmental Health Perspectives 120 (12):1739–45. doi: 10.1289/ehp.1205327.
  • Portman, D., P. Maharjan, C. Blanchard, M. Naiker, and J. F. Panozzo. 2021. Impact of thermal processing on levels of acrylamide in a wheat-lentil flour matrix. Legume Science 3 (4):e78. doi: 10.1002/leg3.78.
  • Postles, J., T. Y. Curtis, S. J. Powers, J. S. Elmore, D. S. Mottram, and N. G. Halford. 2016. Changes in free amino acid concentration in rye grain in response to nitrogen and sulphur availability, and expression analysis of genes involved in asparagine metabolism. Frontiers in Plant Science 7:917. doi: 10.3389/fpls.2016.00917.
  • Powers, S. J., D. S. Mottram, A. Curtis, and N. G. Halford. 2021. Progress on reducing acrylamide levels in potato crisps in Europe, 2002 to 2019. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 38 (5):782–806. doi: 10.1080/19440049.2020.1871083.
  • Recio, L., M. Friedman, D. Marroni, T. Maynor, and N. L. Chepelev. 2017. Impact of acrylamide on calcium signaling and cytoskeletal filaments in testes from F344 rat. International Journal of Toxicology 36 (2):124–32. doi: 10.1177/1091581817697696.
  • Ruenz, M., T. Bakuradze, G. Eisenbrand, and E. Richling. 2016. Monitoring urinary mercapturic acids as biomarkers of human dietary exposure to acrylamide in combination with acrylamide uptake assessment based on duplicate diets. Archives of Toxicology 90 (4):873–81. doi: 10.1007/s00204-015-1494-9.
  • Schouten, M. A., J. Genovese, S. Tappi, A. Di Francesco, E. Baraldi, M. Cortese, G. Caprioli, S. Angeloni, S. Vittori, P. Rocculi, et al. 2020. Effect of innovative pre-treatments on the mitigation of acrylamide formation in potato chips. Innovative Food Science & Emerging Technologies 64:102397. doi: 10.1016/j.ifset.2020.102397.
  • Şenyuva, H. Z., and V. Gökmen. 2006. Interference-free determination of acrylamide in potato and cereal-based foods by a laboratory validated liquid chromatography-mass spectrometry method. Food Chemistry 97 (3):539–45. doi: 10.1016/j.foodchem.2005.06.005.
  • Sirot, V., F. Hommet, A. Tard, and J.-C. Leblanc. 2012. Dietary acrylamide exposure of the French population: Results of the second French Total Diet Study. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 50 (3-4):889–94. doi: 10.1016/j.fct.2011.12.033.
  • Sohn, M., and C. T. Ho. 1995. Ammonia generation during thermal degradation of amino acids. Journal of Agricultural and Food Chemistry 43 (12):3001–3. doi: 10.1021/jf00060a001.
  • Stadler, R. H., I. Blank, N. Varga, F. Robert, J. Hau, P. A. Guy, M.-C. Robert, and S. Riediker. 2002a. Acrylamide from Maillard reaction products. Nature 419 (6906):449–50. doi: 10.1038/419449a.
  • Stadler, R. H., N. Varga, J. Hau, F. Arce Vera, and D. H. Welti. 2002b. Alkylpyridiniums. 1. Formation in model systems via thermal degradation of trigonelline. Journal of Agricultural and Food Chemistry 50 (5):1192–9. doi: 10.1021/jf011234k.
  • Stadler, R. H, and A. Studer. 2016. Chapter 1 – Acrylamide formation mechanisms. In Acrylamide in food: analysis, content and potential health effects, 1–17. The Netherlands: Elsevier.
  • Taeymans, D., J. Wood, P. Ashby, I. Blank, A. Studer, R. H. Stadler, P. Gondé, P. Van Eijck, S. Lalljie, H. Lingnert, et al. 2004. A review of acrylamide: An industry perspective on research, analysis, formation, and control. Critical Reviews in Food Science and Nutrition 44 (5):323–47. doi: 10.1080/10408690490478082.
  • Tareke, E., P. Rydberg, P. Karlsson, S. Eriksson, and M. Törnqvist. 2002. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry 50 (17):4998–5006. doi: 10.1021/jf020302f.
  • Tareke, E., B. Lyn-Cook, B. Robinson, and S. F. Ali. 2008. Acrylamide: A dietary carcinogen formed in vivo? Journal of Agricultural and Food Chemistry 56 (15):6020–3. doi: 10.1021/jf703749h.
  • Timmermann, C. A. G., S. S. Mølck, M. Kadawathagedara, A. A. Bjerregaard, M. Törnqvist, A. L. Brantsaeter, and M. Pedersen. 2021. A review of dietary intake of acrylamide in humans. Toxics 9 (7):155. doi: 10.3390/toxics9070155.
  • De Wilde, T., B. De Meulenaer, F. Mestdagh, Y. Govaert, S. Vandeburie, W. Ooghe, S. Fraselle, K. Demeulemeester, C. Van Peteghem, A. Calus, et al. 2006. Influence of fertilization on acrylamide formation during frying of potatoes harvested in 2003. Journal of Agricultural and Food Chemistry 54 (2):404–8. doi: 10.1021/jf0521810.
  • Yasuhara, A., Y. Tanaka, M. Hengel, and T. Shibamoto. 2003. Gas chromatographic investigation of acrylamide formation in browning model systems. Journal of Agricultural and Food Chemistry 51 (14):3999–4003. doi: 10.1021/jf0300947.
  • Yaylayan, V. A., and R. H. Stadler. 2005. Acrylamide formation in food: A mechanistic perspective. Journal of AOAC International 88 (1):262–7. doi: 10.1093/jaoac/88.1.262.
  • Yoshioka, T., Y. Izumi, M. Takahashi, K. Suzuki, Y. Miyamoto, Y. Nagatomi, and T. Bamba. 2020. Identification of acrylamide adducts generated during storage of canned milk coffee. Journal of Agricultural and Food Chemistry 68 (12):3859–67. doi: 10.1021/acs.jafc.9b08139.
  • Zhang, J., S. Sturla, C. Lacroix, and C. Schwab. 2018. Gut microbial glycerol metabolism as an endogenous acrolein source. mBio 9 (1):e01947–17. doi: 10.1128/mBio.01947-17.
  • Zhivagui, M., A. W. T. Ng, M. Ardin, M. I. Churchwell, M. Pandey, C. Renard, S. Villar, V. Cahais, A. Robitaille, L. Bouaoun, et al. 2019. Experimental and pan-cancer genome analyses reveal widespread contribution of acrylamide exposure to carcinogenesis in humans. Genome Research 29 (4):521–31. doi: 10.1101/gr.242453.118.
  • Zhou, P. P., Y. F. Zhao, H. L. Liu, Y. J. Ma, X. W. Li, X. Yang, and Y. N. Wu. 2013. Dietary exposure of the Chinese population to acrylamide. Biomedical and Environmental Sciences: BES 26 (6):421–9. doi: 10.3967/0895-3988.2013.06.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.