1,780
Views
0
CrossRef citations to date
0
Altmetric
Review

Can antibodies be “vegan”? A guide through the maze of today’s antibody generation methods

ORCID Icon
Article: 2343499 | Received 28 Feb 2024, Accepted 11 Apr 2024, Published online: 18 Apr 2024

References

  • von Behring E, Kitasato S. Über das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren. Deutsche Medizinische Wochenzeitschrift. 1890;16:1113–13.
  • Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–97. doi:10.1038/256495a0.
  • Barbas CF, Kang AS, Lerner RA, Benkovic SJ. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci USA. 1991 Sep 15;88(18):7978–82. doi:10.1073/pnas.88.18.7978.
  • Breitling F, Dübel S, Seehaus T, Klewinghaus I, Little M. A surface expression vector for antibody screening. Gene. 1991 Aug 15;104(2):147–53. doi:10.1016/0378-1119(91)90244-6.
  • McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990 Dec 6;348(6301):552–54. doi:10.1038/348552a0.
  • Coons AH. Immunofluorescence. Public Health Rep. 1960 Oct;75(10):937–43.
  • Crescioli S, Kaplon H, Chenoweth A, Wang L, Visweswaraiah J, Reichert JM. Antibodies to watch in 2024. Mabs-austin. 2024;16(1):2297450. doi:10.1080/19420862.2023.2297450.
  • Chen BX, Wilson SR, Das M, Coughlin DJ, Erlanger BF. Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10809–13. doi:10.1073/pnas.95.18.10809.
  • Lee CC, Su YC, Ko TP, Lin LL, Yang CY, Chang SSC, Roffler SR, Wang AHJ. Structural basis of polyethylene glycol recognition by antibody. J Biomed Sci. 2020 Jan 7;27(1):12. doi:10.1186/s12929-019-0589-7.
  • Wu TT, Kabat EA. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med. 1970 Aug 1;132(2):211–50. doi:10.1084/jem.132.2.211.
  • Early P, Huang H, Davis M, Calame K, Hood L. An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH. Cell. 1980 Apr;19(4):981–92. doi:10.1016/0092-8674(80)90089-6.
  • Chi X, Li Y, Qiu X. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology. 2020 Jul;160(3):233–47. doi:10.1111/imm.13176.
  • Bradbury ARM, Trinklein ND, Thie H, Wilkinson IC, Tandon AK, Anderson S, Bladen CL, Jones B, Aldred SF, Bestagno M. et al. When monoclonal antibodies are not monospecific: Hybridomas frequently express additional functional variable regions. Mabs-austin. 2018 Jun;10(4):539–46. doi:10.1080/19420862.2018.1445456.
  • Fuchs P, Dübel S, Breitling F, Braunagel M, Klewinghaus I, Little M. Recombinant human monoclonal antibodies. Basic principles of the immune system transferred to E. coli. Cell Biophys. 1992;21(1–3):81–91. doi:10.1007/BF02789480.
  • Barroso J, Halder M, Whelan M. EURL ECVAM recommendation on non-animal-derived antibodies. Luxembourg: Publications Office of the European Union; 2020.
  • Syrlybaeva R, Strauch EM, Valencia A. Deep learning of protein sequence design of protein–protein interactions. Bioinformatics. 2023 Jan 1;39(1):btac733. doi:10.1093/bioinformatics/btac733.
  • Hifumi T, Yamamoto A, Ato M, Sawabe K, Morokuma K, Morine N, Kondo Y, Noda E, Sakai A, Takahashi J. et al. Clinical serum therapy: benefits, cautions, and potential applications. Keio J Med. 2017 Dec 25;66(4):57–64. doi:10.2302/kjm.2016-0017-IR.
  • Bradbury A, Plückthun A. Reproducibility: Standardize antibodies used in research. Nature. 2015 Feb;518(7537):27–29. doi:10.1038/518027a.
  • Hjelm B, Forsström B, Löfblom J, Rockberg J, Uhlén M and Lu S. Parallel Immunizations of Rabbits Using the Same Antigen Yield Antibodies with Similar, but Not Identical, Epitopes. PLoS ONE. 2012;7(12):e45817. doi:10.1371/journal.pone.0045817.
  • Li Y, Kong Y, Yu X, Yu W, Wen K, Shen J, Wang Z. Characteristics of rabbit hapten-specific and germline-based BCR repertoires following repeated immunization. One Health Adv. 2023 Jun 29;1(1):17. doi:10.1186/s44280-023-00013-z.
  • Englebienne P, Doyen G. An improved method for isolation of specific antibodies by affinity chromatography; application to an antiserum to testosterone. J Immunol Methods. 1983 Aug 26;62(2):197–204. doi:10.1016/0022-1759(83)90247-8.
  • Bradbury AM, Plückthun A. Antibodies: validate recombinants once. Nature. 2015 Apr;520(7547):295–295. doi:10.1038/520295b.
  • Laflamme C, McKeever PM, Kumar R, Schwartz J, Kolahdouzan M, Chen CX, You Z, Benaliouad F, Gileadi O, McBride HM. et al. Implementation of an antibody characterization procedure and application to the major ALS/FTD disease gene C9ORF72. Elife. 2019 Oct 15;8:e48363. doi:10.7554/eLife.48363.
  • Ayoubi R, Ryan J, Biddle MS, Alshafie W, Fotouhi M, Bolivar SG, Ruiz Moleon V, Eckmann P, Worrall D, McDowell I. et al. Scaling of an antibody validation procedure enables quantification of antibody performance in major research applications. eLife. 2023;12:RP91645. doi:10.7554/eLife.91645.2.
  • Begley CG, Ellis LM. Drug development: Raise standards for preclinical cancer research. Nature. 2012 Mar 28;483(7391):531–33. doi:10.1038/483531a.
  • Algenäs C, Agaton C, Fagerberg L, Asplund A, Björling L, Björling E, Kampf C, Lundberg E, Nilsson P, Persson A. et al. Antibody performance in western blot applications is context-dependent. Biotechnol J. 2014 Mar;9(3):435–45. doi:10.1002/biot.201300341.
  • Berglund L, Björling E, Oksvold P, Fagerberg L, Asplund A, Szigyarto CAK, Persson A, Ottosson J, Wernérus H, Nilsson P. et al. A genecentric human protein atlas for expression profiles based on antibodies. Mol Cell Proteomics. 2008 Oct;7(10):2019–27. doi:10.1074/mcp.R800013-MCP200.
  • Voskuil JLA, Bandrowski A, Begley CG, Bradbury ARM, Chalmers AD, Gomes AV, Hardcastle T, Lund-Johansen F, Plückthun A, Roncador G. et al. The antibody society’s antibody validation webinar series. Mabs-austin. 2020 Jan 1;12(1):1794421. doi:10.1080/19420862.2020.1794421.
  • Elliott S, Busse L, Bass MB, Lu H, Sarosi I, Sinclair AM, Spahr C, Um M, Van G, Begley CG. et al. Anti-Epo receptor antibodies do not predict Epo receptor expression. Blood. 2006 Mar 1;107(5):1892–95. doi:10.1182/blood-2005-10-4066.
  • Andersson S, Sundberg M, Pristovsek N, Ibrahim A, Jonsson P, Katona B, Clausson C-M, Zieba A, Ramström M, Söderberg O. et al. Insufficient antibody validation challenges oestrogen receptor beta research. Nat Commun. 2017 Jun 15;8(1):15840. doi:10.1038/ncomms15840.
  • Schrohl AS, Pedersen HC, Jensen SS, Nielsen SL, Brünner N. Human epidermal growth factor receptor 2 (HER2) immunoreactivity: specificity of three pharmacodiagnostic antibodies. Histopathology. 2011 Nov;59(5):975–83. doi:10.1111/j.1365-2559.2011.04034.x.
  • Vaezi AE, Bepler G, Bhagwat NR, Malysa A, Rubatt JM, Chen W, Hood BL, Conrads TP, Wang L, Kemp CE. et al. Choline phosphate cytidylyltransferase-α is a novel antigen detected by the anti-ERCC1 antibody 8F1 with biomarker value in patients with lung and head and neck squamous cell carcinomas. Cancer. 2014 Jun 15;120(12):1898–907. doi:10.1002/cncr.28643.
  • Lukinavičius G, Lavogina D, Gönczy P, Johnsson K. [Letter to the editor]: Commercial Cdk1 antibodies recognize the centrosomal protein Cep152. Biotechniques. 2013 Sep;55(3):111–14. doi:10.2144/000114074.
  • Baker M. Reproducibility crisis: Blame it on the antibodies. Nature. 2015 May 21;521(7552):274–76. doi:10.1038/521274a.
  • Miyanishi S. General properties and kinds of antibodies for enzyme immunoassay–characteristics and advantages of polyclonal and monoclonal antibodies. Nihon Rinsho. 1995 Sep;53(9):2149–53.
  • Haurum J, Bregenholt S. Recombinant polyclonal antibodies: therapeutic antibody technologies come full circle. IDrugs. 2005 May;8(5):404–09.
  • Wenzel EV, Russo G, Dübel S. Multiklonale Antikörper als Ersatz für Zweitantikörper aus Seren. Biospektrum. 2020 Jun;26(4):416–17. doi:10.1007/s12268-020-1401-7.
  • Köhler G, Milstein C. Continuous culture of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–97. doi:10.1038/256495a0.
  • Zola H, Swart B. The human leucocyte differentiation antigens (HLDA) workshops: the evolving role of antibodies in research, diagnosis and therapy. Cell Res. 2005 Sep;15(9):691–94. doi:10.1038/sj.cr.7290338.
  • Dübel S, Reichert JM. Handbook of therapeutic antibodies. 2nd. Weinheim: Wiley-VCH; 2014.
  • Shi Z, Zhang Q, Yan H, Yang Y, Wang P, Zhang Y, Deng Z, Yu M, Zhou W, Wang Q. et al. More than one antibody of individual B cells revealed by single-cell immune profiling. Cell Discov. 2019;5(1):64. doi:10.1038/s41421-019-0137-3.
  • Kontsek P, Novák M, Kontseková E. Karyotype analysis of hybridomas producing monoclonal antibodies against different antigens. Folia Biol (Praha). 1988;34:99–104.
  • Rodova MA, LA T, Kushch AA, Novokhatskiĭ AS. Karyological analysis of hybridoma lines producing monoclonal antibodies to viral antigens. Tsitol Genet. 1985;19:425–28.
  • Wollweber L, Münster H, Hoffmann S, Siller K, Greulich KO. Early phase karyotype analysis of chromosome segregation after formation of mouse-mouse hybridomas with chromosome painting probes. Chromosome Res. 2000;8(1):37–44. doi:10.1023/A:1009223102068.
  • Zhil’tsova MA, Trofimova MN, Novikov VV. Karyological analysis of hybridoma cells after prolonged cultivation. Zh Mikrobiol Epidemiol Immunobiol. 1989 Jun;6:99–102.
  • Breitling, F., and Dübel, S. (1997). Cloning and Expression of Single Chain Fragments [scFv] from Mouse and Rat Hybridomas. In 'Molecular Diagnosis of Infectious Diseases' in the series 'Methods in Molecular Medicine, Vol 13', U. Reischl, ed. (Humana Press Inc//Totowa, NY), pp. 581-591.
  • Larrick JW, Danielsson L, Brenner CA, Abrahamson M, Fry KE, Borrebaeck CA. Rapid cloning of rearranged immunoglobulin genes from human hybridoma cells using mixed primers and the polymerase chain reaction. Biochem Biophys Res Commun. 1989 May 15;160(3):1250–56. doi:10.1016/S0006-291X(89)80138-X.
  • Mitchell KG, Gong B, Hunter SS, Burkart-Waco D, Gavira-O’Neill CE, Templeton KM, Goethel ME, Bzymek M, MacNiven LM, Murray KD. et al. High-volume hybridoma sequencing on the NeuroMabSeq platform enables efficient generation of recombinant monoclonal antibodies and scFvs for neuroscience research. Sci Rep. 2023 Sep 27;13(1):16200. doi:10.1038/s41598-023-43233-4.
  • Subas Satish HP, Zeglinski K, Uren RT, Nutt SL, Ritchie ME, Gouil Q, Kluck, RM. Nab-seq: an accurate, rapid, and cost-effective method for antibody long-read sequencing in hybridoma cell lines and single B cells. Mabs-austin. 2022;14(1):2106621. doi:10.1080/19420862.2022.2106621.
  • Frenzel A, Hust M, Schirrmann T. Expression of recombinant Antibodies. Front Immunol. 2013 Jul 29;4:217. doi:10.3389/fimmu.2013.00217.
  • Backliwal G, Hildinger M, Chenuet S, Wulhfard S, De Jesus M, Wurm FM. Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res. 2008 Sep;36(15):e96. doi:10.1093/nar/gkn423.
  • Jäger V, Büssow K, Wagner A, Weber S, Hust M, Frenzel A, Schirrmann T. High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. BMC Biotechnol. 2013 Jun 26;13(1):52. doi:10.1186/1472-6750-13-52.
  • Reinhart D, Damjanovic L, Kaisermayer C, Sommeregger W, Gili A, Gasselhuber B, Castan A, Mayrhofer P, Grünwald-Gruber C, Kunert R. et al. Bioprocessing of recombinant CHO-K1, CHO-DG44, and CHO-S: CHO expression hosts favor either mAb production or biomass synthesis. Biotechnol J. 2019 Mar;14(3):e1700686. doi:10.1002/biot.201700686.
  • Leenaars M, Hendriksen CFM. Critical steps in the production of polyclonal and monoclonal antibodies: evaluation and recommendations. ILAR J. 2005;46(3):269–79. doi:10.1093/ilar.46.3.269.
  • Council NR. Monoclonal antibody production [Internet]. Washington, DC: The National Academies Press; 1999. https://nap.nationalacademies.org/catalog/9450/monoclonal-antibody-production
  • Yokoyama WM. Production of monoclonal antibody supernatant and ascites fluid. Curr Protoc Mol Biol. Jul 2008;83(1): Chapter 11:Unit 11.10. doi:10.1002/0471142727.mb1110s83.
  • Jackson LR, Trudel LJ, Fox JG, Lipman NS. Monoclonal antibody production in murine ascites. I. Clinical and pathologic features. Lab Anim Sci. 1999 Feb;49(1):70–80.
  • Lima WC, Gasteiger E, Marcatili P, Duek P, Bairoch A, Cosson P. The ABCD database: a repository for chemically defined antibodies. Nucleic Acids Res. 2020 Jan 8;48(D1):D261–4. doi:10.1093/nar/gkz714.
  • Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M. et al. Single-chain antigen-binding proteins. Science. 1988 Oct 21;242(4877):423–26. doi:10.1126/science.3140379.
  • Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotný J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R. et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA. 1988 Aug;85(16):5879–83. doi:10.1073/pnas.85.16.5879.
  • Nisonoff A, Wissler FC, Lipman LN, Woernley DL. Separation of univalent fragments from the bivalent rabbit antibody molecule by reduction of disulfide bonds. Arch Biochem Biophys. 1960 Aug;89(2):230–44. doi:10.1016/0003-9861(60)90049-7.
  • Hust M, Jostock T, Menzel C, Voedisch B, Mohr A, Brenneis M, Kirsch MI, Meier D, Dübel S. Single chain Fab (scFab) fragment. BMC Biotechnol. 2007;7(1):14. doi:10.1186/1472-6750-7-14.
  • Goding JW. Use of staphylococcal protein a as an immunological reagent. J Immunol Methods. 1978;20:241–53. doi:10.1016/0022-1759(78)90259-4.
  • Köhler G, Hengartner H, Shulman MJ. Immunoglobulin production by lymphocyte hybridomas. Eur J Immunol. 1978 Feb;8(2):82–88. doi:10.1002/eji.1830080203.
  • Nelson AL. Antibody fragments: hope and hype. Mabs-austin. 2010;2(1):77–83. doi:10.4161/mabs.2.1.10786.
  • Medgyesi GA, Gergely J. Structural studies of immunoglobulins. 3. Susceptibility of human gamma G globulins to peptic hydrolysis and papain sensitivity of F(ab’)2 fragments. Immunochemistry. 1969 May;6(3):473–79. doi:10.1016/0019-2791(69)90304-8.
  • Dorrington KJ, Carneiro L, Munro DS. The proteolysis of immunoglobulin G with long-acting thyroid-stimulating activity. Biochem J. 1966 Mar;98(3):858–61. doi:10.1042/bj0980858.
  • Plückthun A, Glockshuber R, Skerra A, Stadmüller J. Properties of FV and Fab fragments of the antibody McPC603 expressed in E. coli. Behring Inst Mitt. 1990 Dec;87:48–55.
  • Sivelle C, Sierocki R, Ferreira-Pinto K, Simon S, Maillere B, Nozach H. Fab is the most efficient format to express functional antibodies by yeast surface display. Mabs-austin. 2018 Jul;10(5):720–29. doi:10.1080/19420862.2018.1468952.
  • Hanna R, Cardarelli L, Patel N, Blazer LL, Adams JJ, Sidhu SS. A phage-displayed single-chain Fab library optimized for rapid production of single-chain IgGs. Protein Sci. 2020 Oct;29(10):2075–84. doi:10.1002/pro.3931.
  • Schirrmann T, Menzel C, Hust M, Prilop J, Jostock T, Dübel S. Oligomeric forms of single chain immunoglobulin (scIgG). Mabs-austin. 2010 Jan;2(1):73–76. doi:10.4161/mabs.2.1.10784.
  • Chang J, Rader C, Peng H. A mammalian cell display platform based on scFab transposition. Antib Ther. 2023 Jul;6(3):157–69. doi:10.1093/abt/tbad009.
  • Li SL, Liang SJ, Guo N, Wu AM, Fujita-Yamaguchi Y. Single-chain antibodies against human insulin-like growth factor I receptor: expression, purification, and effect on tumor growth. Cancer Immunol Immunother. 2000 Jul;49(4–5):243–52. doi:10.1007/s002620000115.
  • Schmiedl A, Zimmermann J, Scherberich JE, Fischer P, Dübel S. Recombinant variants of antibody 138H11 against human gamma-glutamyltransferase for targeting renal cell carcinoma. Hum Antibodies. 2006;15(3):81–94. doi:10.3233/HAB-2006-15303.
  • Zhang X, Zhang L, Tong H, Peng B, Rames MJ, Zhang S, Ren G. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography. Sci Rep. 2015;5(1):9803. doi:10.1038/srep09803.
  • Drabek D, Janssens R, de Boer E, Rademaker R, Kloess J, Skehel J, Grosveld F. Expression cloning and production of human heavy-chain-only antibodies from murine transgenic plasma cells. Front Immunol. 2016;7:619. doi:10.3389/fimmu.2016.00619.
  • Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82(1):775–97. doi:10.1146/annurev-biochem-063011-092449.
  • Wagner TR, Rothbauer U. Nanobodies right in the middle: intrabodies as toolbox to visualize and modulate antigens in the living cell. Biomolecules. 2020 Dec 21;10(12):1701. doi:10.3390/biom10121701.
  • Zhang C, Ötjengerdes RM, Roewe J, Mejias R, Marschall ALJ. Applying antibodies inside cells: principles and recent advances in neurobiology, virology and oncology. BioDrugs. 2020 Aug;34(4):435–62. doi:10.1007/s40259-020-00419-w.
  • Jin BK, Odongo S, Radwanska M, Magez S. Nanobodies: a review of generation, diagnostics and therapeutics. Int J Mol Sci. 2023 Mar 22;24(6):5994. doi:10.3390/ijms24065994.
  • Evan GI, Lewis GK, Ramsay G, Bishop JM. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell biol. 1985 Dec;5(12):3610–16. doi:10.1128/MCB.5.12.3610.
  • Russo G, Unkauf T, Meier D, Wenzel EV, Langreder N, Schneider KT, Schneider K-T, Wiesner R, Bischoff R, Stadler V, Dübel, S. In vitro evolution of myc- tag antibodies: in-depth specificity and affinity analysis of Myc1-9E10 and Hyper-Myc. Biol Chem. 2022;403(5–6):479–494. doi:10.1515/hsz-2021-0405.
  • Sulkowski E. Immobilised metal affinity chromatography. Trends Biotechnol. 1985;3(1):1–7. doi:10.1016/0167-7799(85)90068-X.
  • Dübel S, Breitling F, Klewinghaus I, Little M. Regulated secretion and purification of recombinant antibodies in E. coli. Cell Biophys. 1992;21(1–3):69–79. doi:10.1007/BF02789479.
  • Booth RJ, Grandison PM, Prestidge RL, Watson JD. The use of a ‘universal’ yeast expression vector to produce an antigenic protein of Mycobacterium leprae.” Immunol Lett 19, no. 1 (1988 19): 65–69. doi:10.1016/0165-2478(88)90121-6.
  • Schmidt TG, Koepke J, Frank R, Skerra A. Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. J Mol Biol. 1996;255(5):753–66. doi:10.1006/jmbi.1996.0061.
  • Li Y, Sousa R. Expression and purification of E. coli BirA biotin ligase for in vitro biotinylation. Protein Expr Purif. 2012 Mar;82(1):162–67. doi:10.1016/j.pep.2011.12.008.
  • Quintero-Hernández V, Juárez-González VR, Ortíz-León M, Sánchez R, Possani LD, Becerril B. The change of the scFv into the Fab format improves the stability and in vivo toxin neutralization capacity of recombinant antibodies. Mol Immunol. 2007 Feb;44(6):1307–15. doi:10.1016/j.molimm.2006.05.009.
  • Steinwand M, Droste P, Frenzel A, Hust M, Dübel S, Schirrmann T. The influence of antibody fragment format on phage display based affinity maturation of IgG. Mabs-austin. 2014 Feb;6(1):204–18. doi:10.4161/mabs.27227.
  • Mieczkowski C, Zhang X, Lee D, Nguyen K, Lv W, Wang Y, Zhang Y, Way J, Gries J-M. Blueprint for antibody biologics developability. Mabs-austin. 2023;15(1):2185924. doi:10.1080/19420862.2023.2185924.
  • Azevedo Reis Teixeira A, Erasmus MF, D’Angelo S, Naranjo L, Ferrara F, Leal-Lopes C, Durrant O, Galmiche C, Morelli A, Scott-Tucker A. et al. Drug-like antibodies with high affinity, diversity and developability directly from next-generation antibody libraries. Mabs-austin. 2021;13(1):1980942. doi:10.1080/19420862.2021.1980942.
  • Fellouse FA, Esaki K, Birtalan S, Raptis D, Cancasci VJ, Koide A, Jhurani P, Vasser M, Wiesmann C, Kossiakoff AA. et al. High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J Mol Biol. 2007 Nov 2;373(4):924–40. doi:10.1016/j.jmb.2007.08.005.
  • Al-Halabi L, Balck A, Michalzik M, Fröde D, Büttgenbach S, Hust M, Schirrmann T, Dübel S. Recombinant antibody fragments allow repeated measurements of C-reactive protein with a quartz crystal microbalance immunosensor. Mabs-austin. 2013 Feb;5(1):140–49. doi:10.4161/mabs.22374.
  • Thie H, Toleikis L, Li J, von Wasielewski R, Bastert G, Schirrmann T, Esteves IT, Behrens CK, Fournes B, Fournier N. et al. Rise and Fall of an Anti-MUC1 Specific Antibody. PLOS ONE. 2011 Jan 14;6(1):e15921. doi:10.1371/journal.pone.0015921. Chu HW, editor.
  • Gacerez AT, Arellano B, Sentman CL. How chimeric antigen receptor design affects adoptive T cell therapy. J Cell Physiol. 2016 Dec;231(12):2590–98. doi:10.1002/jcp.25419.
  • Huehls AM, Coupet TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol. 2015 Mar;93(3):290–96. doi:10.1038/icb.2014.93.
  • Pastan IH, Pai LH, Brinkmann U, Fitzgerald DJ. Recombinant toxins: new therapeutic agents for cancer. Ann NY Acad Sci. 1995;758(1):345–54. doi:10.1111/j.1749-6632.1995.tb24840.x.
  • Moutel S, El Marjou A, Vielemeyer O, Nizak C, Benaroch P, Dübel S, Perez F. A multi-Fc-species system for recombinant antibody production. BMC Biotechnol. 2009;9(1):14. doi:10.1186/1472-6750-9-14.
  • Hanaee-Ahvaz H, Cserjan-Puschmann M, Mayer F, Tauer C, Albrecht B, Furtmüller PG, Wiltschi B, Hahn R, Striedner G. Antibody fragments functionalized with non-canonical amino acids preserving structure and functionality - a door opener for new biological and therapeutic applications. Heliyon. 2023 Dec;9(12):e22463. doi:10.1016/j.heliyon.2023.e22463.
  • Rakotoarinoro N, Dyck YFK, Krebs SK, Assi MK, Parr MK, Stech M. A disruptive clickable antibody design for the generation of antibody-drug conjugates. Antibody Ther. 2023 Oct;6(4):298–310. doi:10.1093/abt/tbad023.
  • Brinkmann U, Kontermann RE. The making of bispecific antibodies. Mabs-austin. 2017;9(2):182–212. doi:10.1080/19420862.2016.1268307.
  • Alewine C, Hassan R, Pastan I. Advances in Anticancer Immunotoxin Therapy. Oncologist. 2015 Feb;20(2):176–85. doi:10.1634/theoncologist.2014-0358.
  • Sun D, Shi X, Li S, Wang X, Yang X, Wan M. CAR‑T cell therapy: A breakthrough in traditional cancer treatment strategies (Review). Mol Med Rep. 2024 Mar;29(3):47. doi:10.3892/mmr.2024.13171.
  • Zhang Y. Evolution of phage display libraries for therapeutic antibody discovery. Mabs-austin. 2023;15(1):2213793. doi:10.1080/19420862.2023.2213793.
  • Xiao X, Douthwaite JA, Chen Y, Kemp B, Kidd S, Percival-Alwyn J, Smith A, Goode K, Swerdlow B, Lowe D. et al. A high-throughput platform for population reformatting and mammalian expression of phage display libraries to enable functional screening as full-length IgG. Mabs-austin. 2017 Aug 18;9(6):996–1006. doi:10.1080/19420862.2017.1337617.
  • Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol. 1997 Jun;15(6):553–57. doi:10.1038/nbt0697-553.
  • Akamatsu Y, Pakabunto K, Xu Z, Zhang Y, Tsurushita N. Whole IgG surface display on mammalian cells: Application to isolation of neutralizing chicken monoclonal anti-IL-12 antibodies. J Immunol Methods. 2007 Oct 31;327(1–2):40–52. doi:10.1016/j.jim.2007.07.007.
  • Ho M, Nagata S, Pastan I. Isolation of anti-CD22 Fv with high affinity by Fv display on human cells. Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9637–42. doi:10.1073/pnas.0603653103.
  • Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. et al. Antibody display technologies: selecting the cream of the crop. Biol Chem. 2022 Apr 26;403(5–6):455–77. doi:10.1515/hsz-2020-0377.
  • Ferrara F, Naranjo LA, Kumar S, Gaiotto T, Mukundan H, Swanson B, Bradbury ARM. Using phage and yeast display to select hundreds of monoclonal antibodies: application to antigen 85, a tuberculosis biomarker. PLOS ONE. 2012;7(11):e49535. doi:10.1371/journal.pone.0049535.
  • Feddersen RM, Van Ness BG. Corrective recombination of mouse immunoglobulin kappa alleles in Abelson murine leukemia virus-transformed pre-B cells. Mol Cell biol. 1990 Feb;10(2):569–76. doi:10.1128/MCB.10.2.569.
  • Marks JD. Antibody affinity maturation by chain shuffling. Methods Mol Biol. 2004;248:327–43.
  • Kang AS, Jones TM, Burton DR. Antibody redesign by chain shuffling from random combinatorial immunoglobulin libraries. Proc Natl Acad Sci USA. 1991 Dec 15;88(24):11120–23. doi:10.1073/pnas.88.24.11120.
  • Frenzel A, Kügler J, Helmsing S, Meier D, Schirrmann T, Hust M, Dübel S. Designing Human Antibodies by Phage Display. Transfusion Medicine and Hemotherapy: Offizielles Organ Der Deutschen Gesellschaft Fur Transfusionsmedizin Und Immunhamatologie. 2017 Sep;44(5):312–18. doi:10.1159/000479633.
  • Bradbury ARM, Sidhu S, Dübel S, McCafferty J. Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol. 2011 Mar;29(3):245–54. doi:10.1038/nbt.1791.
  • Zhang MY, Shu Y, Rudolph D, Prabakaran P, Labrijn AF, Zwick MB, Lal RB, Dimitrov DS. Improved breadth and potency of an HIV-1-neutralizing human single-chain antibody by random mutagenesis and sequential antigen panning. J Mol Biol. 2004 Jan 2;335(1):209–19. doi:10.1016/j.jmb.2003.09.055.
  • Gallo E. Current advancements in B-cell receptor sequencing fast-track the development of synthetic antibodies. Mol Biol Rep. 2024 Jan 18;51(1):134. doi:10.1007/s11033-023-08941-0.
  • Russo G, Theisen U, Fahr W, Helmsing S, Hust M, Köster RW, Dübel S. Sequence defined antibodies improve the detection of cadherin 2 (N-cadherin) during zebrafish development. N Biotechnol. 2018 Oct 25;45:98–112. doi:10.1016/j.nbt.2017.12.008.
  • Pedrioli A, Oxenius A. Single B cell technologies for monoclonal antibody discovery. Trends Immunol. 2021 Dec;42(12):1143–58. doi:10.1016/j.it.2021.10.008.
  • Ridder R, Schmitz R, Legay F, Gram H. Generation of rabbit monoclonal antibody fragments from a combinatorial phage display library and their production in the yeast pichia pastoris. Bio/Technology. 1995;13(3):255–60. doi:10.1038/nbt0395-255.
  • Romao E, Morales-Yanez F, Hu Y, Crauwels M, De Pauw P, Hassanzadeh GG, Devoogdt N, Ackaert C, Vincke C, Muyldermans S. et al. Identification of Useful nanobodies by phage display of immune single domain libraries derived from camelid heavy chain antibodies. Curr Pharm Des. 2017;22(43):6500–18. doi:10.2174/1381612822666160923114417.
  • Courtenay-Luck NS, Epenetos AA, Moore R, Larche M, Pectasides D, Dhokia B, Ritter MA. Development of primary and secondary immune responses to mouse monoclonal antibodies used in the diagnosis and therapy of malignant neoplasms. Cancer Res. 1986 Dec;46(12 Pt 1):6489–93.
  • Gorman SD, Clark MR. Humanisation of monoclonal antibodies for therapy. Semin Immunol. 1990 Nov;2(6):457–66.
  • Hwang WYK, Foote J. Immunogenicity of engineered antibodies. Methods. 2005 May;36(1):3–10. doi:10.1016/j.ymeth.2005.01.001.
  • Fishwild DM, O’Donnell SL, Bengoechea T, Hudson DV, Harding F, Bernhard SL, Jones D, Kay RM, Higgins KM, Schramm SR. et al. High-avidity human IgGκ monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol. 1996 Jul;14(7):845–51. doi:10.1038/nbt0796-845.
  • Jakobovits A. Production of fully human antibodies by transgenic mice. Curr Opin Biotechnol. 1995 Oct;6(5):561–66. doi:10.1016/0958-1669(95)80093-X.
  • Osborn MJ, Ma B, Avis S, Binnie A, Dilley J, Yang X, Lindquist K, Ménoret S, Iscache A-L, Ouisse L-H. et al. High-affinity IgG antibodies develop naturally in Ig-knockout rats carrying germline human IgH/Igκ/Igλ loci bearing the rat CH region. J Immunol. 2013 Feb 15;190(4):1481–90. doi:10.4049/jimmunol.1203041.
  • Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, Yu J, Shan S, Zhou B, Song S. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 2020 Aug;584(7819):115–19. doi:10.1038/s41586-020-2380-z.
  • Bertoglio F, Meier D, Langreder N, Steinke S, Rand U, Simonelli L, Heine P A, Ballmann R, Schneider K-T, Roth, K D R. et al. SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface. Nat Commun. 2021;12:1577. doi:10.1038/s41467-021-21609-2.
  • Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider K-T, Ballmann R, Fühner V, Kuhn P. et al. Developing recombinant antibodies by phage display against infectious diseases and toxins for diagnostics and therapy. Front Cell Infect Microbiol. 2021 Jul 7;11:697876. doi:10.3389/fcimb.2021.697876.
  • Kellmann SJ, Hentrich C, Putyrski M, Hanuschka H, Cavada M, Knappik A, Ylera F. SpyDisplay: a versatile phage display selection system using SpyTag/SpyCatcher technology. Mabs-austin. 2023;15(1):2177978. doi:10.1080/19420862.2023.2177978.
  • Zhai W, Glanville J, Fuhrmann M, Mei L, Ni I, Sundar PD, Van Blarcom T, Abdiche Y, Lindquist K, Strohner R. et al. Synthetic antibodies designed on natural sequence landscapes. J Mol Biol. 2011 Sep 9;412(1):55–71. doi:10.1016/j.jmb.2011.07.018.
  • Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H. et al. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol. 2005 Mar;23(3):344–48. doi:10.1038/nbt1067.
  • Colwill K, Gräslund S. Renewable protein binder working group, Gräslund S. A roadmap to generate renewable protein binders to the human proteome. Nat Methods. 2011 Jul;8(7):551–58. doi:10.1038/nmeth.1607.
  • Schofield DJ, Pope AR, Clementel V, Buckell J, Chapple SD, Clarke KF, Conquer JS, Crofts AM, Crowther SR, Dyson MR. et al. Application of phage display to high throughput antibody generation and characterization. Genome Biol. 2007;8(11):R254. doi:10.1186/gb-2007-8-11-r254.
  • Nagano K, Tsutsumi Y. Phage display technology as a powerful platform for antibody drug discovery. Viruses. 2021 Jan 25;13(2):178. doi:10.3390/v13020178.
  • Bradbury ARM, Marks JD. Antibodies from phage antibody libraries. J Immunol Methods. 2004 Jul;290(1–2):29–49. doi:10.1016/j.jim.2004.04.007.
  • Zhou H, Zhang YL, Lu G, Ji H, Rodi CP. Recombinant antibody libraries and selection technologies. N Biotechnol. 2011 Sep;28(5):448–52. doi:10.1016/j.nbt.2011.03.013.
  • Little M, Breitling F, Dübel S, Fuchs P, Braunagel M, Seehaus T, Klewinghaus I. Universal antibody libraries on phage and bacteria. Year Immunol. 1993;7:50–55.
  • Harel Inbar N, Benhar I. Selection of antibodies from synthetic antibody libraries. Arch Biochem Biophys. 2012 Oct 15;526(2):87–98. doi:10.1016/j.abb.2011.12.028.
  • de Brito PM, Saruga A, Cardoso M, Goncalves J, de Brito PM. Methods and cell-based strategies to produce antibody libraries: current state. Appl Microbiol Biotechnol. 2021 Oct;105(19):7215–24. doi:10.1007/s00253-021-11570-x.
  • Weller MG. Quality issues of research antibodies. Anal Chem Insights. 2016;11:21. doi:10.4137/ACI.S31614.
  • Skerra A. Alternative non-antibody scaffolds for molecular recognition. Curr Opin Biotechnol. 2007 Aug;18(4):295–304. doi:10.1016/j.copbio.2007.04.010.
  • Kovár J, Franĕk F. Serum-free medium for hybridoma and parental myeloma cell cultivation: a novel composition of growth-supporting substances. Immunol Lett. 1984;7(6):339–45. doi:10.1016/0165-2478(84)90092-0.
  • Donini M, Marusic C. Current state-of-the-art in plant-based antibody production systems. Biotechnol Lett. 2019 Mar;41(3):335–46. doi:10.1007/s10529-019-02651-z.
  • Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH, Hamilton SR. et al. Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology. 2004 Sep;14(9):757–66. doi:10.1093/glycob/cwh104.
  • Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi B-K, Cook WJ, Cukan M. et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol. 2006 Feb;24(2):210–15. doi:10.1038/nbt1178.
  • Potgieter TI, Cukan M, Drummond JE, Houston-Cummings NR, Jiang Y, Li F, Lynaugh H, Mallem M, McKelvey TW, Mitchell T. et al. Production of monoclonal antibodies by glycoengineered Pichia pastoris. J Biotechnol. 2009 Feb 23;139(4):318–25. doi:10.1016/j.jbiotec.2008.12.015.
  • Bradbury ARM, Dübel S, Knappik A, Plückthun A. Animal- versus in vitro -derived antibodies: avoiding the extremes. Mabs-austin. 2021 Jan 1;13(1):1950265. doi:10.1080/19420862.2021.1950265.