219
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Changes in crop mix and the effects on agricultural carbon emissions in China

, , &
Article: 2335141 | Received 16 May 2022, Accepted 21 Mar 2024, Published online: 30 Apr 2024

References

  • Abram, N. K., Meijaard, E., Wilson, K. A., Davis, J. T., Wells, J. A., Ancrenaz, M., Budiharta, S., Durrant, A., Fakhruzzi, A., Runting, R. K., Gaveau, D., & Mengersen, K. (2017). Oil palm–community conflict mapping in Indonesia: A case for better community liaison in planning for development initiatives. Applied Geography, 78, 33–44. https://doi.org/10.1016/j.apgeog.2016.10.005
  • Adler, P. R., Grosso, S. J. D., & Parton, W. J. (2007). Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecological Applications, 17(3), 675–691. https://doi.org/10.1890/05-2018
  • Ahrends, A., Hollingsworth, P. M., Ziegler, A. D., Fox, J. M., Chen, H., Su, Y., & Xu, J. (2015). Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Global Environmental Change, 34, 48–58. https://doi.org/10.1016/j.gloenvcha.2015.06.002
  • An, Y., Tan, X., Tan, J., Yu, H., Wang, Z., & Li, W. (2021). Evolution of crop planting structure in traditional agricultural areas and Its influence factors: A case study in human province. Economic Geography, 41, 156–166. https://doi.org/10.15957/j.cnki.jjdl.2021.02.017. In Chinese.
  • Carlson, K. M., Curran, L. M., Ratnasari, D., Pittman, A. M., Soares-Filho, B. S., Asner, G. P., Trigg, S. N., Gaveau, D. A., Lawrence, D., & Rodrigues, H. O. (2012). Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. Proceedings of the National Academy of Sciences, 109(19), 7559–7564. https://doi.org/10.1073/pnas.1200452109
  • Cayambe, J., Heredia-R, M., Torres, E., Puhl, L., Torres, B., Barreto, D., Heredia, B. N., Vaca-Lucero, A., & Diaz-Ambrona, C. G. H. (2023). Evaluation of sustainability in strawberry crops production under greenhouse and open-field systems in the Andes. International Journal of Agricultural Sustainability, 21(1), 2255449. https://doi.org/10.1080/14735903.2023.2255449
  • Ceddia, M. G. (2020). The super-rich and cropland expansion via direct investments in agriculture. Nature Sustainability, 3(4), 312–318. https://doi.org/10.1038/s41893-020-0480-2
  • Chen, X., Ma, C., Zhou, H., Liu, Y., Huang, X., Wang, M., Cai, Y., Su, D., Muneer, M. A., Guo, M., Chen, X., Zhou, Y., Hou, Y., Cong, W., Guo, J., Ma, W., Zhang, W., Cui, Z., Wu, L., … Zhang, F. (2021). Identifying the main crops and key factors determining the carbon footprint of crop production in China, 2001–2018. Resources, Conservation and Recycling, 172, 105661. https://doi.org/10.1016/j.resconrec.2021.105661
  • Cheng, K., Pan, G., Smith, P., Luo, T., Li, L., Zheng, J., Zhang, X., Han, X., & Yan, M. (2011). Carbon footprint of China’s crop production—An estimation using agro-statistics data over 1993–2007. Agriculture, Ecosystems & Environment, 142(3–4), 231–237. https://doi.org/10.1016/j.agee.2011.05.012
  • Clay, J. (2011). Freeze the footprint of food. Nature, 475(7356), 287–289. https://doi.org/10.1038/475287a
  • Conrad, C., Löw, F., & Lamers, J. P. A. (2017). Mapping and assessing crop diversity in the irrigated Fergana Valley, Uzbekistan. Applied Geography, 86, 102–117. https://doi.org/10.1016/j.apgeog.2017.06.016
  • Delpeuch, C., & Leblois, A. (2014). The elusive quest for supply response to cash-crop market reforms in Sub-saharan Africa: The case of cotton. World Development, 64, 521–537. https://doi.org/10.1016/j.worlddev.2014.06.007
  • Dong, J., Xiao, X., Chen, B., Torbick, N., Jin, C., Zhang, G., & Biradar, C. (2013). Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sensing of Environment, 134, 392–402. https://doi.org/10.1016/j.rse.2013.03.014
  • Du, Z., & Han, L. (2020). The impact of production-side changes in grain supply on China’s food Security. Chinese Rural Economy, 4, 2–14. In Chinese.
  • Fuentes-Ponce, M. H., Gutiérrez-Díaz, J., Flores-Macías, A., González-Ortega, E., Mendoza, A. P., Sánchez, L. M. R., Novotny, I., & Espíndola, I. P. M. (2022). Direct and indirect greenhouse gas emissions under conventional, organic, and conservation agriculture. Agriculture, Ecosystems & Environment, 340, 108148. https://doi.org/10.1016/j.agee.2022.108148
  • Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., Burlingame, B., Dawkins, M., Dolan, L., Fraser, D., Herrero, M., Hoffmann, I., Smith, P., Thornton, P. K., Toulmin, C., Vermeulen, S. J., & Godfray, H. C. J. (2013). Sustainable intensification in agriculture: Premises and policies. Science, 341(6141), 33–34. https://doi.org/10.1126/science.1234485
  • Ge, D., Long, H., & Yang, R. (2018). The pattern and mechanism of farmland transition in China from the perspective of per capita farmland area. Resources Science, 40, 273–283. https://doi.org/10.18402/resci.2018.02.05. In Chinese.
  • Gollnow, F., Hissa, L. d. B. V., Rufin, P., & Lakes, T. (2018). Property-level direct and indirect deforestation for soybean production in the Amazon region of Mato Grosso, Brazil. Land Use Policy, 78, 377–385. https://doi.org/10.1016/j.landusepol.2018.07.010
  • He, Y., Chen, R., Wu, H., Xu, J., & Song, Y. (2018). Spatial dynamics of agricultural carbon emissions in China and the related driving factors. Chinese Journal of Eco-Agriculture, 26(9), 1269–1282. https://doi.org/10.13930/j.cnki.cjea.171097
  • Hua, X., Kono, Y., & Zhang, L. (2021). Excavating agrarian transformation under ‘secure’ crop booms: Insights from the China-Myanmar borderland. The Journal of Peasant Studies, 1–30. https://doi.org/10.1080/03066150.2021.1926993
  • Huang, J., Chen, Y., Sui, P., & Gao, W. (2013). Estimation of net greenhouse gas balance using crop- and soil-based approaches: Two case studies. Science of The Total Environment, 456-457, 299–306. https://doi.org/10.1016/j.scitotenv.2013.03.035
  • Huang, X., Chen, C., Qian, H., Chen, M., Deng, A., Zhang, J., & Zhang, W. (2017). Quantification for carbon footprint of agricultural inputs of grains cultivation in China since 1978. Journal of Cleaner Production, 142, 1629–1637. https://doi.org/10.1016/j.jclepro.2016.11.131
  • Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W., & Mortensen, D. A. (2017). Agriculture in 2050: Recalibrating targets for sustainable intensification. BioScience, 67(4), 386–391. https://doi.org/10.1093/biosci/bix010
  • Isbell, C., Tobin, D., & Reynolds, T. (2021). Motivations for maintaining crop diversity: Evidence from Vermont’s seed systems. Ecological Economics, 189, 107138. https://doi.org/10.1016/j.ecolecon.2021.107138
  • Jianyi, L., Yuanchao, H., Shenghui, C., Jiefeng, K., & Lilai, X. (2015). Carbon footprints of food production in China (1979–2009). Journal of Cleaner Production, 90, 97–103. https://doi.org/10.1016/j.jclepro.2014.11.072
  • Jiao, X., He, G., Cui, Z., Shen, J., & Zhang, F. (2018). Agri-environment policy for grain production in China: Toward sustainable intensification. China Agricultural Economic Review, 10(1), 78–92. https://doi.org/10.1108/CAER-10-2017-0201
  • Jin, T. (2019). The adjustment of China’s grain cropping structure and its effect on the consumption of water and land resources. Journal of Natural Resources, 34(1), 14–25. In Chinese. https://doi.org/10.31497/zrzyxb.20190102
  • Johnson, J. M. F., Franzluebbers, A. J., Weyers, S. L., & Reicosky, D. C. (2007). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 150(1), 107–124. https://doi.org/10.1016/j.envpol.2007.06.030
  • Knudsen, M. T., Meyer-Aurich, A., Olesen, J. E., Chirinda, N., & Hermansen, J. E. (2014). Carbon footprints of crops from organic and conventional arable crop rotations – using a life cycle assessment approach. Journal of Cleaner Production, 64, 609–618. https://doi.org/10.1016/j.jclepro.2013.07.009
  • Kong, X. (2020). Problems, causes and countermeasures of “non-grain” of cultivated land. China Land, 11, 17–19. https://doi.org/10.13816/j.cnki.ISSN1002-9729.2020.11.05. In Chinese.
  • Kumar, P., & Joshi, P. K. (2016). Food demand and supply projections to 2030: India. In F. Brouwer & P. K. Joshi (Eds.), International trade and food security: The future of Indian agriculture (Part 2, Chapter 4, pp. 29–63). CABI.
  • Li, B., Zhang, J., & Li, H. (2011). Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China. China Population, Resources and Environment, 21, 80–86. In Chinese.
  • Li, J., Xing, J., Ding, R., Shi, W., Shi, X., & Wang, X. (2023). Systematic evaluation of nitrogen application in the production of multiple crops and its environmental impacts in Fujian province, China. Agriculture, 13(3), 694. https://doi.org/10.3390/agriculture13030694
  • Li, L., Wang, L., & Qi, Z. (2021). The spatiotemporal variation of farmland use transition and its critical influential factors in coordinated urban-rural regions: A case of Chongqing in western China. Sustainable Cities and Society, 70, 102921. https://doi.org/10.1016/j.scs.2021.102921
  • Lienhard, P., Lestrelin, G., Phanthanivong, I., Kiewvongphachan, X., Leudphanane, B., Lairez, J., Quoc, H. T., & Castella, J.-C. (2020). Opportunities and constraints for adoption of maize-legume mixed cropping systems in Laos. International Journal of Agricultural Sustainability, 18(5), 427–443. https://doi.org/10.1080/14735903.2020.1792680
  • Linquist, B., van Groenigen, K. J., Adviento-Borbe, M. A., Pittelkow, C., & van Kessel, C. (2012). An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology, 18(1), 194–209. https://doi.org/10.1111/j.1365-2486.2011.02502.x
  • Liu, S., Yang, Y., & Forrest, J. (2017). Grey incidence analysis models. In S. Liu, Y. Yang, & J. Forrest (Eds.), Grey data analysis: Methods, models and applications (pp. 67–103). Springer Singapore.
  • Liu, W., Zhang, G., Wang, X., Lu, F., & Ouyang, Z. (2018b). Carbon footprint of main crop production in China: Magnitude, spatial-temporal pattern and attribution. Science of The Total Environment, 645, 1296–1308. https://doi.org/10.1016/j.scitotenv.2018.07.104
  • Liu, Z., Yang, P., Wu, W., & You, L. (2018a). Spatiotemporal changes of cropping structure in China during 1980–2011. Journal of Geographical Sciences, 28(11), 1659–1671. https://doi.org/10.1007/s11442-018-1535-4
  • Long, H. (2020). Farmland use transition in China. In H. Long (Ed.), Land use transitions and rural restructuring in China (pp. 31–160). Springer.
  • Long, H., & Qu, Y. (2018). Land use transitions and land management: A mutual feedback perspective. Land Use Policy, 74, 111–120. https://doi.org/10.1016/j.landusepol.2017.03.021
  • Lu, X., Kuang, B., Li, J., Han, J., & Zhang, Z. (2018). Dynamic evolution of regional discrepancies in carbon emissions from agricultural land utilization: Evidence from Chinese provincial data. Sustainability, 10, 1–13. https://doi.org/10.3390/su10020001
  • Magazzino, C., Cerulli, G., Haouas, I., Unuofin, J. O., & Sarkodie, S. A. (2023b). The drivers of GHG emissions: A novel approach to estimate emissions using nonparametric analysis. Gondwana Research, 127, 4–21. https://doi.org/10.1016/j.gr.2023.10.004
  • Magazzino, C., Cerulli, G., Shahzad, U., & Khan, S. (2023a). The nexus between agricultural land use, urbanization, and greenhouse gas emissions: Novel implications from different stages of income levels. Atmospheric Pollution Research, 14(9), 101846. https://doi.org/10.1016/j.apr.2023.101846
  • Meng, F., Tan, Y., & Chen, H. (2023). Decoupling relationship between greenhouse gas emissions from cropland utilization and crop yield in China: Implications for green agricultural development. Environmental Science and Pollution Research, 30(43), 97160–97177. https://doi.org/10.1007/s11356-023-29117-0
  • Meng, F., Tan, Y., Chen, H., & Xiong, W. (2022). Spatial-temporal evolution patterns and influencing factors of “non-grain” utilization of cultivated land in China. China Land Science, 36(01), 97–106. In Chinese.
  • Min, J., & Hu, H. (2012). Calculation of greenhouse gases emission from agricultural production in China. China Population, Resources and Environment, 22, 21–27. In Chinese.
  • National Data. (2022). National Bureau of Statistics of China. https://data.stats.gov.cn/easyquery.htm?cn=C01. Accessed on March 10, 2022.
  • O’Dell, D., Eash, N. S., Hicks, B. B., Oetting, J. N., Sauer, T. J., Lambert, D. M., Thierfelder, C., Muoni, T., Logan, J., Zahn, J. A., & Goddard, J. J. (2020). Conservation agriculture as a climate change mitigation strategy in Zimbabwe. International Journal of Agricultural Sustainability, 18(3), 250–265. https://doi.org/10.1080/14735903.2020.1750254
  • Pathak, H., Jain, N., Bhatia, A., Patel, J., & Aggarwal, P. K. (2010). Carbon footprints of Indian food items. Agriculture, Ecosystems & Environment, 139(1–2), 66–73. https://doi.org/10.1016/j.agee.2010.07.002
  • Pezzuolo, A., Dumont, B., Sartori, L., Marinello, F., De Antoni Migliorati, M., & Basso, B. (2017). Evaluating the impact of soil conservation measures on soil organic carbon at the farm scale. Computers and Electronics in Agriculture, 135, 175–182. https://doi.org/10.1016/j.compag.2017.02.004
  • Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems[J]. Annals of botany, 114(8), 1571–1596. https://doi.org/10.1093/aob/mcu205
  • Robertson, G. P., Paul Eldor, A., & Harwood Richard, R. (2000). Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science, 289(5486), 1922–1925. https://doi.org/10.1126/science.289.5486.1922
  • Rubhara, T. T., Mudhara, M., Oduniyi, O. S., & Antwi, M. A. (2020). Impacts of cash crop production on household food security for smallholder farmers: A case of Shamva district, Zimbabwe. Agriculture, 10(5), 188. https://doi.org/10.3390/agriculture10050188
  • Shackelford, G. E., Kelsey, R., & Dicks, L. V. (2019). Effects of cover crops on multiple ecosystem services: Ten meta-analyses of data from arable farmland in California and the Mediterranean. Land Use Policy, 88, 104204. https://doi.org/10.1016/j.landusepol.2019.104204
  • Skiba, U., Hergoualc’h, K., Drewer, J., Meijide, A., & Knohl, A. (2020). Oil palm plantations are large sources of nitrous oxide, but where are the data to quantify the impact on global warming? Current Opinion in Environmental Sustainability, 47, 81–88. https://doi.org/10.1016/j.cosust.2020.08.019
  • Song, X., Wang, X., Li, X., Zhang, W., & Scheffran, J. (2021). Policy-oriented versus market-induced: Factors influencing crop diversity across China. Ecological Economics, 190, 107184. https://doi.org/10.1016/j.ecolecon.2021.107184
  • Staniszewski, J., Guth, M., & Smędzik-Ambroży, K. (2023). Structural conditions of the sustainable intensification of agriculture in the regions of the European Union. Journal of Cleaner Production, 389, 136109. https://doi.org/10.1016/j.jclepro.2023.136109
  • Su, S., Wan, C., Li, J., Jin, X., Pi, J., Zhang, Q., & Weng, M. (2017). Economic benefit and ecological cost of enlarging tea cultivation in subtropical China: Characterizing the trade-off for policy implications. Land Use Policy, 66, 183–195. https://doi.org/10.1016/j.landusepol.2017.04.044
  • Su, Y., Li, C., Wang, K., Deng, J., Shahtahmassebi, A. R., Zhang, L., Ao, W., Guan, T., Pan, Y., & Gan, M. (2019). Quantifying the spatiotemporal dynamics and multi-aspect performance of non-grain production during 2000–2015 at a fine scale. Ecological Indicators, 101, 410–419. https://doi.org/10.1016/j.ecolind.2019.01.026
  • Sun, X., Pan, X., Jin, C., Li, Y., Xu, Q., Zhang, D., & Li, H. (2022). Life cycle assessment-based carbon footprint accounting model and analysis for integrated energy stations in China. International Journal of Environmental Research and Public Health, 19(24), 16451. https://doi.org/10.3390/ijerph192416451
  • Tang, K., Kragt, M. E., Hailu, A., & Ma, C. (2016). Carbon farming economics: What have we learned? Journal of Environmental Management, 172, 49–57. https://doi.org/10.1016/j.jenvman.2016.02.008
  • Tao, J. (2013). Hysteresis quantitative analysis of urbanization based on gray correlation degree model. Economic Geography, 33, 68–72. https://doi.org/10.15957/j.cnki.jjdl.2013.12.017. In Chinese.
  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677. https://doi.org/10.1038/nature01014
  • Tubiello, F. N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N., & Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8(1), 015009. https://doi.org/10.1088/1748-9326/8/1/015009
  • Vongvisouk, T., Mertz, O., Thongmanivong, S., Heinimann, A., & Phanvilay, K. (2014). Shifting cultivation stability and change: Contrasting pathways of land use and livelihood change in Laos. Applied Geography, 46, 1–10. https://doi.org/10.1016/j.apgeog.2013.10.006
  • West, P. C., Gerber, J. S., Engstrom, P. M., Mueller, N. D., Brauman, K. A., Carlson, K. M., Cassidy, E. S., Johnston, M., MacDonald, G. K., Ray, D. K., & Siebert, S. (2014). Leverage points for improving global food security and the environment. Science, 345(6194), 325–328. https://doi.org/10.1126/science.1246067
  • West, T. O., & Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agriculture, Ecosystems & Environment, 91(1–3), 217–232. https://doi.org/10.1016/S0167-8809(01)00233-X
  • Wilken, F., Wagner, P. D., Narasimhan, B., & Fiener, P. (2017). Spatio-temporal patterns of land use and cropping frequency in a tropical catchment of South India. Applied Geography, 89, 124–132. https://doi.org/10.1016/j.apgeog.2017.10.011
  • Wu, G., Liu, J., & Yang, L. (2021). Dynamic evolution of China’s agricultural carbon emission intensity and carbon offset potential. Chinese Population Resources and Environment, 31(10), 69–78. In Chinese.
  • Xiao, R., Su, S., Mai, G., Zhang, Z., & Yang, C. (2015). Quantifying determinants of cash crop expansion and their relative effects using logistic regression modeling and variance partitioning. International Journal of Applied Earth Observation and Geoinformation, 34, 258–263. https://doi.org/10.1016/j.jag.2014.08.015
  • Xu, H., Ma, B., & Gao, Q. (2021). Assessing the environmental efficiency of grain production and their spatial effects: Case study of major grain production areas in China. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.774343
  • Xu, X., Zhang, B., Liu, Y., Xue, Y., & Di, B. (2013). Carbon footprints of rice production in five typical rice districts in China. Acta Ecologica Sinica, 33(4), 227–232. https://doi.org/10.1016/j.chnaes.2013.05.010
  • Yan, M., Cheng, K., Luo, T., Yan, Y., Pan, G., & Rees, R. M. (2015). Carbon footprint of grain crop production in China – based on farm survey data. Journal of Cleaner Production, 104, 130–138. https://doi.org/10.1016/j.jclepro.2015.05.058
  • Yan, X., Cai, Z., Ohara, T., & Akimoto, H. (2003). Methane emission from rice fields in mainland China: Amount and seasonal and spatial distribution. Journal of Geophysical Research: Atmospheres, 108. https://doi.org/10.1029/2002JD003182
  • Yang, X., Gao, W., Zhang, M., Chen, Y., & Sui, P. (2014). Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain. Journal of Cleaner Production, 76, 131–139. https://doi.org/10.1016/j.jclepro.2014.03.063
  • Ye, D., Zhen, S., Wang, W., & Liu, Y. (2023). Spatial double dividend from China’s main grain-producing areas policy: Total factor productivity and the net carbon effect. Humanities and Social Sciences Communications, 10(1), 459. https://doi.org/10.1057/s41599-023-01962-x
  • Ye, W., Wang, C., Zhao, C., & Zheng, X. (2021). Spatial and temporal evolution of carbon footprint of tropical farmland ecosystem in Hainan Island in recent 20 years. Chinese Journal of Agricultural Resources and Regional Planning, 42(10), 114–126. In Chinese.
  • Zhang, D., Shen, J., Zhang, F., Li, Y., & Zhang, W. (2017). Carbon footprint of grain production in China. Scientific Reports, 7(1), 4126. https://doi.org/10.1038/s41598-017-04182-x
  • Zhao, X., Zheng, Y., Huang, X., Kwan, M.-P., & Zhao, Y. (2017). The effect of urbanization and farmland transfer on the spatial patterns of Non-grain farmland in China. Sustainability, 9(8), 1438. doi:10.3390/su9081438