269
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in diffractive liquid crystal grating devices using patterned electrodes

, , , &
Received 06 Mar 2024, Accepted 01 Apr 2024, Published online: 22 Apr 2024

References

  • M.J. Lockyear, A.P. Hibbins, K.R. White, and J.R. Sambles, One-way diffraction grating, Phys. Rev. E 74 (5), 056611 (2006).
  • E.G. Loewen, and E. Popov, Diffraction Gratings and Applications. (CRC Press, Boca Raton, 2018).
  • C.H. Wilcox, Scattering Theory for Diffraction Gratings (Springer Science & Business Media, Berlin, 2012), p. 46.
  • G. Bao, P. Li, and J. Lv, Numerical solution of an inverse diffraction grating problem from phaseless data, JOSA A 30 (3), 293–299 (2013).
  • J. Chandezon, G. Raoult, and D. Maystre, A new theoretical method for diffraction gratings and its numerical application, J. Opt. 11 (4), 235–241 (1980).
  • N. Bonod, and J. Neauport, Diffraction gratings: from principles to applications in high-intensity lasers, Adv. Opt. Photonics 8 (1), 156–199 (2016).
  • J.E. Harvey, and R.N. Pfisterer, Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings, Opt. Eng. 58 (8), 087105-21 (2019).
  • C. Grünzweig, F. Pfeiffer, O. Bunk, T. Donath, G. Kühne, G. Frei, M. Dierolf, and C. David, Design, fabrication, and characterization of diffraction gratings for neutron phase contrast imaging, Rev. Sci. Instrum. 79 (5), 053703-6 (2008).
  • G.W. Stroke, Diffraction gratings, Handb. Phys. 29, 426–754 (1967).
  • E.W. Palmer, M.C. Hutley, A. Franks, J.F. Verrill, and B. Gale, Diffraction gratings (manufacture), Rep. Prog. Phys 38 (8), 975–1048 (1975).
  • K. Kim, S.-U. Kim, M.-Y. Choi, M.H. Saeed, Y. Kim, J.-H. Na, Voxelated opto-physically unclonable functions via irreplicable wrinkles, Light Sci. Appl. 12 (1), 245 (2023).
  • M.H. Saeed, S. Zhang, Y. Cao, L. Zhou, J. Hu, I. Muhammad, J. Xiao, L. Zhang, and H. Yang, Recent advances in the polymer dispersed liquid crystal composite and its applications, Molecules 25 (23), 5510 (2020).
  • M.H. Saeed, M.-Y. Choi, K. Kim, J.-H. Lee, K. Kim, D. Kim, S.-U. Kim, H. Kim, S.-k. Ahn, R. Lan, and J.-H. Na, Electrostatically powered multimode liquid crystalline elastomer actuators, ACS Appl. Mat. Interfaces. 15 (48), 56285–56292 (2023).
  • R.C. Bailey, J.M. Nam, C.A. Mirkin, and J.T. Hupp, Real-time multicolor DNA detection with chemoresponsive diffraction gratings and nanoparticle probes, J. Am. Chem. Soc. 125 (44), 13541–13547 (2003).
  • A.M. Massari, K.J. Stevenson, and J.T. Hupp, Development and application of patterned conducting polymer thin films as chemoresponsive and electrochemically responsive optical diffraction gratings, J. Electroanal. Chem. 500 (1-2), 185–191 (2001).
  • A. Hettwer, J. Kranz, and J. Schwider, Three channel phase-shifting interferometer using polarization-optics and a diffraction grating, Opt. Eng. 39, 960–966 (2000).
  • J.A. Walker, The future of MEMS in telecommunications networks, J. Micromech. Microeng. 10 (3), R1–R7 (2000).
  • T. Loukina, S. Massenot, R. Chevallier, K. Heggarty, N.M. Shigapova, and A.F. Skochilov, Volume diffraction gratings for optical telecommunications applications: design study for a spectral equalizer, Opt. Eng. 43 (11), 2658–2665 (2004).
  • J. Zimmer, A. Wixforth, H. Karl, and H.J. Krenner, Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths, Appl. Phys. Lett. 100 (23), 231911-5 (2012).
  • T.O. Carroll, Liquid-Crystal Diffraction Grating, J. Appl. Phys. 43 (3), 767–770 (1972).
  • J. Sun, A.K. Srivastava, L. Wang, V.G. Chigrinov, and H.S. Kwok, Optically tunable and rewritable diffraction grating with photoaligned liquid crystals, Opt. Lett. 38 (13), 2342–2344 (2013).
  • Z.G. Zheng, Y. Li, H.K. Bisoyi, L. Wang, T.J. Bunning, and Q. Li, Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light, Nature 531 (7594), 352–356 (2016).
  • H.J. Sohn, S.W. Oh, Y. Choi, S.M. Ji, and T.H. Yoon, A switchable cholesteric phase grating with a low operating voltage, Crystals 11 (2), 100 (2021).
  • A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch, Adv. Opt. Mater. 3 (9), 1273–1279 (2015).
  • R. Dąbrowski, P. Kula, and J. Herman, High birefringence liquid crystals, Crystals 3 (3), 443–482 (2013).
  • D. Węgłowska, P. Kula, and J. Herman, High birefringence bistolane liquid crystals: synthesis and properties, RSC Adv. 6 (1), 403–408 (2016).
  • D.K. Yang, and S.T. Wu, Fundamentals of liquid crystal devices, (JWS, New York, 2014).
  • P.J. Collings, and J.W. Goodby, Introduction to Liquid Crystals: Chemistry and Physics (CRC Press, Boca Raton, 2019).
  • J. Beeckman, K. Neyts, and P.J. Vanbrabant, Liquid-crystal photonic applications, Opt. Eng. 50 (8), 081202 (2011).
  • V.A. Belyakov, V.E. Dmitrienko, and V.P. Orlov, Optics of cholesteric liquid crystals, Sov. Phys. Usp. 22 (2), 64–88 (1979).
  • K.A. Rutkowska, and A. Kozanecka-Szmigiel, Design of tunable holographic liquid crystalline diffraction gratings, Sensors 20 (23), 6789 (2020).
  • L. Xu, J. Zhang, and L.Y. Wu, Influence of phase delay profile on diffraction efficiency of liquid crystal optical phased array, Opt. Laser Technol. 41 (4), 509–516 (2009).
  • O. Köysal, M. Okutan, and M. Gökçen, Investigation of dielectric properties and diffraction efficiency enhancements caused by photothermal effect in DR9 dye-doped nematic liquid crystal, Opt. Commun. 284 (20), 4924–4928 (2011).
  • J.J. Butler, and M.S. Malcuit, Diffraction properties of highly birefringent liquid-crystal composite gratings, Opt. Lett. 25 (6), 420–422 (2000).
  • A. Othonos, Fiber bragg gratings, Rev. Sci. Instrum. 68 (12), 4309–4341 (1997).
  • L.R.B. Elton, and D.F. Jackson, X-ray diffraction and the Bragg law, Am. J. Phys. 34 (11), 1036–1038 (1966).
  • J. Kacher, C. Landon, B.L. Adams, and D. Fullwood, Bragg's Law diffraction simulations for electron backscatter diffraction analysis, Ultramicroscopy 109 (9), 1148–1156 (2009).
  • F. Rustichelli, On the deviation from the Bragg law and the widths of diffraction patterns in perfect crystals, Philos. Mag. 31 (1), 1–12 (1975).
  • D.H. Kim, Y.J. Lim, D.E. Kim, H. Ren, S.H. Ahn, and S.H. Lee, Past, present, and future of fringe-field switching-liquid crystal display, J. Inf. Disp. 15 (2), 99–106 (2014).
  • S.H. Lee, S.L. Lee, and H.Y. Kim, Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching, Appl. Phys. Lett. 73 (20), 2881–2883 (1998).
  • Y. Chen, Z. Luo, F. Peng, and S.T. Wu, Fringe-field switching with a negative dielectric anisotropy liquid crystal, Journal of Display Technology 9 (2), 74–77 (2013).
  • D. Xu, G. Tan, and S.T. Wu, Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal, Opt. Express 23 (9), 12274–12285 (2015).
  • H.J. Yun, M.H. Jo, I.W. Jang, S.H. Lee, S.H. Ahn, and H.J. Hur, Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy, Liq. Crys. 39 (9), 1141–1148 (2012).
  • M. Mucha, Polymer as an important component of blends and composites with liquid crystals, Prog. Polym. Sci. 28 (5), 837–873 (2003).
  • T.J. Bunning, L.V. Natarajan, V.P. Tondiglia, and R.L. Sutherland, Holographic polymer-dispersed liquid crystals (H-PDLCs), Annu. Rev. Mater. Sci. 30 (1), 83–115 (2000).
  • R.L. Sutherland, L.V. Natarajan, V.P. Tondiglia, and T.J. Bunning, Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes, Chem. Mater. 5 (10), 1533–1538 (1993).
  • G. Zharkova, I. Samsonova, S. Streltsov, V. Khachaturyan, A. Petrov, and N. Rudina, Electro-optical characterization of switchable Bragg gratings based on nematic liquid crystal–photopolymer composites with spatially ordered structure, Microelectron. Eng. 81 (2-4), 281–287 (2005).
  • K. Beev, L. Criante, D.E. Lucchetta, F. Simoni, and S. Sainov, Recording of evanescent waves in holographic polymer dispersed liquid crystals, J. Opt. A: Pure Appl. Opt. 8 (2), 205–207 (2006).
  • R.A. Ramsey, and S.C. Sharma, Switchable holographic gratings formed in polymer-dispersed liquid-crystal cells by use of a He–Ne laser, Opt. Lett. 30 (6), 592–594 (2005).
  • J. Qi, and G.P. Crawford, Holographically formed polymer dispersed liquid crystal displays, Displays 25 (5), 177–186 (2004).
  • M.S. Park, and B.K. Kim, Transmission holographic gratings produced using networked polyurethane acrylates with various functionalities, Nanotechnology 17 (8), 2012–2017 (2006).
  • W. Hu, A. Kumar Srivastava, X.W. Lin, X. Liang, Z.J. Wu, J.T. Sun, and Y.Q. Lu, Polarization independent liquid crystal gratings based on orthogonal photoalignments, Appl. Phys. Lett. 100 (11), 111116-4 (2012).
  • H. Chen, G. Tan, Y. Huang, Y. Weng, T.H. Choi, T.H. Yoon, and S.T. Wu, A low voltage liquid crystal phase grating with switchable diffraction angles, Sci. Rep. 7 (1), 39923 (2017).
  • T.H. Choi, J.H. Woo, J.M. Baek, Y. Choi, and T.H. Yoon, Fast control of haze value using electrically switchable diffraction in a fringe-field switching liquid crystal device, IEEE Trans. Electron Devices 64 (8), 3213–3218 (2017).
  • P. Yeh, Extended Jones matrix method, J. Opt. Soc. Am. 72 (4), 507–513 (1982).
  • C. Gu, and P. Yeh, Extended Jones matrix method. II, JOSA A 10 (5), 966–973 (1993).
  • I. Moreno, M.J. Yzuel, J. Campos, and A. Vargas, Jones matrix treatment for polarization Fourier optics, J. Mod. Opt 51 (14), 2031–2038 (2004).
  • T.-H. Choi, J.-H. Woo, B.-G. Jeon, J. Kim, M. Cha, and T.-H. Yoon, Fast fringe-field switching of vertically aligned liquid crystals between high-haze opaque and haze-free transparent states, Liq. Cryst. 45 (10), 1419–1427 (2018).
  • C.H. Han, H. Eo, T.H. Choi, W.S. Kim, and S.W. Oh, A simulation of diffractive liquid crystal smart window for privacy application, Sci. Rep. 12 (1), 11384 (2022).
  • C.H. Han, T.H. Choi, W.S. Kim, and S.W. Oh, Diffractive liquid crystal device for privacy window with a low operating voltage, J. Inf. Disp. 24 (4), 249–254 (2023).
  • C.H. Han, and S.W. Oh, A high-haze liquid crystal grating device with asymmetric anchoring energies, Displays 81, 102581 (2024).