59
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cyclic response of granular soils evaluated through a strain hardening model incorporated into the generalized plasticity framework

ORCID Icon
Received 17 May 2022, Accepted 29 Mar 2024, Published online: 09 Apr 2024

References

  • Alaei, E., B. Marks, and I. Einav. 2021. “A Hydrodynamic-Plastic Formulation for Modelling Sand Using a Minimal Set of Parameters.” Journal of the Mechanics and Physics of Solids 1 (151): 104388. https://doi.org/10.1016/j.jmps.2021.104388.
  • Andrianopoulos, K. I., A. G. Papadimitriou, and G. D. Bouckovalas. 2010. “Bounding Surface Plasticity Model for the Seismic Liquefaction Analysis of Geostructures.” Soil Dyn Earthq Eng 30 (10): 895–911. https://doi.org/10.1016/j.soildyn.2010.04.001.
  • Banerjee, R., R. Chattaraj, Y. M. Parulekar, and A. Sengupta. 2021. “Numerical Prediction of Undrained Cyclic Triaxial Experiments on Saturated Kasai River Sand Using Two Constitutive Models of Liquefaction.” Bulletin of Engineering Geology and the Environment 80 (11): 8565–8582. https://doi.org/10.1007/s10064-021-02449-2.
  • Barrero, A. R., M. Taiebat, and Y. F. Dafalias. 2020. “Modeling Cyclic Shearing of Sands in the Semifluidized State.” International Journal for Numerical and Analytical Methods in Geomechanics 44 (3): 371–388. https://doi.org/10.1002/nag.3007.
  • Boulanger, R. W., and K. Ziotopoulou. 2013. “Formulation of a Sand Plasticity Plane-Strain Model for Earthquake Engineering Applications.” Soil Dyn Earthq Eng 53:254–267. https://doi.org/10.1016/j.soildyn.2013.07.006.
  • Castro, G. 1969. “Liquefaction of sands.” Ph.D. Thesis. Harvard University.
  • Dafalias, Y. F., and Bounding Surface Plasticity, I. 1986. “Mathematical Foundation and Hypoplasticity.” J Eng Mech ASCE 112 (9): 966–987. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:9(966).
  • Dafalias, Y. F., and L. R. Hermann. 1982. “Bounding Surface Formulation of Soil Plasticity, Soil Mechanics-Transient and Cyclic Loads.” In Soil Mech Cycl Loads, edited by G. N. Pande and O. C. Zienkiewicz, 253–282.
  • Dafalias, Y. F., and E. P. Popov. 1975. “A Model of Nonlinearly Hardening Materials for Complex Loading.” Acta Mechanica 21 (3): 173–192. https://doi.org/10.1007/BF01181053.
  • Di Prisco, C., and C. Zambelli. 2003. “Cyclic and Dynamic Mechanical Behaviour of Granular Soils: Experimental Evidence and Constitutive Modelling.” Revue française de génie civil 7 (7–8): 881–910. https://doi.org/10.1080/12795119.2003.9692527.
  • Duque, J., D. Mašín, and W. Fuentes. 2020. “Improvement to the Intergranular Strain Model for Larger Numbers of Repetitive Cycles.” Acta Geotechnica 15 (12): 3593–3604. https://doi.org/10.1007/s11440-020-01073-w.
  • Duque, J., M. Tafili, G. Seidalinov, D. Mašín, and W. Fuentes. 2022. “Inspection of Four Advanced Constitutive Models for Fine-Grained Soils Under Monotonic and Cyclic Loading.” Acta Geotechnica 17 (10): 1–24. https://doi.org/10.1007/s11440-021-01437-w.
  • Duque, J., M. Yang, W. Fuentes, D. Mašín, and M. Taiebat. 2022. “Characteristic Limitations of Advanced Plasticity and Hypoplasticity Models for Cyclic Loading of Sands.” Acta Geotechnica 17 (6): 2235–2257. https://doi.org/10.1007/s11440-021-01418-z.
  • Elbadawy, M. A., Y. G. Zhou, and K. Liu. 2022. “A Modified Pressure Dependent Multi-Yield Surface Model for Simulation of LEAP-Asia-2019 Centrifuge Experiments.” Soil Dynamics and Earthquake Engineering 154 (1): 107135. https://doi.org/10.1016/j.soildyn.2021.107135.
  • Elgamal, A., Z. Yang, and E. Parra. 2002. “Computational Modeling of Cyclic Mobility and Post-Liquefaction Site Response.” Soil Dyn Earthq Eng 22 (4): 259–271. https://doi.org/10.1016/S0267-7261(02)00022-2.
  • Fuentes, W., D. Mašín, and J. Duque. 2021. “Constitutive Model for Monotonic and Cyclic Loading on Anisotropic Clays.” Géotechnique 71 (8): 657–673. https://doi.org/10.1680/jgeot.18.P.176.
  • Fu, H. Q., X. M. Yuan, and M. Wang. 2018. “An Incremental Model of Pore Pressure for Saturated Sand Based on in-Situ Liquefaction Test.” Rock and Soil Mechanics 39 (5): 1611–1618.
  • Galavi, V. 2021. “DeltaSand: A State Dependent Double Hardening Elasto-Plastic Model for Sand: Formulation and Validation.” Computers and Geotechnics 129 (1): 103844. https://doi.org/10.1016/j.compgeo.2020.103844.
  • Ghaboussi, J., and H. Momen 1982. “Modeling and Analysis of Cyclic Behaviour of Sands.” In Soil Mechanics-Transient and Cyclic Loads, edited by G. N. Pande and O. C. Zienkiewicz, 313–342. John Wiley and Sons.
  • Gudehus, G. 1996. “A Comprehensive Constitutive Equation for Granular Materials.” Soils and Foundations 36 (1): 1–12. https://doi.org/10.3208/sandf.36.1.
  • Heidarzadeh, H., and M. Oliaei. 2018a. “Development of a Generalized Model Using a New Plastic Modulus Based on Bounding Surface Plasticity.” Acta Geotechnica 13:925–941. https://doi.org/10.1007/s11440-017-0599-0.
  • Heidarzadeh, H., and M. Oliaei. 2018b. “An Efficient Generalized Plasticity Constitutive Model with Minimal Complexity and Required Parameters.” KSCE Journal of Civil Engineering 22:1109–1120. https://doi.org/10.1007/s12205-017-1037-4.
  • Herle, I., and G. Gudehus. 1999. “Determination of Parameters of a Hypoplastic Constitutive Model from Properties of Grain Assemblies.” Mechanics of Cohesive-Frictional Materials 4 (5): 461–486. https://doi.org/10.1002/(SICI)1099-1484(199909)4:5<461:AID-CFM71>3.0.CO;2-P.
  • Irani, N., A. Lashkari, M. Tafili, and T. Wichtmann. 2022. “A State-Dependent Hyperelastic-Plastic Constitutive Model Considering Shear-Induced Particle Breakage in Granular Soils.” Acta Geotechnica 17 (11): 5275–5298. https://doi.org/10.1007/s11440-022-01636-z.
  • Ishihara, K., and S. Okada. 1982. “Effects of Large Preshearing on Cyclic Behaviour of Sand.” Soil Found 22 (3): 109–125. https://doi.org/10.3208/sandf1972.22.3_109.
  • Kaliakan, V. N., and Y. F. Dafalias. 1989. “Simplifications to the Bounding Surface Model for Cohesive Soils.” Numerical and Analytical Methods in Geomechanics 13 (1): 91–100. https://doi.org/10.1002/nag.1610130108.
  • Kolymbas, D. 1977. “A Rate Dependent Constitutive Equation for Soils.” Mech Res Comm 4 (6): 367–372. https://doi.org/10.1016/0093-6413(77)90056-8.
  • Krieg, R. D. 1975. “A Practical Two Surface Plasticity Theory.” Journal of Applied Mechanics 42 (3): 641–646. https://doi.org/10.1115/1.3423656.
  • Lanzano, G., C. Visone, E. Bilotta, and F. S. de Magistris. 2016. “Experimental Assessment of the Stress–Strain Behaviour of Leighton Buzzard Sand for the Calibration of a Constitutive Model.” Geotechnical and Geological Engineering 34 (4): 991–1012. https://doi.org/10.1007/s10706-016-0019-5.
  • Lashkari, A., and M. S. Yaghtin. 2018. “Sand Flow Liquefaction Instability Under Shear-Volume Coupled Strain Paths.” Geotechnique 68 (11): 1002–1024. https://doi.org/10.1680/jgeot.17.P.164.
  • Limnaiou, T. G., and A. G. Papadimitriou. 2022. “Bounding Surface Plasticity Model with Reversal Surfaces for the Monotonic and Cyclic Shearing of Sands.” Acta Geotechnica 18 (1): 1–29. https://doi.org/10.1007/s11440-022-01529-1.
  • Lode, W. 1926. “Versuche über den einfuss der mittleren hauptspannung auf das fliessen der metalle eisen kupfer und nickel.” Zeitung Phys 36 (11–12): 913–939. https://doi.org/10.1007/BF01400222.
  • Medicus, G., D. Kolymbas, and W. Fellin. 2016. “Proportional Stress and Strain Paths in Barodesy.” International Journal for Numerical and Analytical Methods in Geomechanics 40 (4): 509–522. https://doi.org/10.1002/nag.2413.
  • Mei, X., S. M. Olson, and Y. M. Hashash. 2020. “Evaluation of a Simplified Soil Constitutive Model Considering Implied Strength and Pore-Water Pressure Generation for One-Dimensional (1D) Seismic Site Response.” Canadian Geotechnical Journal 57 (7): 974–991. https://doi.org/10.1139/cgj-2018-0893.
  • Mousavi, S., and M. Ghayoomi. 2021 May 1. “Seismic Compression of Unsaturated Silty Sands: A Strain-Based Approach.” Journal of Geotechnical and Geoenvironmental Engineering 147 (5): 04021023. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002507.
  • Mroz, Z. 1967. “On the Description of Anisotropic Work-Hardening.” Journal of the Mechanics and Physics of Solids 15 (3): 163–175. https://doi.org/10.1016/0022-5096(67)90030-0.
  • Mroz, Z., V. A. Norris, and O. Zienkiewicz. 1978. “An Anisotropic Hardening Model for Soils and Its Application to Cyclic Loading.” Numerical and Analytical Methods in Geomechanics 2 (3): 203–221. https://doi.org/10.1002/nag.1610020303.
  • Mroz, Z., V. A. Norris, and O. C. Zienkiewicz. 1981. “An Anisotropic Critical State Model for Soils Subject to Cyclic Loading.” Géotechnique 31 (4): 451–469. https://doi.org/10.1680/geot.1981.31.4.451.
  • Niemunis, A. 2003. “Extended Hypoplastic Models for Soils.” Ruhr-University Bochum.
  • Niemunis, A., and I. Herle. 1997. “Hypoplastic Model for Cohesionless Soils with Elastic Strain Range.” Mech Res Comm 2 (4): 279–299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4<279:AID-CFM29>3.0.CO;2-8.
  • Osinov, V. A. 2003. “Cyclic Shearing and Liquefaction of Soil Under Irregular Loading: An Incremental Model for the Dynamic Earthquake-Induced Deformation.” Soil Dyn Earthq Eng 23 (7): 535–548. https://doi.org/10.1016/S0267-7261(03)00072-1.
  • Papadimitriou, A. G., and G. D. Bouckovalas. 2002. “Plasticity Model for Sand Under Small and Large Cyclic Strains: A Multiaxial Formulation.” Soil Dyn Earthq Eng 22 (3): 191–204. https://doi.org/10.1016/S0267-7261(02)00009-X.
  • Papadimitriou, A. G., G. D. Bouckovalas, and Y. F. Dafalias. 2001. “Plasticity Model for Sand Under Small and Large Cyclic Strain.” Journal of Geotechnical and Geo-Environmental Engineering 127 (11): 973–983. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:11(973).
  • Pastor, M., and O. C. Zienkiewicz A Generalized Plasticity Hierarchical Model for Sand Under Monotonic and Cyclic Loading. Proc. 2nd Int. Conf. Numer. Methods Geomech, Ghent, Belgium: 1986, 131–150.
  • Pastor, M., O. Zienkiewicz, and A. H. C. Chan. 1990. “Generalized Plasticity and Modelling of Soil Behaviour.” Theme/Feature Paper Int J Numer Anal Method Geomech 14 (3): 151–190. https://doi.org/10.1016/0148-9062(90)91290-n.
  • Pastor, M., O. C. Zienkiewicz, and K. H. Leung. 1985. “Simple Model for Transient Soil Loading in Earthquake Analysis.” Int J Numer Anal Method Geomech 9 (5): 477–498. https://doi.org/10.1002/nag.1610090506.
  • Prevost, J. H. 1977. “Mathematical Modeling of Monotonic and Cyclic Undrained Clay Behavior.” Int J Num Anal Meth 1 (2): 195–216. https://doi.org/10.1002/nag.1610010206.
  • Rahimi, M., D. Chan, and A. Nouri. 2017. “Constitutive Model for Cyclic Behaviour of Cohesionless Sands.” Geomechanics and Geoengineering 12 (1): 36–47. https://doi.org/10.1080/17486025.2016.1156168.
  • Rahman, M. S., and M. B. C. Ulker. 2018. Modeling and Computing for Geotechnical Engineering. CRC Press Science Publishers. https://doi.org/10.1201/9780429426186.
  • Reyes, A., M. Yang, A. R. Barrero, and M. Taiebat. 2021. “Numerical Modeling of Soil Liquefaction and Lateral Spreading Using the SANISAND-Sf Model in the LEAP Experiments.” Soil Dynamics and Earthquake Engineering 143 (1): 106613. https://doi.org/10.1016/j.soildyn.2021.106613.
  • Tafili, M., A. Ganal, T. Wichtmann, and O. Reul. 2023. “On the AVISA Model for Clay–Recommendations for Calibration and Verification Based on the Back Analysis of a Piled Raft.” Computers and Geotechnics 154 (1): 105126. https://doi.org/10.1016/j.compgeo.2022.105126.
  • Tafili, M., C. Grandas, T. Triantafyllidis, and T. Wichtmann. 2022. “Constitutive Anamnesis Model (CAM) for Fine‐Grained Soils.” International Journal for Numerical and Analytical Methods in Geomechanics 46 (15): 2817–2848. https://doi.org/10.1002/nag.3428.
  • Tafili, M., G. Medicus, M. Bode, and W. Fellin. 2022. “Comparison of Two Small-Strain Concepts: ISA and Intergranular Strain Applied to Barodesy.” Acta Geotechnica 17 (10): 4333–4358. https://doi.org/10.1007/s11440-022-01454-3.
  • Tafili, M., and T. Triantafyllidis. 2020. “AVISA: Anisotropic Visco-ISA Model and Its Performance at Cyclic Loading.” Acta Geotechnica 15:2395–2413. https://doi.org/10.1007/s11440-020-00925-9.
  • Taiebat, M., H. Shahir, and A. Pak. 2007. “Study of Pore Pressure Variation During Liquefaction Using Two Constitutive Models for Sand.” Soil Dyn Earthq Eng 27 (1): 60–72. https://doi.org/10.1016/j.soildyn.2006.03.004.
  • Tatlıoğlu, E., M. B. C. Ulker, and M. A. Lav Effect of Mean Stress Dependency of Elastic Soil Moduli on the Constitutive Behavior of Sand Through UBCSAND”, 26th European Young Geotechnical Engineers Conference, 2018, Sept. 11–14, Graz, Austria.
  • Tatsuoka, F. A Fundamental Study on the Deformation of a Sand by Triaxial Tests, Dr. Thesis, University of Tokyo, 1972, (in Japanese).
  • Ulker, M. B. C. Constitutive Modeling of Cyclic Seabed Behavior Around Coastal and Offshore Structures: Two Robust Models and Their Predicting Capabilities, Proc. 29th Int. Ocean and Polar Eng. Conf., ISOPE, 2019; June 16-21, Honolulu
  • Ulker, M. B. C. 2017. “A New Hardening Interpolation Rule for the Dynamic Behavior Soils Using Generalized Plasticity Framework.” In Proceedings of the 19th Int. Conf on Soil Mechanics and Geotech. Engg. (ICSMGE), 17-22 September. Seoul, South Korea: ICSMGE.
  • Wang, R., W. Cao, L. Xue, and J. M. Zhang. 2021. “An Anisotropic Plasticity Model Incorporating Fabric Evolution for Monotonic and Cyclic Behavior of Sand.” Acta Geotechnica 16 (1): 43–65. https://doi.org/10.1007/s11440-020-00984-y.
  • Wang, Z., and F. Ma. 2019. Soil Dynamics and Earthquake Engineering 127. https://doi.org/10.1016/j.soildyn.2019.105843.
  • Wang, Z. L., and Dafalias YF SC. 1990. “Bounding Surface Hypoplasticity Model for Sand.” J Eng Mech ASCE 116 (5): 983–1001. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:5(983).
  • Wang, G., and J. M. Zhang. 2007. “A Cyclic Elasto-Plastic Constitutive Model for Evaluating Large Liquefaction-Induced Deformation of Sand.” Yantu Gongcheng Xuebao Chinese J Geotech Eng 29 (1): 51–59.
  • Wang, R., J. M. Zhang, and G. Wang. 2014. “A Unified Plasticity Model for Large Post-Liquefaction Shear Deformation of Sand.” Computers and Geotechnics 59:54–66. https://doi.org/10.1016/j.compgeo.2014.02.008.
  • Wichtmann, T., and T. Triantafyllidis. 2016a. “An Experimental Database for the Development, Calibration and Verification of Constitutive Models for Sand with Focus to Cyclic Loading: Part I-Tests with Monotonic Loading and Stress Cycles.” Acta Geotechnica 11: 739–761.
  • Wichtmann, T., and T. Triantafyllidis. 2016b. “An Experimental Database for the Development, Calibration and Verification of Constitutive Models for Sand with Focus to Cyclic Loading: Part II-Tests with Strain Cycles and Combined Loading.” Acta Geotechnica 11: 763–774.
  • Wichtmann, T., W. Fuentes, and T. Triantafyllidis. 2019. “Inspection of Three Sophisticated Constitutive Models Based on Monotonic and Cyclic Tests on Fine Sand: Hypoplasticity Vs. Sanisand Vs.” ISA Soil Dynamics and Earthquake Engineering 124:172–183. https://doi.org/10.1016/j.soildyn.2019.05.001.
  • Wolffersdorff, P. A. 1996. “A Hypoplastic Relation for Granular Materials with a Predefined Limit State Surface.” Mechanics of Cohesive-Frictional Soils 1 (3): 251–271. https://doi.org/10.1002/(SICI)1099-1484(199607)1:3<251:AID-CFM13>3.0.CO;2-3.
  • Xu, L. Y., J. Z. Zhang, F. Cai, W. Y. Chen, and Y. Y. Xue. 2019. “Constitutive Modeling the Undrained Behaviors of Sands with Non-Plastic Fines Under Monotonic and Cyclic Loading.” Soil Dynamics and Earthquake Engineering 123 (1): 413–424. https://doi.org/10.1016/j.soildyn.2019.05.021.
  • Yang, S., and H. I. Ling. 2005. “Calibration of a generalized plasticity model and its application to liquefaction analysis. Soil Const. Model. Evaluation Selection and Calibration.” In American Society of Civil Engineers, Geotechnical Special Publications (GSP 128), edited by A. Jerry, P.E. Yamamuro, and N. K. Victor, 512. 9780784407714.
  • Yang, M., M. Taiebat, and Y. F. Dafalias. 2022. “SANISAND-MSf: A Sand Plasticity Model with Memory Surface and Semifluidised State.” Géotechnique 72 (3): 227–246. https://doi.org/10.1680/jgeot.19.P.363.
  • Zahmatkesh, A., and A. Janalizadeh Choobbasti. 2017. “Calibration of an Advanced Constitutive Model for Babolsar Sand Accompanied by Liquefaction Analysis.” J Earthq Eng 21 (4): 679–699. https://doi.org/10.1080/13632469.2016.1172378.
  • Zahmatkesh, A., and R. Noorzad. 2018. “Investigation of Monotonic and Cyclic Behavior of Sand Using a Bounding Surface Plasticity Model.” Arabian Journal Geosciences 11 (2): 40. https://doi.org/10.1007/s12517-018-3389-6.
  • Zhu, W., G. Ye, L. Gu, and F. Zhang. 2022. “Modeling of Monotonic and Cyclic Behaviors of Sand Under Small and Normal Confining Stresses.” Soil Dynamics and Earthquake Engineering 156:107209. https://doi.org/10.1016/j.soildyn.2022.107209.
  • Zienkiewicz, O. C., K. H. Leung, and M. Pastor. 1985. “Simple Model for Transient Soil Loading in Earthquake Analysis. I. Basic Model and Its Application.” Numerical and Analytical Methods in Geomechanics 9:453–476. https://doi.org/10.1002/nag.1610090505.
  • Zienkiewicz, O. C., and Z. Mroz. 1984. “Generalized Plasticity Formulation and Applications to Geomechanics.” Mechanics of Engineering Materials 44 (3): 655–680.
  • Ziotopoulou, K., and R. W. Boulanger. 2016. “Plasticity Modeling of Liquefaction Effects Under Sloping Ground and Irregular Cyclic Loading Conditions.” Soil Dyn Earthq Eng 84:269–283. https://doi.org/10.1016/j.soildyn.2016.02.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.