601
Views
3
CrossRef citations to date
0
Altmetric
Reviews

A systematic review on the recent advances of wheat allergen detection by mass spectrometry: future prospects

, ORCID Icon, , &
Pages 12324-12340 | Published online: 19 Jul 2022

References

  • Abdelmoteleb, M., C. Zhang, B. Furey, M. Kozubal, H. Griffiths, M. Champeaud, and R. E. Goodman. 2021. Evaluating potential risks of food allergy of novel food sources based on comparison of proteins predicted from genomes and compared to www.allergenonline.org. Food and Chemical Toxicology 147:111888. doi: 10.1016/j.fct.2020.111888.
  • Altenbach, S. B., W. H. Vensel, and F. M. Dupont. 2010. Analysis of expressed sequence tags from a single wheat cultivar facilitates interpretation of tandem mass spectrometry data and discrimination of gamma gliadin proteins that may play different functional roles in flour. BMC Plant Biology 10 (1):7–14. doi: 10.1186/1471-2229-10-7.
  • Ansotegui, I. J., G. Melioli, G. W. Canonica, L. Caraballo, E. Villa, M. Ebisawa, G. Passalacqua, E. Savi, D. Ebo, R. M. Gómez, et al. 2020. Ige allergy diagnostics and other relevant tests in allergy, a world allergy organization position paper. World Allergy Organization Journal. 13 (2):100080. doi: 10.1016/j.waojou.2019.100080.
  • Arise, A. K., K. F. Oriade, T. N. Asogwa, and I. Nwachukwu. 2022. Amino acid profile, physicochemical and sensory properties of noodles produced from wheat-bambara protein isolate. Measurement: Food 5:100020. doi: 10.1016/j.meafoo.2021.100020.
  • Baar, A., S. Pahr, C. Constantin, S. Giavi, A. Manoussaki, N. G. Papadopoulos, C. Ebner, A. Mari, S. Vrtala, R. Valenta, et al. 2014. Specific IgE reactivity to tri a 36 in children with wheat food allergy. The Journal of Allergy and Clinical Immunology 133 (2):585–7. doi: 10.1016/j.jaci.2013.10.044.
  • Bellinghausen, I., B. Weigmann, V. Zevallos, J. Maxeiner, S. Reißig, A. Waisman, D. Schuppan, and J. Saloga. 2019. Wheat amylase-trypsin inhibitors exacerbate intestinal and airway allergic immune responses in humanized mice. The Journal of Allergy and Clinical Immunology 143 (1):201–212 e204. doi: 10.1016/j.jaci.2018.02.041.
  • Bianco, M., C. D. Calvano, G. Ventura, I. Losito, and T. R. I. Cataldi. 2022. Determination of hidden milk allergens in meat-based foodstuffs by liquid chromatography coupled to electrospray ionization and high-resolution tandem mass spectrometry. Food Control. 131 (1):108443. doi: 10.1016/j.foodcont.2021.108443.
  • Bönick, J., G. Huschek, and H. M. Rawel. 2017. Determination of wheat, rye and spelt authenticity in bread by targeted peptide biomarkers. Journal of Food Composition and Analysis 58:82–91. doi: 10.1016/j.jfca.2017.01.019.
  • Boukid, F., B. Prandi, A. Faccini, and S. Sforza. 2019. A complete mass spectrometry (MS)-based peptidomic description of gluten peptides generated during in vitro gastrointestinal digestion of durum wheat: Implication for celiac disease. Journal of the American Society for Mass Spectrometry 30 (8):1481–90. doi: 10.1007/s13361-019-02212-8.
  • Brockmeyer, J. 2018. Novel approaches for the MS-based detection of food allergens: High resolution, MS(3), and beyond. Journal of AOAC International 101 (1):124–31. doi: 10.5740/jaoacint.17-0402.
  • Bromilow, S., L. A. Gethings, M. Buckley, M. Bromley, P. R. Shewry, J. I. Langridge, and E. N. Clare Mills. 2017. A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods. Journal of Proteomics 163:67–75. doi: 10.1016/j.jprot.2017.03.026.
  • Brouns, F., G. van Rooy, P. Shewry, S. Rustgi, and D. Jonkers. 2019. Adverse reactions to wheat or wheat components. Comprehensive Reviews in Food Science and Food Safety 18 (5):1437–52. doi: 10.1111/1541-4337.12475.
  • Chang, Y., H. Peng, and G. Zhang. 2021. Development of a simplified, sensitive, and accurate LC-MS/MS method for peanut quantification in wheat flour-based dry matrices. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 38 (8):1260–72. doi: 10.1080/19440049.2021.1923822.
  • Chen, J., M. Tang, and D. Xu. 2021. Integrated microfluidic chip coupled to mass spectrometry: A minireview of chip pretreatment methods and applications. Journal of Chromatography Open 1:100021. doi: 10.1016/j.jcoa.2021.100021.
  • Colgrave, M. L., H. Goswami, K. Byrne, M. Blundell, C. A. Howitt, and G. J. Tanner. 2015. Proteomic profiling of 16 cereal grains and the application of targeted proteomics to detect wheat contamination. Journal of Proteome Research 14 (6):2659–68. doi: 10.1021/acs.jproteome.5b00187.
  • Colgrave, M. L., K. Byrne, and C. A. Howitt. 2017. Food for thought: Selecting the right enzyme for the digestion of gluten. Food Chemistry. 234:389–97. doi: 10.1016/j.foodchem.2017.05.008.
  • Colgrave, M. L., K. Byrne, M. Blundell, and C. A. Howitt. 2016. Identification of barley-specific peptide markers that persist in processed foods and are capable of detecting barley contamination by LC-MS/MS. Journal of Proteomics 147:169–76. doi: 10.1016/j.jprot.2016.03.045.
  • Costa, J., P. Ansari, I. Mafra, M. B. Oliveira, and S. Baumgartner. 2014. Assessing hazelnut allergens by protein- and DNA-based approaches: LC-MS/MS, ELISA and real-time PCR. Analytical and Bioanalytical Chemistry 406 (11):2581–90. doi: 10.1007/s00216-014-7679-x.
  • Courtois, J., C. Bertholet, S. Tollenaere, X. Van der Brempt, E. Cavalier, S. El Guendi, N. Gillard, R. Gadisseur, and B. Quinting. 2020. Detection of wheat allergens using 2D western blot and mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 178:112907. doi: 10.1016/j.jpba.2019.112907.
  • Crespo-Escobar, P., M. L. Mearin, D. Hervás, R. Auricchio, G. Castillejo, J. Gyimesi, E. Martinez-Ojinaga, K. Werkstetter, S. L. Vriezinga, I. R. Korponay-Szabo, et al. 2017. The role of gluten consumption at an early age in celiac disease development: A further analysis of the prospective preventcd cohort study. The American Journal of Clinical Nutrition 105 (4):890–6. doi: 10.3945/ajcn.116.144352.
  • Croote, D., I. Braslavsky, and S. R. Quake. 2019. Addressing complex matrix interference improves multiplex food allergen detection by targeted LC-MS/MS. Analytical Chemistry 91 (15):9760–9. doi: 10.1021/acs.analchem.9b01388.
  • Di Stasio, L., L. Sciammaro, S. De Caro, M. V. Salinas, M. C. Puppo, and G. Mamone. 2022. Proteomic characterization of pistachio nut allergen proteins. Journal of Food Composition and Analysis 106:104337. doi: 10.1016/j.jfca.2021.104337.
  • Diaz-Amigo, C, and B. Popping. 2013. Accuracy of ELISA detection methods for gluten and reference materials: A realistic assessment. Journal of Agricultural and Food Chemistry 61 (24):5681–8. doi: 10.1021/jf3046736.
  • Eriksson, C., M. Lundberg, A. Tanka, H. Takahashi, E. Morita, and K. Ito. 2012. High molecular weight glutenin, tri a 26, is an important allergen component in children with immediate allergy to wheat. Journal of Allergy and Clinical Immunology 129 (2):Ab174. doi: 10.1016/j.jaci.2011.12.215.
  • Fallahbaghery, A., W. Zou, K. Byrne, C. A. Howitt, and M. L. Colgrave. 2017. Comparison of gluten extraction protocols assessed by LC-MS/MS analysis. Journal of Agricultural and Food Chemistry 65 (13):2857–66. doi: 10.1021/acs.jafc.7b00063.
  • FAO and WHO. 2022. Risk assessment of food allergens. Part 1 – Review and validation of codex alimentarius priority allergen list through risk assessment. Meeting report. Food Safety and Quality Series No. 14. Rome, Italy: FAO. doi: 10.4060/cb9070en.
  • FAOSTAT. 2019. Wheat - Food and agriculture data. Accessed December 2021 from https://www.fao.org/faostat/en/#home.
  • Ferrara, C. T, and S. E. Gitelman. 2017. Type 1 diabetes and celiac disease: Causal association or true, true, unrelated? Pediatrics 140 (5):e20172424. doi: 10.1542/peds.2017-2424.
  • Fiedler, K. L., S. C. McGrath, J. H. Callahan, and M. M. Ross. 2014. Characterization of grain-specific peptide markers for the detection of gluten by mass spectrometry. Journal of Agricultural and Food Chemistry 62 (25):5835–44. doi: 10.1021/jf500997j.
  • Fu, W., C. Liu, X. Meng, S. Tao, and W. Xue. 2021. Co-culture fermentation of pediococcus acidilactici xz31 and yeast for enhanced degradation of wheat allergens. International Journal of Food Microbiology 347:109190. doi: 10.1016/j.ijfoodmicro.2021.109190.
  • Gabler, A. M, and K. A. Scherf. 2020. Comparative characterization of gluten and hydrolyzed wheat proteins. Biomolecules 10 (9):1227. doi: 10.3390/biom10091227.
  • Geisslitz, S., C. F. H. Longin, P. Koehler, and K. A. Scherf. 2020. Comparative quantitative LC-MS/MS analysis of 13 amylase/trypsin inhibitors in ancient and modern triticum species. Scientific Reports 10 (1):14570. doi: 10.1038/s41598-020-71413-z.
  • Geisslitz, S., C. Ludwig, K. A. Scherf, and P. Koehler. 2018. Targeted LC-MS/MS reveals similar contents of alpha-amylase/trypsin-inhibitors as putative triggers of nonceliac gluten sensitivity in all wheat species except einkorn. Journal of Agricultural and Food Chemistry 66 (46):12395–403. doi: 10.1021/acs.jafc.8b04411.
  • Gerber, S. A., J. Rush, O. Stemman, M. W. Kirschner, and S. P. Gygi. 2003. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proceedings of the National Academy of Sciences of the United States of America 100 (12):6940–5. doi: 10.1073/pnas.0832254100.
  • Gianfrani, C., G. Mamone, B. la Gatta, A. Camarca, L. Di Stasio, F. Maurano, S. Picascia, V. Capozzi, G. Perna, G. Picariello, et al. 2017. Microwave-based treatments of wheat kernels do not abolish gluten epitopes implicated in celiac disease. Food and Chemical Toxicology. 101:105–13. doi: 10.1016/j.fct.2017.01.010.
  • Gomaa, A, and J. Boye. 2015. Simultaneous detection of multi-allergens in an incurred food matrix using ELISA, multiplex flow cytometry and liquid chromatography mass spectrometry (LC-MS). Food Chemistry 175:585–92. doi: 10.1016/j.foodchem.2014.12.017.
  • Heick, J., M. Fischer, and B. Popping. 2011. First screening method for the simultaneous detection of seven allergens by liquid chromatography mass spectrometry. Journal of Chromatography. A 1218 (7):938–43. doi: 10.1016/j.chroma.2010.12.067.
  • Henrottin, J., M. Planque, A. C. Huet, R. Marega, A. Lamote, and N. Gillard. 2019. Gluten analysis in processed foodstuffs by a multi-allergens and grain-specific UHPLC-MS/MS method: One method to detect them all. Journal of AOAC International 102 (5):1286–302. doi: 10.5740/jaoacint.19-0057.
  • Hofer, G., S. Wieser, M. K. Bogdos, P. Gattinger, R. Nakamura, M. Ebisawa, M. Mäkelä, N. Papadopoulos, R. Valenta, W. Keller, et al. 2019. Three-dimensional structure of the wheat beta-amylase tri a 17, a clinically relevant food allergen. Allergy 74 (5):1009–13. doi: 10.1111/all.13696.
  • Holzhauser, T., P. Johnson, J. P. Hindley, G. O’Connor, C.-H. Chan, J. Costa, C. K. Faeste, B. J. Hirst, F. Lambertini, M. Miani, et al. 2020. Are current analytical methods suitable to verify vital(r) 2.0/3.0 allergen reference doses for EU allergens in foods? Food and Chemical Toxicology 145:111709. doi: 10.1016/j.fct.2020.111709.
  • Hummel, M., T. Wigger, and J. Brockmeyer. 2015. Characterization of mustard 2s albumin allergens by bottom-up, middle-down, and top-down proteomics: A consensus set of isoforms of sin a 1. Journal of Proteome Research 14 (3):1547–56. doi: 10.1021/pr5012262.
  • Jan, L, and A. Naig. 2021. Food allergen labeling of commonly used ingredients in Chinese restaurants in the United States. Food Control. 130:108381. doi: 10.1016/j.foodcont.2021.108381.
  • Jang, Y. R., K. Cho, S. W. Kim, S. B. Altenbach, S. H. Lim, J. R. Sim, and J. Y. Lee. 2020. Development of an optimized MALDI-TOF-MS method for high-throughput identification of high-molecular-weight glutenin subunits in wheat. Molecules 25 (18):4347. doi: 10.3390/molecules25184347.
  • Jang, Y. R., S. Kim, J. R. Sim, S. B. Lee, S. H. Lim, C. S. Kang, C. Choi, T. W. Goo, and J. Y. Lee. 2021. High-throughput analysis of high-molecular weight glutenin subunits in 665 wheat genotypes using an optimized MALDI-TOF-MS method. 3 Biotech 11 (2):92. doi: 10.1007/s13205-020-02637-z.
  • Jin, Y., H. G. Acharya, D. Acharya, R. Jorgensen, H. Gao, J. Secord, P. K. W. Ng, and V. Gangur. 2019. Advances in molecular mechanisms of wheat allergenicity in animal models: A comprehensive review. Molecules 24 (6):1142–59. doi: 10.3390/molecules24061142.
  • Jira, W, and S. Munch. 2019. A sensitive HPLC-MS/MS screening method for the simultaneous detection of barley, maize, oats, rice, rye and wheat proteins in meat products. Food Chemistry 275:214–23. doi: 10.1016/j.foodchem.2018.09.041.
  • Juhász, A., T. Belova, C. G. Florides, C. Maulis, I. Fischer, G. Gell, Z. Birinyi, J. Ong, G. Keeble-Gagnère, A. Maharajan, et al. 2018. Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat. Science Advances 4 (8):eaar8602., doi: 10.1126/sciadv.aar8602.
  • Kang, W., J. Zhang, H. Li, N. Yu, R. Tang, X. Sun, L. Wei, J. Sun, and Y. Chen. 2022. Quantification of major allergens in peach based on shotgun proteomics using liquid chromatography-tandem mass spectrometry. LWT 160:113234. doi: 10.1016/j.lwt.2022.113234.
  • Kaufmann, A, and P. Teale. 2016. Capabilities and limitations of high-resolution mass spectrometry (HRMS): Time-of-flight and orbitrap. Chemical Analysis of Non-Antimicrobial Veterinary Drug Residues in Food 3:93–139. doi: 10.1002/9781118696781.ch3.
  • Kaufmann, A. 2020. High-resolution mass spectrometry for bioanalytical applications: Is this the new gold standard? Journal of Mass Spectrometry: JMS 55 (9):e4533. doi: 10.1002/jms.4533.
  • Kim, M.-J., S.-B. Park, H.-B. Kang, K.-M. Lee, and H.-Y. Kim. 2021. Development of ultrafast PCR for rapid detection of buckwheat allergen DNA (Fag e 1) in processed foods. Food Control. 130:108334. doi: 10.1016/j.foodcont.2021.108334.
  • Kliewer, K. L., C. Venter, A. M. Cassin, J. P. Abonia, S. S. Aceves, P. A. Bonis, E. S. Dellon, G. W. Falk, G. T. Furuta, N. Gonsalves, et al. 2016. Should wheat, barley, rye, and/or gluten be avoided in a 6-food elimination diet? The Journal of Allergy and Clinical Immunology 137 (4):1011–4. doi: 10.1016/j.jaci.2015.10.040.
  • Korte, R., D. Oberleitner, and J. Brockmeyer. 2019. Determination of food allergens by LC-MS: Impacts of sample preparation, food matrix, and thermal processing on peptide detectability and quantification. Journal of Proteomics 196:131–40. doi: 10.1016/j.jprot.2018.11.002.
  • Korte, R., J. Happe, I. Brummer, and J. Brockmeyer. 2017. Structural characterization of the allergenic 2S albumin Cor a 14: Comparing proteoform patterns across hazelnut cultivars. Journal of Proteome Research 16 (2):988–98. doi: 10.1021/acs.jproteome.6b00924.
  • Kucek, L. K., L. D. Veenstra, P. Amnuaycheewa, and M. E. Sorrells. 2015. A grounded guide to gluten: How modern genotypes and processing impact wheat sensitivity. Comprehensive Reviews in Food Science and Food Safety 14 (3):285–302. doi: 10.1111/1541-4337.12129.
  • Kusar, A., K. Zmitek, L. Lahteenmaki, M. Raats, and I. Pravst. 2021. Comparison of requirements for using health claims on foods in the European Union, the USA, Canada, and Australia/New Zealand. Comprehensive Reviews in Food Science and Food Safety 20 (2):1307–32. doi: 10.1111/1541-4337.12716.
  • Lexhaller, B., C. Tompos, and K. A. Scherf. 2017a. Comparative analysis of prolamin and glutelin fractions from wheat, rye, and barley with five sandwich ELISA test kits. Analytical and Bioanalytical Chemistry 408 (22):6093–104. doi: 10.1007/s00216-016-9721-7.
  • Lexhaller, B., C. Tompos, and K. A. Scherf. 2017b. Fundamental study on reactivities of gluten protein types from wheat, rye and barley with five sandwich ELISA test kits. Food Chemistry 237:320–30. doi: 10.1016/j.foodchem.2017.05.121.
  • Lexhaller, B., M. L. Colgrave, and K. A. Scherf. 2019. Characterization and relative quantitation of wheat, rye, and barley gluten protein types by liquid chromatography-tandem mass spectrometry. Frontiers in Plant Science 10:1530. doi: 10.3389/fpls.2019.01530.
  • Li, H., K. Byrne, R. Galiamov, O. Mendoza-Porras, U. Bose, C. A. Howitt, and M. L. Colgrave. 2018. Using LC-MS to examine the fermented food products vinegar and soy sauce for the presence of gluten. Food Chemistry 254:302–8. doi: 10.1016/j.foodchem.2018.02.023.
  • Lionetti, E., S. Castellaneta, R. Francavilla, A. Pulvirenti, C. Catassi, and SIGENP Working Group of Weaning and CD Risk. 2017. Mode of delivery and risk of celiac disease: Risk of celiac disease and age at gluten introduction cohort study. The Journal of Pediatrics 184:81–6 e82. doi: 10.1016/j.jpeds.2017.01.023.
  • Lyons, S. A., P. G. J. Burney, B. K. Ballmer-Weber, M. Fernandez-Rivas, L. Barreales, M. Clausen, R. Dubakiene, C. Fernandez-Perez, P. Fritsche, M. Jedrzejczak-Czechowicz, et al. 2019. Food allergy in adults: Substantial variation in prevalence and causative foods across Europe. The Journal of Allergy and Clinical Immunology. In Practice 7 (6):1920–1928.e1. doi: 10.1016/j.jaip.2019.02.044.
  • Malalgoda, M., S. W. Meinhardt, and S. Simsek. 2018. Detection and quantitation of immunogenic epitopes related to celiac disease in historical and modern hard red spring wheat cultivars. Food Chemistry 264:101–7. doi: 10.1016/j.foodchem.2018.04.131.
  • Mamone, G., P. Ferranti, L. Chianese, L. Scafuri, and F. Addeo. 2000. Qualitative and quantitative analysis of wheat gluten proteins by liquid chromatography and electrospray mass spectrometry. Rapid Communications in Mass Spectrometry 14 (10):897–904. doi: 10.1002/(SICI)1097-0231(20000530)14:103.0.CO;2-Z.
  • Martinez-Esteso, M. J., G. O’Connor, J. Norgaard, A. Breidbach, M. Brohee, E. Cubero-Leon, C. Nitride, P. Robouch, and H. Emons. 2020. A reference method for determining the total allergenic protein content in a processed food: The case of milk in cookies as proof of concept. Analytical and Bioanalytical Chemistry 412 (30):8249–67. doi: 10.1007/s00216-020-02959-0.
  • Martinez-Esteso, M. J., J. Norgaard, M. Brohee, R. Haraszi, A. Maquet, and G. O’Connor. 2016. Defining the wheat gluten peptide fingerprint via a discovery and targeted proteomics approach. Journal of Proteomics 147:156–68. doi: 10.1016/j.jprot.2016.03.015.
  • Mecherfi, K., R. Lupi, M. Cherkaoui, M. A. C. Albuquerque, S. D. Todorov, O. Tranquet, C. Klingebiel, H. Rogniaux, and S. Denery-Papini. 2021. Fermentation of gluten by lactococcus lactis llgkc18 reduces its antigenicity and allergenicity. Probiotics and Antimicrobial Proteins 2021:1–13. doi: 10.1007/s12602-021-09808-1.
  • Méndez, E., I. Valdés, and E. Camafeita. 2000. Analysis of gluten in foods by MALDI-TOFMS. Methods in Molecular Biology (Clifton, N.J.) 146:355–67. doi: 10.1385/1-59259-045-4:355.[10948512.
  • Monaci, L, and A. Hengel. 2007. Effect of heat treatment on the detection of intact bovine β-lactoglobulins by LC mass spectrometry. Journal of Agricultural and Food Chemistry 55 (8):2985–92. doi: 10.1021/jf063083x.
  • Monaci, L, and A. J. van Hengel. 2008. Development of a method for the quantification of whey allergen traces in mixed-fruit juices based on liquid chromatography with mass spectrometric detection. Journal of Chromatography. A 1192 (1):113–20. doi: 10.1016/j.chroma.2008.03.041.
  • Monaci, L., De Angelis, E. Elisabetta, M. Nicola, and P. Rosa. 2018. Comprehensive overview and recent advances in proteomics ms based methods for food allergens analysis. TrAC - Trends in Analytical Chemistry 106:21–36. doi: 10.1016/j.trac.2018.06.016.
  • Monaci, L., E. De Angelis, R. Guagnano, A. P. Ganci, I. Garaguso, A. Fiocchi, and R. Pilolli. 2020. Validation of a ms based proteomics method for milk and egg quantification in cookies at the lowest vital levels: An alternative to the use of precautionary labeling. Foods 9 (10):1489. doi: 10.3390/foods9101489.
  • Neethirajan, S., V. Ragavan, X. Weng, and R. Chand. 2018. Biosensors for sustainable food engineering: Challenges and perspectives. Biosensors (Basel) 8 (1):23–57. doi: 10.3390/bios8010023.
  • Neethirajan, S., X. Weng, A. Tah, J. O. Cordero, and K. V. Ragavan. 2018. Nano-biosensor platforms for detecting food allergens – New trends. Sensing and Bio-Sensing Research 18:13–30. doi: 10.1016/j.sbsr.2018.02.005.
  • Nelis, J. L. D., J. A. Broadbent, U. Bose, A. Anderson, and M. L. Colgrave. 2022. Targeted proteomics for rapid and robust peanut allergen quantification. Food Chemistry. 383:132592. doi: 10.1016/j.foodchem.2022.132592.
  • Newsome, G. A, and P. F. Scholl. 2013. Quantification of allergenic bovine milk alpha(s1)-casein in baked goods using an intact (1)(5)n-labeled protein internal standard. Journal of Agricultural and Food Chemistry 61 (24):5659–68. doi: 10.1021/jf3015238.
  • Nitride, C., V. Lee, I. Baricevic-Jones, K. Adel-Patient, S. Baumgartner, and E. N. C. Mills. 2018. Integrating allergen analysis within a risk assessment framework: Approaches to development of targeted mass spectrometry methods for allergen detection and quantification in the IFAAM project. Journal of AOAC International 101 (1):83–90. doi: 10.5740/jaoacint.17-0393.
  • Nwaru, B. I., L. Hickstein, S. S. Panesar, G. Roberts, A. Muraro, A. Sheikh, and the EAACI Food Allergy and Anaphylaxis Guidelines Group. 2014. Prevalence of common food allergies in Europe: A systematic review and meta-analysis. Allergy 69 (8):992–1007. doi: 10.1111/all.12423.
  • Ogura, T., R. Clifford, and U. Oppermann. 2019. Simultaneous detection of 13 allergens in thermally processed food using targeted LC-MS/MS approach. Journal of AOAC International 102 (5):1316–29. doi: 10.5740/jaoacint.19-0060.
  • Pavlovic, M., R. Lupi, S. Denery‐Papini, O. Tranquet, H. Rogniaux, and C. Larré. 2015. Relative quantification of salt soluble allergens in wheat by targeted mass spectrometry. Clinical and Translational Allergy 5 (S3):132. doi: 10.1186/2045-7022-5-S3-P132.
  • Picotti, P., O. Rinner, R. Stallmach, F. Dautel, T. Farrah, B. Domon, H. Wenschuh, and R. Aebersold. 2010. High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nature Methods 7 (1):43–6. doi: 10.1038/nmeth.1408.
  • Pilolli, R., E. De Angelis, and L. Monaci. 2018. In house validation of a high resolution mass spectrometry orbitrap-based method for multiple allergen detection in a processed model food. Analytical and Bioanalytical Chemistry 410 (22):5653–62. doi: 10.1007/s00216-018-0927-8.
  • Planque, M., T. Arnould, P. Delahaut, P. Renard, M. Dieu, and N. Gillard. 2019. Development of a strategy for the quantification of food allergens in several food products by mass spectrometry in a routine laboratory. Food Chemistry 274:35–45. doi: 10.1016/j.foodchem.2018.08.095.
  • Popping, B, and C. Diaz-Amigo. 2018. European regulations for labeling requirements for food allergens and substances causing intolerances: History and future. Journal of AOAC International 101 (1):2–7. doi: 10.5740/jaoacint.17-0381.
  • Prandi, B., A. Faccini, T. Tedeschi, G. Galaverna, and S. Sforza. 2013. LC/MS analysis of proteolytic peptides in wheat extracts for determining the content of the allergen amylase/trypsin inhibitor CM3: Influence of growing area and variety. Food Chemistry 140 (1–2):141–6. doi: 10.1016/j.foodchem.2013.02.039.
  • Pronin, D., A. Borner, and K. A. Scherf. 2021. Old and modern wheat (Triticum aestivum L.) cultivars and their potential to elicit celiac disease. Food Chemistry 339 (3):127952. doi: 10.1016/j.foodchem.2020.127952.
  • Quirce, S., T. Boyano-Martinez, and A. Diaz-Perales. 2016. Clinical presentation, allergens, and management of wheat allergy. Expert Review of Clinical Immunology 12 (5):563–72. doi: 10.1586/1744666X.2016.1145548.
  • Raulf, M. 2018. Allergen component analysis as a tool in the diagnosis and management of occupational allergy. Molecular Immunology 100:21–7. doi: 10.1016/j.molimm.2018.03.013.
  • Rockendorf, N., B. Meckelein, K. A. Scherf, K. Schalk, P. Koehler, and A. Frey. 2017. Identification of novel antibody-reactive detection sites for comprehensive gluten monitoring. PLoS One 12 (7):e0181566. doi: 10.1371/journal.pone.0181566.
  • Rombouts, I., B. Lagrain, M. Brunnbauer, J. A. Delcour, and P. Koehler. 2013. Improved identification of wheat gluten proteins through alkylation of cysteine residues and peptide-based mass spectrometry. Scientific Reports 3:2279. doi: 10.1038/srep02279.
  • Rutrakool, N., S. Piboonpocanun, W. Srisuwatchari, O. Jirapongsananuruk, N. Visitsunthorn, T. Thongngarm, P. Vichyanond, and P. Pacharn. 2018. Major allergens sensitized by Thai patients with wheat anaphylaxis. Journal of Allergy and Clinical Immunology 141 (2):Ab158. doi: 10.1016/j.jaci.2017.12.503.
  • Salplachta, J., M. Marchetti, J. Chmelik, and G. Allmaier. 2005. A new approach in proteomics of wheat gluten: Combining chymotrypsin cleavage and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron tandem mass spectrometry. Rapid Communications in Mass Spectrometry: RCM 19 (18):2725–8. doi: 10.1002/rcm.2092.
  • Sander, I., H. P. Rihs, T. Bruning, and M. Raulf. 2016. A further wheat allergen for baker’s asthma: Tri a 40. The Journal of Allergy and Clinical Immunology 137 (4):1286. doi: 10.1016/j.jaci.2015.11.026.
  • Schalk, K., C. Lang, H. Wieser, P. Koehler, and K. A. Scherf. 2017. Quantitation of the immunodominant 33-mer peptide from alpha-gliadin in wheat flours by liquid chromatography tandem mass spectrometry. Scientific Reports 7 (1):45092. doi: 10.1038/srep45092.
  • Schalk, K., P. Koehler, and K. A. Scherf. 2018. Targeted liquid chromatography tandem mass spectrometry to quantitate wheat gluten using well-defined reference proteins. PLoS One 13 (2):e0192804. doi: 10.1371/journal.pone.0192804.
  • Scherf, K. A. 2017. Gluten analysis of wheat starches with seven commercial ELISA test kits—up to six different values. Food Analytical Methods 10 (1):234–46. doi: 10.1007/s12161-016-0573-8.
  • Scherf, K. A. 2019. Immunoreactive cereal proteins in wheat allergy, non-celiac gluten/wheat sensitivity (NCGS) and celiac disease. Current Opinion in Food Science 25:35–41. doi: 10.1016/j.cofs.2019.02.003.
  • Scherf, K. A., A.-C. Lindenau, L. Valentini, M. C. Collado, I. García-Mantrana, M. Christensen, D. Tomsitz, C. Kugler, T. Biedermann, and K. Brockow. 2019. Cofactors of wheat-dependent exercise-induced anaphylaxis do not increase highly individual gliadin absorption in healthy volunteers. Clinical and Translational Allergy 9 (1):19. doi: 10.1186/s13601-019-0260-0.
  • Scherf, K. A., K. Koehler, P, and Wieser, H. 2016. Gluten and wheat sensitivities – An overview. Journal of Cereal Science 67:2–11. doi: 10.1016/j.jcs.2015.07.008.
  • Sealey-Voyksner, J. A., C. Khosla, R. D. Voyksner, and J. W. Jorgenson. 2010. Novel aspects of quantitation of immunogenic wheat gluten peptides by liquid chromatography-mass spectrometry/mass spectrometry. Journal of Chromatography. A 1217 (25):4167–83. doi: 10.1016/j.chroma.2010.01.067.
  • Seki, Y., K. Nakamura, C. Arimoto, H. Kikuchi, H. Yamakawa, H. Nagai, T. Ito, and H. Akiyama. 2021. Development of a simple and reliable high-performance liquid chromatography-tandem mass spectrometry approach to simultaneously detect grains specified in food allergen labeling regulation on processed food commodities. Journal of Chromatography. A 1639:461877. doi: 10.1016/j.chroma.2021.461877.
  • Shen, X., S. Shen, J. Li, Q. Hu, L. Nie, C. Tu, X. Wang, B. Orsburn, J. Wang, and J. Qu. 2017. An ionstar experimental strategy for ms1 ion current-based quantification using ultrahigh-field orbitrap: Reproducible, in-depth, and accurate protein measurement in large cohorts. Journal of Proteome Research 16 (7):2445–56. doi: 10.1021/acs.jproteome.7b00061.
  • Shuford, C. M., J. J. Walters, P. M. Holland, U. Sreenivasan, N. Askari, K. Ray, and R. P. Grant. 2017. Absolute protein quantification by mass spectrometry: Not as simple as advertised. Analytical Chemistry 89 (14):7406–15. doi: 10.1021/acs.analchem.7b00858.
  • Singh, P., A. Arora, T. A. Strand, D. A. Leffler, C. Catassi, P. H. Green, C. P. Kelly, V. Ahuja, and G. K. Makharia. 2018. Global prevalence of celiac disease: Systematic review and meta-analysis. Clinical Gastroenterology and Hepatology 16 (6):823–836 e822. doi: 10.1016/j.cgh.2017.06.037.
  • Solé-Jamault, V., J. Davy, R. Cochereau, A. Boire, C. Larré, and S. Denery-Papini. 2022. Optimization of large-scale purification of omega gliadins and other wheat gliadins. Journal of Cereal Science 103:103386. doi: 10.1016/j.jcs.2021.103386.
  • Stahl Skov, P., E. Eller, N. P. Knudsen, A. Schaeffer Senders, K. Baumann, J. Klueber, A. Kuehn, M. Ollert, and C. Bindslev-Jensen. 2021. A novel method for quantifying ingested food allergens in human sera. Clinical and Experimental Allergy 51 (7):972–5. doi: 10.1111/cea.13899.
  • Stella, R., G. Sette, A. Moressa, A. Gallina, A. M. Aloisi, R. Angeletti, and G. Biancotto. 2020. LC-HRMS/MS for the simultaneous determination of four allergens in fish and swine food products. Food Chemistry 331:127276. doi: 10.1016/j.foodchem.2020.127276.
  • Surojanametakul, V., S. Srikulnath, P. Chamnansin, H. Shibata, and M. Shoji. 2021. Investigation of undeclared food allergens in commercial Thai food products update after enforcing food allergen labeling regulation. Food Control. 120:107554. doi: 10.1016/j.foodcont.2020.107554.
  • Tang, R., Z.-X. Wang, C.-M. Ji, P. S. C. Leung, E. Woo, C. Chang, M. Wang, B. Liu, J.-F. Wei, and J.-L. Sun. 2019. Regional differences in food allergies. Clinical Reviews in Allergy & Immunology 57 (1):98–110. doi: 10.1007/s12016-018-8725-9.
  • Tatham, A. S., S. M. Gilbert, R. J. Fido, and P. R. Shewry. 2000. Extraction, separation, and purification of wheat gluten proteins and related proteins of barley, rye, and oats. Humana Press 41:55–73. doi: 10.1385/1-59259-082-9:055.
  • Tchewonpi Sagu, S., G. Huschek, J. Bonick, T. Homann, and H. M. Rawel. 2019. A new approach of extraction of alpha-amylase/trypsin inhibitors from wheat (Triticum aestivum L.), based on optimization using Plackett-Burman and Box-Behnken designs. Molecules 24 (19):3589. doi: 10.3390/molecules24193589.
  • Tsiatsiani, L, and A. J. Heck. 2015. Proteomics beyond trypsin. The FEBS Journal 282 (14):2612–26. doi: 10.1111/febs.13287.
  • Uvackova, L., L. Skultety, S. Bekesova, S. McClain, and M. Hajduch. 2013. The MS(E)-proteomic analysis of gliadins and glutenins in wheat grain identifies and quantifies proteins associated with celiac disease and baker’s asthma. Journal of Proteomics 93:65–73. doi: 10.1016/j.jprot.2012.12.011.
  • Vanga, S. K., A. Singh, and V. Raghavan. 2017. Review of conventional and novel food processing methods on food allergens. Critical Reviews in Food Science and Nutrition 57 (10):2077–94. doi: 10.1080/10408398.2015.1045965.
  • Vatansever, B., A. Muñoz, C. L. Klein, and K. Reinert. 2017. Development and optimisation of a generic micro LC-ESI-MS method for the qualitative and quantitative determination of 30-mer toxic gliadin peptides in wheat flour for food analysis. Analytical and Bioanalytical Chemistry 409 (4):989–97. doi: 10.1007/s00216-016-0013-z.
  • Vensel, W. H., F. M. Dupont, S. Sloane, and S. B. Altenbach. 2011. Effect of cleavage enzyme, search algorithm and decoy database on mass spectrometric identification of wheat gluten proteins. Phytochemistry 72 (10):1154–61. doi: 10.1016/j.phytochem.2011.01.002.
  • Verdu, E. F, and J. S. Danska. 2018. Common ground: Shared risk factors for type 1 diabetes and celiac disease. Nature Immunology 19 (7):685–95. doi: 10.1038/s41590-018-0130-2.
  • Wang, C. X., Y. Zhuang, T. T. Ma, B. Zhang, and X. Y. Wang. 2018. Prevalence of self-reported food allergy in six regions of Inner Mongolia, Northern China: A population-based survey. Medical Science Monitor 24:1902–11. doi: 10.12659/MSM.908365.
  • Wang, Y., J. Weng, C. Zhu, R. Ai, J. Zhou, C. Wang, Q. Chen, and L. Fu. 2021. Allergenicity assessment and allergen profile analysis of different Chinese wheat cultivars. The World Allergy Organization Journal 14 (7):100559. doi: 10.1016/j.waojou.2021.100559.
  • Webb, I. K. 2022. Recent technological developments for native mass spectrometry. Biochimica et Biophysica Acta. Proteins and Proteomics 1870 (1):140732. doi: 10.1016/j.bbapap.2021.140732.
  • Xu, L. L., H. Y. Gao, F. Yang, Y. Q. Wen, H. W. Zhang, H. Lin, Z. X. Li, and M. Gasset. 2022. Major shrimp allergen peptidomics signatures and potential biomarkers of heat processing. Food Chemistry 382:132567. doi: 10.1016/j.foodchem.2022.132567.
  • Yuan, F., I. Ahmed, L. Lv, Z. Li, Z. Li, H. Lin, H. Lin, J. Zhao, S. Tian, J. Ma, et al. 2018. Impacts of glycation and transglutaminase-catalyzed glycosylation with glucosamine on the conformational structure and allergenicity of bovine beta-lactoglobulin. Food & Function 9 (7):3944–55. doi: 10.1039/c8fo00909k.
  • Zevallos, V. F., V. Raker, S. Tenzer, C. Jimenez-Calvente, M. Ashfaq-Khan, N. Rüssel, G. Pickert, H. Schild, K. Steinbrink, and D. Schuppan. 2017. Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology 152 (5):1100–1113 e1112. doi: 10.1053/j.gastro.2016.12.006.
  • Zhao, J., Z. Li, M. U. Khan, X. Gao, M. Yu, H. Gao, Y. Li, H. Zhang, B. P. Dasanayaka, and H. Lin. 2021. Extraction of total wheat (Triticum aestivum) protein fractions and cross-reactivity of wheat allergens with other cereals. Food Chemistry 347:129064. doi: 10.1016/j.foodchem.2021.129064.
  • Zhou, C., F. Gao, J. Gao, J. Yuan, J. Lu, Z. Sun, M. Xu, J. Engel, W. Hui, L. Gilissen, et al. 2020. Prevalence of coeliac disease in Northwest China: Heterogeneity across northern silk road ethnic populations. Alimentary Pharmacology & Therapeutics 51 (11):1116–29. doi: 10.1111/apt.15737.
  • Zhu, C., C. Wang, J. Zhou, Y. Wang, Q. Chen, and L. Fu. 2022. Purification and identification of globulin-1 s allele as a novel allergen with n-glycans in wheat (Triticum aestivum). Food Chemistry 390:133189. doi: 10.1016/j.foodchem.2022.133189.
  • Zimmermann, J., P. Hubel, J. Pfannstiel, M. Afzal, C. F. H. Longin, B. Hitzmann, H. Gotz, and S. C. Bischoff. 2021. Comprehensive proteome analysis of bread deciphering the allergenic potential of bread wheat, spelt and rye. Journal of Proteomics. 247:104318. doi: 10.1016/j.jprot.2021.104318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.