507
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Enzymatic molecular modification of water-soluble polyphenols: Synthesis, structure, bioactivity and application

, , , , , & ORCID Icon show all
Pages 12637-12651 | Published online: 01 Aug 2022

References

  • Abbas, M., F. Saeed, F. M. Anjum, M. Afzaal, T. Tufail, M. S. Bashir, A. Ishtiaq, S. Hussain, and H. A. R. Suleria. 2017. Natural polyphenols: An overview. International Journal of Food Properties 20 (8):1689–99. doi: 10.1080/10942912.2016.1220393.
  • Annunziata, G., M. Jiménez-García, X. Capó, D. Moranta, A. Arnone, G. C. Tenore, A. Sureda, and S. Tejada. 2020. Microencapsulation as a tool to counteract the typical low bioavailability of polyphenols in the management of diabetes. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 139:111248. doi: 10.1016/j.fct.2020.111248.
  • Bansode, S. R., and V. K. Rathod. 2014. Ultrasound assisted lipase catalysed synthesis of isoamyl butyrate. Process Biochemistry 49 (8):1297–303. doi: 10.1016/j.procbio.2014.04.018.
  • Caban, M., K. Owczarek, K. Chojnacka, and U. Lewandowska. 2019. Overview of polyphenols and polyphenol-rich extracts as modulators of IGF-1, IGF-1R, and IGFBP expression in cancer diseases. Journal of Functional Foods 52:389–407. doi: 10.1016/j.jff.2018.11.003.
  • Chebil, L., J. Anthoni, C. Humeau, G. Gerardin, J. M. Engasser, and M. Ghoul. 2007. Enzymatic acylation of flavonoids: Effect of the nature of the substrate, origin of lipase, and operating conditions on conversion yield and regioselectivity. Journal of Agricultural and Food Chemistry 55 (23):9496–502. doi: 10.1021/jf071943j.
  • Chebil, L., C. Humeau, A. Falcimaigne, J. M. Engasser, and M. Ghoul. 2006. Enzymatic acylation of flavonoids. Process Biochemistry 41 (11):2237–51. doi: 10.1016/j.procbio.2006.05.027.
  • Chen, L., C. Liu, Q. Chen, S. Wang, Y. Xiong, J. Jing, and J. Lv. 2017. Characterization, pharmacokinetics and tissue distribution of chlorogenic acid-loaded self-microemulsifying drug delivery system. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 100:102–8. doi: 10.1016/j.ejps.2017.01.011.
  • Chen, M., and S. Yu. 2017. Characterization of lipophilized monomeric and oligomeric grape seed flavan-3-ol derivatives. Journal of Agricultural and Food Chemistry 65 (40):8875–83. doi: 10.1021/acs.jafc.7b03530.
  • Chen, J., L. Zhang, C. Li, R. Chen, C. Liu, and M. Chen. 2019. Lipophilized epigallocatechin gallate derivative exerts anti-proliferation efficacy through induction of cell cycle arrest and apoptosis on DU145 human prostate cancer cells. Nutrients 12 (1):92. doi: 10.3390/nu12010092.
  • Chiva-Blanch, G., and F. Visioli. 2012. Polyphenols and health: Moving beyond antioxidants. Journal of Berry Research 2 (2):63–71. doi: 10.3233/JBR-2012-028.
  • Ciftci, D., and M. D. A. Saldaña. 2012. Enzymatic synthesis of phenolic lipids using flaxseed oil and ferulic acid in supercritical carbon dioxide media. The Journal of Supercritical Fluids 72:255–62. doi: 10.1016/j.supflu.2012.09.007.
  • Cutrim, C. S., and M. A. S. Cortez. 2018. A review on polyphenols: Classification, beneficial effects and their application in dairy products. International Journal of Dairy Technology 71 (3):564–78. doi: 10.1111/1471-0307.12515.
  • de Araújo, F. F., D. de Paulo Farias, I. A. Neri-Numa, and G. M. Pastore. 2021. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chemistry 338:127535. doi: 10.1016/j.foodchem.2020.127535.
  • de Araújo, M. E. M. B., Y. E. M. Franco, M. C. F. Messias, G. B. Longato, J. A. Pamphile, P. de, and O. Carvalho. 2017. Biocatalytic synthesis of flavonoid esters by lipases and their biological benefits. Planta Medica 83 (1-02):7–22. doi: 10.1055/s-0042-118883.
  • de Oliveira, A., S. D. Adams, L. H. Lee, S. R. Murray, S. D. Hsu, J. R. Hammond, D. Dickinson, P. Chenand, and T. C. Chu. 2013. Inhibition of herpes simplex virus type 1 with the modified green tea polyphenol palmitoyl-epigallocatechin gallate. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 52:207–15. doi: 10.1016/j.fct.2012.11.006.
  • Del Rio, D., A. Rodriguez-Mateos, J. P. E. Spencer, M. Tognolini, G. Borges, and A. Crozier. 2013. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling 18 (14):1818–92. doi: 10.1089/ars.2012.4581.
  • Deng, X., S. Cao, N. Li, H. Wu, T. J. Smith, M. Zongand, and W. Lou. 2016. A magnetic biocatalyst based on mussel-inspired polydopamine and its acylation of dihydromyricetin. Chinese Journal of Catalysis 37 (4):584–95. doi: 10.1016/S1872-2067(15)61045-2.
  • di Cagno, M., P. C. Stein, N. Skalko-Basnet, M. Brandl, and A. Bauer-Brandl. 2011. Solubilization of ibuprofen with β-cyclodextrin derivatives: Energetic and structural studies. Journal of Pharmaceutical and Biomedical Analysis 55 (3):446–51. doi: 10.1016/j.jpba.2011.02.022.
  • Ding, Y., Z. Cao, L. Cao, G. Ding, Z. Wang, and W. Xiao. 2017. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Scientific Reports 7:45723. doi: 10.1038/srep45723.
  • Elgharbawy, A. A., F. A. Riyadi, M. Z. Alam, and M. Moniruzzaman. 2018. Ionic liquids as a potential solvent for lipase-catalysed reactions: A review. Journal of Molecular Liquids 251:150–66. doi: 10.1016/j.molliq.2017.12.050.
  • Faggiano, A., M. Ricciardi, and A. Proto. 2022. Catalytic routes to produce polyphenolic esters (PEs) from biomass feedstocks. Catalysts 12 (4):447. doi: 10.3390/catal12040447.
  • Guo, Q., J. Zeng, Y. Lu, and X. Shu. 2013. Effects of solubility, thermal stability and antioxidant properties of acylating dihydromyricetin. Advanced Materials Research 791–793:101–5. doi: 10.4028/www.scientific.net/AMR.791-793.101.
  • Guyot, B., D. Gueule, M. Pina, J. Graille, V. Farines, and M. Farines. 2000. Enzymatic synthesis of fatty esters in 5-caffeoyl quinic acid. European Journal of Lipid Science and Technology 102 (2):93–6. doi: 10.1002/(SICI)1438-9312(200002)102:23.0.CO;2-B.
  • Hernandez, C. E., H. H. Chen, C. I. Chang, and T. C. Huang. 2009. Direct lipase-catalyzed lipophilization of chlorogenic acid from coffee pulp in supercritical carbon dioxide. Industrial Crops and Products 30 (3):359–65. doi: 10.1016/j.indcrop.2009.07.004.
  • Hu, Y., Z. Guo, B. M. Lue, and X. Xu. 2009. Enzymatic synthesis of esculin ester in ionic liquids buffered with organic solvents. Journal of Agricultural and Food Chemistry 57 (9):3845–52. doi: 10.1021/jf8037488.
  • Hu, X. P., F. W. Yin, D. Y. Zhou, H. K. Xie, B. W. Zhu, X. C. Ma, X. G. Tian, C. Wang, and F. Shahidi. 2019. Stability of resveratrol esters with caprylic acid during simulated in vitro gastrointestinal digestion. Food Chemistry 276:675–9. doi: 10.1016/j.foodchem.2018.10.062.
  • Ignasimuthu, K., R. Prakash, P. S. Murthy, and N. Subban. 2019. Enhanced bioaccessibility of green tea polyphenols and lipophilic activity of EGCG octaacetate on gram-negative bacteria. LWT 105:103–9. doi: 10.1016/j.lwt.2019.01.064.
  • Jahangiri, A., A. H. Møller, M. Danielsen, B. Madsen, B. Joernsgaard, S. Vaerbak, P. Adlercreutz, and T. K. Dalsgaard. 2018. Hydrophilization of bixin by lipase-catalyzed transesterification with sorbitol. Food Chemistry 268:203–9. doi: 10.1016/j.foodchem.2018.06.085.
  • Jiang, C., L. Wang, X. Huang, S. Zhu, C. Ma, and H. Wang. 2021. Identification and antioxidant abilities of enzymatic-transesterification (-)-epigallocatechin-3-O-gallate stearyl derivatives in von-aqueous systems. Antioxidants 10 (8):1282. doi: 10.3390/antiox10081282.
  • Kaihatsu, K., M. Yamabe, and Y. Ebara. 2018. Antiviral mechanism of action of epigallocatechin-3-O-gallate and its fatty acid esters. Molecules 23 (10):2475. doi: 10.3390/molecules23102475.
  • Kaihatsu, K. 2010. Inhibition of influenza virus infection by epigallocatechin-3-O-gallate (EGCG) fatty acid monoesters. Paper presented at the 4th International Conference on O-CHA (Tea) Culture and Science, Shizuoka, Japan, October 26-28.
  • Kim, M., S. Y. Kim, H. W. Lee, J. S. Shin, P. Kim, Y. S. Jung, H. S. Jeong, J. K. Hyun, and C. K. Lee. 2013. Inhibition of influenza virus internalization by (-)-epigallocatechin-3-gallate. Antiviral Research 100 (2):460–72. doi: 10.1016/j.antiviral.2013.08.002.
  • Kumar, A., K. Dhar, S. S. Kanwar, and P. K. Arora. 2016. Lipase catalysis in organic solvents: Advantages and applications. Biological Procedures Online 18 (1):2–11. doi: 10.1186/s12575-016-0033-2.
  • Kumar, V., F. Jahan, R. V. Mahajan, and R. K. Saxena. 2016. Efficient regioselective acylation of quercetin using Rhizopus oryzae lipase and its potential as antioxidant. Bioresource Technology 218:1246–8. doi: 10.1016/j.biortech.2016.06.057.
  • Kumar, A., and S. S. Kanwar. 2011. Synthesis of ethyl ferulate in organic medium using celite-immobilized lipase. Bioresource Technology 102 (3):2162–7. doi: 10.1016/j.biortech.2010.10.027.
  • Laguerre, M., C. Bayrasy, A. Panya, J. Weiss, D. J. McClements, J. Lecomte, E. A. Decker, and P. Villeneuve. 2015. What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox. Critical Reviews in Food Science and Nutrition 55 (2):183–201. doi: 10.1080/10408398.2011.650335.
  • Laguerre, M., L. J. López Giraldo, J. Lecomte, M. C. Figueroa-Espinoza, B. Baréa, J. Weiss, E. A. Decker, and P. Villeneuve. 2009. Chain length affects antioxidant properties of chlorogenate esters in emulsion: The cutoff theory behind the polar paradox. Journal of Agricultural and Food Chemistry 57 (23):11335–42. doi: 10.1021/jf9026266.
  • Laguerre, M., C. Wrutniak-Cabello, B. Chabi, L. J. López Giraldo, J. Lecomte, P. Villeneuve, and G. Cabello. 2011. Does hydrophobicity always enhance antioxidant drugs? A cut-off effect of the chain length of functionalized chlorogenate esters on ROS-overexpressing fibroblasts. The Journal of Pharmacy and Pharmacology 63 (4):531–40. doi: 10.1111/j.2042-7158.2010.01216.x.
  • Lai, J., Z. Hu, R. A. Sheldon, and Z. Yang. 2012. Catalytic performance of cross-linked enzyme aggregates of Penicillium expansum lipase and their use as catalyst for biodiesel production. Process Biochemistry 47 (12):2058–63. doi: 10.1016/j.procbio.2012.07.024.
  • Limwachiranon, J., H. Huang, L. Li, X. Lin, L. Zou, J. Liu, J. Liu, Y. Zou, H. Aalim, Z. Duan, et al. 2020. Enhancing stability and bioaccessibility of chlorogenic acid using complexation with amylopectin: A comprehensive evaluation of complex formation, properties, and characteristics. Food Chemistry 311:125879. doi: 10.1016/j.foodchem.2019.125879.
  • Liu, L., C. Jin, and Y. Zhang. 2014. Lipophilic phenolic compounds (Lipo-PCs): Emerging antioxidants applied in lipid systems. RSC Advances 4 (6):2879–91. doi: 10.1039/C3RA44792H.
  • Liu, B., and W. Yan. 2019. Lipophilization of EGCG and effects on antioxidant activities. Food Chemistry 272:663–9. doi: 10.1016/j.foodchem.2018.08.086.
  • Liu, B., F. Zhong, W. Yokoyama, D. Huang, S. Zhu, and Y. Li. 2020. Interactions in starch co-gelatinized with phenolic compound systems: Effect of complexity of phenolic compounds and amylose content of starch. Carbohydrate Polymers 247:116667. doi: 10.1016/j.carbpol.2020.116667.
  • Li, W., H. Wu, B. Liu, X. Hou, D. Wan, W. Lou, and J. Zhao. 2015. Highly efficient and regioselective synthesis of dihydromyricetin esters by immobilized lipase. Journal of Biotechnology 199:31–7. doi: 10.1016/j.jbiotec.2015.02.012.
  • Li, Y., D. Yang, Y. Jia, L. He, J. Li, C. Yu, C. Liao, Z. Yu, and C. Zhang. 2021. Research note: Anti-inflammatory effects and antiviral activities of baicalein and chlorogenic acid against infectious bursal disease virus in embryonic eggs. Poultry Science 100 (4):100987. doi: 10.1016/j.psj.2021.01.010.
  • López Giraldo, L. J., M. Laguerre, J. Lecomte, M. C. Figueroa-Espinoza, N. Barouh, B. Baréa, and P. Villeneuve. 2007. Lipase-catalyzed synthesis of chlorogenate fatty esters in solvent-free medium. Enzyme and Microbial Technology 41 (6-7):721–6. doi: 10.1016/j.enzmictec.2007.06.004.
  • Lorentz, C., A. Dulac, G. Pencreac'h, F. Ergan, P. Richomme, and S. Soultani-Vigneron. 2010. Lipase-catalyzed synthesis of two new antioxidants: 4-O- and 3-O-palmitoyl chlorogenic acids. Biotechnology Letters 32 (12):1955–60. doi: 10.1007/s10529-010-0386-6.
  • Lu, M., T. Zhang, Z. Jiang, Y. Guo, F. Qiu, R. Liu, L. Zhang, M. Chang, R. Liu, Q. Jin, et al. 2020. Physical properties and cellular antioxidant activity of vegetable oil emulsions with different chain lengths and saturation of triglycerides. LWT 121:108948. doi: 10.1016/j.lwt.2019.108948.
  • Matsumoto, Y., K. Kaihatsu, K. Nishino, M. Ogawa, N. Kato, and A. Yamaguchi. 2012. Antibacterial and antifungal activities of new acylated derivatives of epigallocatechin gallate. Frontiers in Microbiology 3:53. doi: 10.3389/fmicb.2012.00053.
  • Moniruzzaman, M., N. Kamiya, and M. Goto. 2010. Activation and stabilization of enzymes in ionic liquids. Organic & Biomolecular Chemistry 8 (13):2887–99. doi: 10.1039/b926130c.
  • Mori, S., S. Miyake, T. Kobe, T. Nakaya, S. D. Fuller, N. Kato, and K. Kaihatsu. 2008. Enhanced anti-influenza A virus activity of (-)-epigallocatechin-3-O-gallate fatty acid monoester derivatives: Effect of alkyl chain length. Bioorganic & Medicinal Chemistry Letters 18 (14):4249–52. doi: 10.1016/j.bmcl.2008.02.020.
  • Nitta, S., and H. Iwamoto. 2019. Lipase‐catalyzed synthesis of epigallocatechin gallate‐based polymer for long‐term release of epigallocatechin gallate with antioxidant property. Journal of Applied Polymer Science 136 (26):47693. doi: 10.1002/app.47693.
  • Oh, W. Y., and F. Shahidi. 2017. Lipophilization of resveratrol and effects on antioxidant activities. Journal of Agricultural and Food Chemistry 65 (39):8617–25. doi: 10.1021/acs.jafc.7b03129.
  • Oh, W. Y., and F. Shahidi. 2018. Antioxidant activity of resveratrol ester derivatives in food and biological model systems. Food Chemistry 261:267–73. doi: 10.1016/j.foodchem.2018.03.085.
  • Pereira, M. G., F. D. A. Facchini, L. E. C. Filó, A. M. Polizeli, A. C. Vici, J. A. Jorge, G. Fernandez-Lorente, B. C. Pessela, J. M. Guisan, M. de, et al. 2015. Immobilized lipase from Hypocrea pseudokoningii on hydrophobic and ionic supports: Determination of thermal and organic solvent stabilities for applications in the oleochemical industry. Process Biochemistry 50 (4):561–70. doi: 10.1016/j.procbio.2014.12.027.
  • Pérez-Sánchez, M., and P. Domínguez de María. 2012. Lipase catalyzed in situ production of acetaldehyde: A controllable and mild strategy for multi-step reactions. ChemCatChem 4 (5):617–9. doi: 10.1002/cctc.201100493.
  • Pimentel-Moral, S., M. C. Teixeira, A. R. Fernandes, D. Arráez-Román, A. Martínez-Ferez, A. Segura-Carretero, and E. B. Souto. 2018. Lipid nanocarriers for the loading of polyphenols-A comprehensive review. Advances in Colloid and Interface Science 260:85–94. doi: 10.1016/j.cis.2018.08.007.
  • Salihu, A., and M. Z. Alam. 2015. Solvent tolerant lipases: A review. Process Biochemistry 50 (1):86–96. doi: 10.1016/j.procbio.2014.10.019.
  • Santhakumar, A. B., M. Battino, and J. M. Alvarez-Suarez. 2018. Dietary polyphenols: Structures, bioavailability and protective effects against atherosclerosis. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 113:49–65. doi: 10.1016/j.fct.2018.01.022.
  • Shahidi, F., and Y. Zhong. 2015. Measurement of antioxidant activity. Journal of Functional Foods 18:757–81. doi: 10.1016/j.jff.2015.01.047.
  • Shi, Y., Y. L. Liu, P. Y. Lai, M. C. Tseng, M. J. Tseng, Y. Li, and Y. H. Chu. 2012. Ionic liquids promote PCR amplification of DNA. Chemical Communications (Cambridge, England) 48 (43):5325–7. doi: 10.1039/C2CC31740K.
  • Shi, Y.-G., Y. Wu, X.-Y. Lu, Y.-P. Ren, Q. Wang, C.-M. Zhu, D. Yu, and H. Wang. 2017. Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria. Food Chemistry 220:249–56. doi: 10.1016/j.foodchem.2016.09.187.
  • Stagos, D. 2019. Antioxidant activity of polyphenolic plant extracts. Antioxidants 9 (1):19. doi: 10.3390/antiox9010019.
  • Sun, S., and X. Chen. 2015. Kinetics of enzymatic synthesis of monoferuloyl glycerol and diferuloyl glycerol by transesterification in [BMIM]PF6. Biochemical Engineering Journal 97:25–31. doi: 10.1016/j.bej.2015.02.002.
  • Tang, B., Y. Huang, X. Ma, X. Liao, Q. Wang, X. Xiong, and H. Li. 2016. Multispectroscopic and docking studies on the binding of chlorogenic acid isomers to human serum albumin: Effects of esteryl position on affinity. Food Chemistry 212:434–42. doi: 10.1016/j.foodchem.2016.06.007.
  • Torres, P., A. Poveda, J. Jimenez-barbero, A. Ballesteros, and F. J. Plou. 2010. Regioselective lipase-catalyzed synthesis of 3-Oacyl-derivatives of resveratrol and study of their antioxidant properties. Journal of Agricultural and Food Chemistry 58 (2):807–13. doi: 10.1021/jf903210q.
  • Ungcharoenwiwat, P., B. Canyuk, and A. H-Kittikun. 2016. Synthesis of jatropha oil based wax esters using an immobilized lipase from Burkholderia sp. EQ3 and Lipozyme RM IM. Process Biochemistry 51 (3):392–8. doi: 10.1016/j.procbio.2015.12.019.
  • Villeneuve, P. 2007. Lipases in lipophilization reactions. Biotechnology Advances 25 (6):515–36. doi: 10.1016/j.biotechadv.2007.06.001.
  • Viskupicova, J., M. Ondrejovic, and T. Maliar. 2012. Enzyme-mediated preparation of flavonoid esters and their applications. Biochemistry 10:263–78. doi: 10.5772/34174.
  • Vlachogianni, I. C., E. Fragopoulou, I. K. Kostakis, and S. Antonopoulou. 2015. In vitro assessment of antioxidant activity of tyrosol, resveratrol and their acetylated derivatives. Food Chemistry 177:165–73. doi: 10.1016/j.foodchem.2014.12.092.
  • Wan, Z. L., J. M. Wang, L. Y. Wang, X. Q. Yang, and Y. Yuan. 2013. Enhanced physical and oxidative stabilities of soy protein-based emulsions by incorporation of a water-soluble stevioside-resveratrol complex. Journal of Agricultural and Food Chemistry 61 (18):4433–40. doi: 10.1021/jf4003945.
  • Wang, S., Y. Li, D. Huang, S. Chen, Y. Xia, and S. Zhu. 2022. The inhibitory mechanism of chlorogenic acid and its acylated derivatives on α-amylase and α-glucosidase. Food Chemistry 372:131334. doi: 10.1016/j.foodchem.2021.131334.
  • Wang, S., Y. Li, X. Meng, S. Chen, D. Huang, Y. Xia, and S. Zhu. 2021. Antioxidant activities of chlorogenic acid derivatives with different acyl donor chain lengths and their stabilities during in vitro simulated gastrointestinal digestion. Food Chemistry 357:129904. doi: 10.1016/j.foodchem.2021.129904.
  • Wang, Z., R. Wang, J. Tian, B. Zhao, X. F. Wei, Y. L. Su, C. Y. Li, S. G. Cao, T. F. Ji, and L. Wang. 2010. The effect of ultrasound on lipase-catalyzed regioselective acylation of mangiferin in non-aqueous solvents. Journal of Asian Natural Products Research 12 (1):56–63. doi: 10.1080/10286020903431080.
  • Wang, Z., Y. Zhang, L. Zheng, X. Cui, H. Huang, X. Geng, and X. Xie. 2018. Regioselective acylation of resveratrol catalyzed by lipase under microwave. Green Chemistry Letters and Reviews 11 (3):312–7. doi: 10.1080/17518253.2018.1500646.
  • Xie, X. N., C. L. Zhang, E. N. Xun, J. X. Wang, H. Zhang, L. Wang, and Z. Wang. 2012. Acylation of quercetin with a novel thermophilic esterase as biocatalyst. Chemical Research in Chinese Universities 28 (2):225–9. doi: 10.1055/s-0031-1299695.
  • Xun, E., J. Wang, H. Zhang, G. Chen, H. Yue, J. Zhao, L. Wang, and Z. Wang. 2013. Resolution of N-hydroxymethyl vince lactam catalyzed by lipase in organic solvent. Journal of Chemical Technology & Biotechnology 88 (5):904–9. doi: 10.1002/jctb.3919.
  • Xu, Z., T. Wang, and S. Zhang. 2019. Extracellular secretion of feruloyl esterase derived from Lactobacillus crispatus in Escherichia coli and its application for ferulic acid production. Bioresource Technology 288:121526. doi: 10.1016/j.biortech.2019.121526.
  • Xu, L. J., T. Yang, J. Wang, F. H. Huang, and M. M. Zheng. 2021. Immobilized lipase based on hollow mesoporous silicon spheres for efficient enzymatic synthesis of resveratrol ester derivatives. Journal of Agricultural and Food Chemistry 69 (32):9067–75. doi: 10.1021/acs.jafc.0c07501.
  • Xu, C., H. Zhang, J. Shi, M. Zheng, X. Xiang, F. Huang, and J. Xiao. 2018. Ultrasound irradiation promoted enzymatic alcoholysis for synthesis of monoglyceryl phenolic acids in a solvent-free system. Ultrasonics Sonochemistry 41:120–6. doi: 10.1016/j.ultsonch.2017.09.016.
  • Yadav, G. D., M. P. Hude, and A. D. Talpade. 2015. Microwave assisted process intensification of lipase catalyzed transesterification of 1,2 propanediol with dimethyl carbonate for the green synthesis of propylene carbonate: Novelties of kinetics and mechanism of consecutive reactions. Chemical Engineering Journal 281:199–208. doi: 10.1016/j.cej.2015.06.036.
  • Yadav, G. D., and S. V. Pawar. 2012. Synergism between microwave irradiation and enzyme catalysis in transesterification of ethyl-3-phenylpropanoate with n-butanol. Bioresource Technology 109:1–6. doi: 10.1016/j.biortech.2012.01.030.
  • Yan, Z., Y. Zhong, Y. Duan, Q. Chen, and F. Li. 2020. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutrition (Zhongguo xu mu Shou yi Xue Hui) 6 (2):115–23. doi: 10.1016/j.aninu.2020.01.001.
  • Yang, W., M. Kortesniemi, X. Ma, J. Zheng, and B. Yang. 2019. Enzymatic acylation of blackcurrant (Ribes nigrum) anthocyanins and evaluation of lipophilic properties and antioxidant capacity of derivatives. Food Chemistry 281:189–96. doi: 10.1016/j.foodchem.2018.12.111.
  • Yang, W., M. Kortesniemi, B. Yang, and J. Zheng. 2018. Enzymatic acylation of anthocyanins isolated from alpine bearberry (Arctostaphylos alpina) and lipophilic properties, thermostability, and antioxidant capacity of the derivatives. Journal of Agricultural and Food Chemistry 66 (11):2909–16. doi: 10.1021/acs.jafc.7b05924.
  • Yu, M., B. Liu, F. Zhong, Q. Wan, S. Zhu, D. Huang, and Y. Li. 2021. Interactions between caffeic acid and corn starch with varying amylose content and their effects on starch digestion. Food Hydrocolloids 114:106544. doi: 10.1016/j.foodhyd.2020.106544.
  • Yu, M., S. Zhu, F. Zhong, F. Zhang, C. Du, and Y. Li. 2022. Insight into the multi-scale structure changes and mechanism of corn starch modulated by different structural phenolic acids during retrogradation. Food Hydrocolloids 128:107581. doi: 10.1016/j.foodhyd.2022.107581.
  • Zhang, S., Z. Jiang, X. Wang, C. Yang, and J. Shi. 2015. Facile method to prepare microcapsules inspired by polyphenol chemistry for efficient enzyme immobilization. ACS Applied Materials & Interfaces 7 (35):19570–8. doi: 10.1021/acsami.5b03823.
  • Zhao, H., C. L. Jones, and J. V. Cowins. 2009. Lipase dissolution and stabilization in ether-functionalized ionic liquids. Green Chemistry 11 (8):1128. doi: 10.1039/b905388c.
  • Zheng, L., Z. Ding, M. Zhang, and J. Sun. 2011. Microencapsulation of bayberry polyphenols by ethyl cellulose: Preparation and characterization. Journal of Food Engineering 104 (1):89–95. doi: 10.1016/j.jfoodeng.2010.11.031.
  • Zhong, Y., C. M. Ma, and F. Shahidi. 2012. Antioxidant and antiviral activities of lipophilic epigallocatechin gallate (EGCG) derivatives. Journal of Functional Foods 4 (1):87–93. doi: 10.1016/j.jff.2011.08.003.
  • Zhong, Y., and F. Shahidi. 2011. Lipophilized epigallocatechin gallate (EGCG) derivatives as novel antioxidants. Journal of Agricultural and Food Chemistry 59 (12):6526–33. doi: 10.1021/jf201050j.
  • Zhong, Y., and F. Shahidi. 2012. Lipophilised epigallocatechin gallate (EGCG) derivatives and their antioxidant potential in food and biological systems. Food Chemistry 131 (1):22–30. doi: 10.1016/j.foodchem.2011.07.089.
  • Zhou, N. 2016. In vitro gastrointestinal digestion model to monitor the antioxidant properties and bioaccessbility of phenolic extracts from elderberry (Sambucus Nigra L.). Wayne State University Theses, 515. https://digitalcommons.wayne.edu/oa_theses/515.
  • Zhu, S., Y. Li, Z. Li, C. Ma, Z. Lou, W. Yokoyama, and H. Wang. 2014. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives. Food Research International 56:279–86. doi: 10.1016/j.foodres.2013.10.026.
  • Zhu, S., Y. Li, C. Ma, S. Chen, J. Dai, Z. Lou, and H. Wang. 2017. Lipase catalyzed acetylation of EGCG, a lipid soluble antioxidant, and preparative purification by high-speed counter-current chromatography (HSCCC). Separation and Purification Technology 185:33–40. doi: 10.1016/j.seppur.2017.04.026.
  • Zhu, S., N. Meng, S. Chen, and Y. Li. 2020a. Study of acetylated EGCG synthesis by enzymatic transesterification in organic media. Arabian Journal of Chemistry 13 (12):8824–34. doi: 10.1016/j.arabjc.2020.10.012.
  • Zhu, S., N. Meng, Y. Li, and S. Chen. 2021a. Efficient enzymatic modification of epigallocatechin gallate in ionic liquids. Green Chemistry Letters and Reviews 14 (2):415–24. doi: 10.1080/17518253.2021.1926549.
  • Zhu, S., N. Meng, Y. Li, S. Chen, and Y. Xia. 2021b. Antioxidant activities of lipophilic (-)-epigallocatechin gallate derivatives in vitro and in lipid-based food systems. Food Bioscience 42:101055. doi: 10.1016/j.fbio.2021.101055.
  • Zhu, S., S. Wang, S. Chen, Y. Xia, and Y. Li. 2020b. Lipase-catalyzed highly regioselective synthesis of acylated chlorogenic acid. Food Bioscience 37:100706. doi: 10.1016/j.fbio.2020.100706.
  • Zuo, J., W. Tang, and Y. Xu. 2015. Anti-hepatitis B virus activity of chlorogenic acid and its related compounds. In Coffee in health and disease prevention, ed. V. R. Preedy, 1st ed, 607–613. Cambridge, USA: Academic Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.